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We introduce "bilateral classes", a new concept for classifying the elements of groups. Bilateral 
classes are orbits in a group G under the action of any given subgroup of the direct product G X G. 
The classification concept presented here encompasses conjugacy classes, cosets, double eosets, 
and Ree's if-classes as particular cases. It has an interpretation as a classification scheme for 
bijections between G-sets under the aspect of symmetry equivalence due to symmetries in both the 
domain and the range. While double cosets and conjugacy classes correspond to the case of no or 
complete correlation between operations of the two symmetry groups, our concept also covers the 
general case of partial correlation. The scope of generalization corresponds to applications in 
physics. Expressions for the number of bilateral classes are given. 

In classifying the elements of groups some particular 
types of classes have been proved to represent classification 
principles of outstanding relevance in various fields of appli
cation, i.e., eosets, double cosets, conjugacy classes and sub
classes. I Denoting with A and B two subgroups of a group G, 
the corresponding definitions may be summarized as 
follows: 

(i) right cosets Ag: = ! ag I aE A I; 
(ii) left cosets gB: = 19b I bE B I; 
(iii) double cosets AgB: = ! agb I aE A,bE B ), 

(iv) conjugacy classes2 ctg): = !aga- I I aEA ). 

While cosets evidently are particular double cosets, as 
t hey correspond to the special choice A = lor B = I, respec
tively, with I being the id~ntity subgroup, no such relation 
between double cosets and conjugacy classes can be stated. 
There is, however, a common aspect in the generation of 
these classes. Elements which are equivalent to agE G are 
generated by multiplying g from the right and from the left 
with elements of given subgroups, respectively, the pairing 
ofleft and right factors being either unrestricted or subject to 
a certain condition. Each of the above classifications may be 
characterized, by an equivalence relation which is defined by 
a properly chosen subset P of the direct product G X G as 
follows: 

g' -g¢=---::::> 3 (a,b )E P:g' = agb -I. (I) 

In fact, left. right, double cosets and conjugacy classes, 
respectively,ariseifPischosentobeA Xl,! XB,A xB,and 
(A XA )0' where (A XA)D denotes the diagonal subgroup 
! (a,a) ! aE A lofA ><A. However, therestrictionofPtothese 
particular choices seems quite arbitrary and it is unnecessary 
for defining an equivalence relation. It is sufficient for this 
purpose that P is a subgroup of G X G. Thus, for any sub
group P, (I) represents a subdivision of G into disjoint sub
sets P [g), which we shall call bilateral classes] of type P. 

Definition 1: 
P[g]: = !agb- I I (a,b)EPl· 

An understanding of the characteristic features of bi
lateral classes in G as well as a survey of the essential particu
larizations into types with distinguished properties may be 
expected from characterizing the subgroups of G X G 
through properties of G. As shown by Goursat4 a subgroup 
PC G X G is given first by a chain of subgroups A CA C G and 
jj C BeG in each factor G where A and Ii are normal sub
groups in A and B, respectively, satisfying the condition of 
isomorphic factor groups A I A ~ B I jj and second by an iso
morphism,u: A I ~B I Ii. The subgroup P, associated with 
A,A,li, B, andll, is the disjoint union of products of correlat
ed cosets due to f1, i.e., 

p - -

P= U (Aa,XBb!1(s)' 
s= J 

(2) 

where as, b,; S = I, ... ,p = I A IAI are coset representatives 
and!2:s >--+!2(s) denotes a one-to-one correspondence between 
cosets of Ain A and jj and B according to Il(Aa.) = jjb!I(,)' A 
more symmetrical and equally useful presentation refers to a 
groupHisomorphicwithA IAandB Ijjand instead ofll toa 
pair of homomorphisms rp:A -+H and ¢:B-+H which satisfy 
the relation 

With rp and ¢ we may rewrite (2) in the form (2') 

P= 1 (a,b ) I (a,b)EA xB; rp(a) = ¢(b)j. (2') 

Using (2) and (2') we get two equivalent but more explicit 
formulations of Def. I, namely: 

Definition la: 

p - -

P [g]: = u Aa,gb i(s~B, 
.\-0:- j 

Definition 1 b: 

P[g]: = tagb -I I aEA, bEB; rp (a) = ¢(b )]. 

According to Der. la bilateral classes may be considered as 
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particular unions of double cosets. Def. 1 b characterizes the 
classification by the set of equivalence transformations 
(a,b ):gt----+Ggb -I and shows that in any case the totality ofleft 
and right factors are each subgroups of G. The permitted 
combinations of these factors, however, are generally not 
unrestricted since the condition ((J(a) = ¢(b) becomes trivial 
only in the special case H = 1. The properties of H allow a 
distinction between characteristic types of bilateral classes. 

The case H = I corresponds to A = A, Ii = Band 
'r/(aE A,bE B ):({J (a) = ¢(b), i.e., it represents double cosets. 
Thus, double cosets are bilateral classes without any correla
tion between right and left factors in the set of equivalence 
transformations. 

The case H g;;A g;;B implies A = Ii = I, and therefore 
the condition ((J(a) = ¢(b) corresponds to an isomorphism 
fl:AI-+B. Hence the pairing of elements of A and B is unique 
which means that bilateral classes of this type are distin
guished by strong correlations between right and left factors 
in the set of equivalence transformations. The particular case 
A = Band fl being the identity isomorphism denotes conju
gacy classes. For all other cases of strong correlation we 
propose the term "twisted conjugacy classes". 

A class concept for groups different from those men
tioned in the beginning was introduced by Ree5 under the 
notation u-classes. They also prove to be a certain type of 
bilateral classes, characterized by H g;; B g;;A I A,A =1= I, B CA, 
or H g;;A g;;B iii, Ii =1=1, A CB. 

Between the extreme situations of strong correlation 
and no correlation we have the general type of bilateral 
classes, which is distinguished by partial correlation of right 
and left factors in the set of equivalence transformations. We 
think that bilateral classes represent the natural extension 
from the classical types of classes in group theory to a unify
ing and generalizing concept. 

Let X be the mapping from G X G onto G defined by 
X:(g" ,g(3) >--+gag{3 I. It follows that 

'r/(hE G): X:(gah,gf;lh ) I-+g"g{3 I, 

g"gf;l-I =g;,g~ --I=?g~ =gah, g~ =gf;lh, 

with 
h =g" Ig;, =g,ilgl" 

Thus by the action ofX all elements of a left coset of 
(G X G) D in G X G are mapped onto one element of G, and 
different left cosets are mapped onto different elements of G. 
Any such left coset, therefore, may be written as 
! (gh,h) I hE G I where! (g,e) I gE G I is a system of rep res en
tatives in G X G. 

Given any suQzroup PC G X G, we have 

! (agah.bgf3h) I (a,b)E P,bE G I -! ag"gf;l-I b -I I (a,b)E PI, 

and hence the bijection 

!P(gh,b)(GXG)D IgEG,bEGI 

I----+{(agb -I I (a,b)E P I I gE G}. 

This entails the 
Lemma: The mapping X:(g" ,g(3) I----+g"g(3 1 induces a 

one-to-one correspondence between double cosets in G X G 
with P as left and (G X G) D as right factor and bilateral 
classes of type P in G. 
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The following discussion illustrates this lemma. It also 
provides an interpretation of bilateral classes in the symmet
ric group which indicates applications in combinatorics. 

The concept of symmetry in a set M may be introduced 
with reference to a second set R of equal cardinal number 
using bijections from R onto M. The set of bijections is given 
by !g 0 s I gE S I where 5 is a fixed bijection 5:R>--+M and 
go 5 denotes the bijection 5 followed by a permutation act
ing on M. S denotes the unrestricted symmetric group of 
permutation operators. Any subgroup A of S, thus can be 
considered as representing a particular symmetry in M, 
which is characterized through symmetry equivalence ofbi
jections as follows: 

g' 05 -g 0 5<===>3aEA:g' = ago 

StipUlating the relation 'r/ gE S:g 0 S = 5 0 g we define the ac
tion of operators of S also on the set R. Let N be a further set 
of equal cardinal number and the group S be defined also as 
permutation operator group for Nby a bijection 7]:R>--+N, 
'r/gE S:g 07] = 7] 0 g. The product 50 7rl = E is then a bijec
tion from N onto M satisfying 'r/gE S:g 0 E = E 0 g; i.e., Sis 
operator group for M, N, and R. The set of bijection pairs 
( (g 0 5, g' 0 7]) I (g,g')E S X S J from R onto M and N classi
fied according to subsets of pairs which represent the same 
bijection go 5 0 7]-1 0 g,-I :N>--+M, respectively, leads to the 
following classes: 

! (gh 05, g'h 0 7]) I hE S J, (g,g')E S XS. 

We introduce the concept of "correlated symmetry" in the 
product set M X N distinguished as a symmetry which corre
sponds to a subgroup of S X S and discuss it first with refer
ence to the set R using pairs of bijections gO 5:Ro--?M, 
g' 0 1j:Ro--?N. Since correlation between properties of M and 
N must be invariant under permutations in the reference set 
R, exclusively the membership of bijection paris in classes 
representing a bijection between Nand M respectively is of 
relevance for classifying according to correlated symmetry. 
Given a symmetry group PCS XS, the corresponding 
classes are therefore determined by double cosels with 
(S X S) D as right and P as left factor. 

! (agh 05, bg'h 0 7]) I (a,b)E P, hES I, (g, g')E S XS'. 

In terms of bijections from N onto M which we write as 
productsg 0 E = g'h 05 0 7]- 1 0 h -Ig,,-I, g'g"-I = g this clas-
sification corresponds to bilateral classes in S 

! agb -I 0 E I (a,b)E P I or (bg-'ii- ' I (b,ii)E P!, 
pes xS, 

where Sis the operator group associated (inverse isomor
phic) with S and acting on functions. According to Gour
sat's decomposition of subgroups (2), correlated symmetry 
represents total, partial or no correlation between the sym
metry operations in M and N. 

More generally let M and N be two G-sets associated 
with a given group G and E:M~N be a map with 
E(gm) = g 0 E(m) for all gEG and mEM. Let (({J I be the set of 
maps which arises from E by the combination with transla
tions gEG, i.e., ({J = go E = E 0 g:M-N and H denoting the 
subgroup of G for which hOE =7 E, 'r/ hE H. Then, any sub
group P of G X G which contains H xH represents a cone-
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lated symmetry in M X N, and classes of symmetry equiv
alent maps of the above type are defined by 

rp - 1/1¢=:?3(a.b)E P:a 0 rp 0 b -I = 1/1. 
p 

Since all these maps can be represented by left multiplication 
of E with an element g of G we have a one-to-one correspon
dence between bilateral classes of the type P and symmetry 
equivalence classes of maps in the set {rp J. The foregoing 
result refers to the particular case of bijections between sets 
of equal cardinal number. 

Summarizing we have: 
Theorem: Any subgroup P of G X G represents a corre

lated symmetry in two properly chosen G-sets M and N. 
Bilateral classes of type Pin the group G represent the classi
fication of maps {rp J between the sets M and N, which arise 
from a G-map E, go E = E 0 g by translation (i.e., by compo
sition with elements in G), according to the "correlated sym
metry P". 

The equivalence transformations (a,b ):g ~gb -I define 
an action of PC G X G on G. Hence bilateral classes are P
orbits of G, and we can make use of well-known results con
cerning the sizes and the number of orbits of a permutation 
group. 

The order IP [g] I ofa bilateralclassP [g] containing the 
element g is given by the number of cosets in P of the stabiliz
er PI! of g. In our case, the stabilizer takes the form 

Pg = I (a,b )E P I agb -I = g J. 
Because of the equivalence 

aa,gb ,;(,~b-I = g¢=:?aa, = gbbt1(s)g-l, 

the presentation (2) leads to the expression 

p - - 1 
Pg = U l(a,g-lag)laEAas ngBbt1(s)g- J; 

s= 1 

IPg 1= f IAas ngifbt1(s)g-ll· 
s= 1 

The index of the stabilizer Pg gives the order of P [ g] 

IP[gll = ~ = p plAllifl -I 

IPg I Ls~ 1 IAas ngBbt1(s)g I 
The number I G / - P I of classes oftype Pfollows from Burn
side's lemma: 

I ~ I IG/-P = L.. 
gE G IP [gll 
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I I f IAas n ifbt1(s)g-1 I. 
piA liB I gEGs~1 

Another counting formula results from the one-to-one cor
respondence between bilateral classes and double cosets: 

IG/-P 1= IP\G XG/(G XG)D I· 

We recall the number IA \ G / B I of double cosets of a 
group G with respect to subgroups A and B, given by a for
mula which goes back to Frobenius.6 

I A \ G / B I = I G I I I Cp n A I I Cp n B I . 
IA liB I p ICp I 

Here the sum is taken over the (ordinary) conjugacy classes 
ofG. 

Counting the number IP\G XG/(G XG)D I requires 
essentially the same prerequisites since conjugacy classes of 
G X G are cartesian products of those of G. 

IG/-PI 

IGI2 II ICpxCunPIICpxCun(GXG)DI 

IPIIGlpu ICpliCul 
ElI ICpXCp nP I . 

,= IPI p ICpl 
With the presentation of the group P according to (2), we 
finally get the enumeration formula 

IG/-PI 

_ IG I I f ICp nAas I ICp nifbt1 (s) I. 
- piA I IB I p s~l ICp I 

'See, e.g., E.P. Wigner, in Spectroscopic and Group Theoretical Methods in 
Physics, edited by F. Bloch (Wiley, New York, 1958), p. 131. 

'Frequently the term conjugacy class is reserved for the particular case of 
A = G, while subclasses denote the case A =I G. 

'The notation "double classes" originally used by us in a preliminary note7 

on this subject, is replaced by 'bilateral classes'. 

4E. Goursat, Annales Scientifique de l'Ecole Normale Superieure, Paris (3), 
6,9(1889). 

'R. Ree, III. 1. Math. 3, 440 (1959). 
'G. Frobenius, SitzBer. Preuss, Akad., Berlin 163 (1895). 
7W. Hasselbarth, E. Ruch, 0.1. Klein, T.H. Seligman. in Group Theoretical 
Methods in Physics, edited by R.T. Sharp and B. Kolman (Academic, New 
York, 1977), p. 617. 
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We prove a stronger version of a result due to B. Carter: A cyclic subaction must commute with 
any I-parameter subgroup of a 2-parameter group of isometries. 

We prove the following improvement of a result due to 
B. Carter (cfr. Ref. 1) 

Theorem: If a pseudo-Riemannian manifold (M, g) is 
invariant under a 2-parameter group ofisometries G and if G 
contains a I-parameter cyclic group of isometries I/c then 
I/c commutes with any other I-parameter subgroup if at 
least an orbit of I/c is nonnull at a point P of M. 

The proof is a direct consequence of the following 
lemma. It will provide the derivative, along a Killing vector 
Si' of the determinant of the matrix g( Si ,Sj) 

(In the following we refer to Refs. 2 and 3 for the theo
rems and notation used.) 

Lemma: HI: SI,S2"'Sp are p Killing vectors which are 
linearly independent at each point of an open subset U of M. 

They span ap-dimensionallinear subspace of Tx(M) 

called.Ix . H 2 : [S;,Sj] = Lk C~Sk' Then 
(a)s;(liJd=.I/ C:k(u/,whereliJk g(Sk' .)andS;(liJk ) 

is the Lie derivative of the I-form liJ k along the vector field 

Sf; 
(b)s;(fl) = L[ C ;tfl with fl-liJ l /\ •• , /\liJp ; 

(c)5;(W) = 2.It C;/ W with W=det[ geLs)]· 
Proof 
(a) Let (Ya ) a basis of Tx (M). As Lie derivative com

mutes with contraction, we have: 

L;.(liJ"Ya ) 

= <5;(liJk),Y,J + (liJk,Lt,Ya ) 

= L!J g( Sk'Ya » (by definition of liJk) 

= (L,. g)<tk'Y") +g(L;Jk'Ya ) +g(fk' Ls,Ya )· 

The first term of the third line vanishes because 5; is a Killing 
vector. By comparing the first and the third lines, it remains: 

(s;«(ud.Y,,) = g(Ls,Sk,Ya) 

=g( + C;kSt.Y,,) 

= (+ C;kliJt,ya ). 

which holds for any Y" and thus proves the assertion; 
(b) Since the Lie derivative satisfies Leibniz's rule, we 

have: 

51 (fl) = t (liJ 1 A ... A liJ p ) 

I liJl A '" A t(liJ) /\ '" A liJp 

IliJ l A···A I C~liJl A···AliJp (by the lemma) 
I 

(c) We remark that W = fl (tl , ... .5p ). 

Then: 

5; (fl (SI,· .. ,5p » = s;(W) 

= Si(fl)( SI""'Sp) + fl (Ls'sI'52'''',5p) 
+ .. , + fl (SI, ... ,Ls'sp) 

=2 I C;tw. 
I 

We proceed now to the proof of the theorem. 

o 

(a) From the existence of a 2-parameter group of isome
tries, we deduce that there are two Killing vectors 51 ,5«' such 
that [St,SIf'] = C:If'SI + C'{«'Sq' where the coefficients Cj, 
are constant. From the lemma, we deduce that 

=2C~tW, 

where W = det( g(tiS)' (\) 
If W #0, (1) can be written, in a coordinate system where 
5«' = JIJcp, 

JlnW = 2C I' 
Jcp If' 

Thus In W = 2C ~/'CP + /, where the function (f is inde
pendent of cp. As I/c: SO(2)X M-M, In Wmust be periodic 
in cp. Thus C~'t = 0 where W #0. 4 

Since all C jk are constant, it follows that C ~t = O. 
(b) We shall prove that C ~t = 0 

51f' (g(tp5q,» 
=g([SIf',St ),51',) because 51" is a Killing vector 

= C~,gl',<{( + C~'t gil" 

= C;~, g«,I" 

because of the first part of the proof. Thus 
g( S,,51'') = C~t g'l''PC{J -+- h where h is independent of cp. To 
have the periodicity for g( St ,51f') we need. 

C~r g«,1f' = O. 

Since by hypothesisg'P'I' #Oat at least a pointP,C~:r = o. [J 
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The objects under consideration are: A group G containing a subgroup S of finite index p, an 
irreducible representation (= multiplier representation by unitary or by unitary and antiunitary 
operators on a Hilbert space of arbitrary dimension) U of G, and an irreducible representation W 
of S. It is shown (1) that the representations U IS (the restriction of U to S) and W t G (the 
representation induced by W) are both orthogonal sums of finitely many irreducible 
subrepresentations, the number of which does not exceed p; (2) that the multiplicity of Win U IS 
equals the mUltiplicity of U in W tG if Wand U are unitary representations and that these 
multiplicities are related in a slightly different manner for partially antiunitary representations. 
For the special case that S is an invariant subgroup, it is shown how the irreducible 
representations of G can be constructed if the irreducible representations of S and those of certain 
finite groups are known. 

1. INTRODUCTION 
Let us first indicate the physical origin of the math

ematical problem that is the subject of this paper. The study 
of the reflection operators T, PC, and PCT in relativistic 
quantum (field) theory requires some information on the ir
reducible representations of the full Poincare group (i.e., the 
group generated by the Poincare transformations, the rever
sal of time direction, and any reflection at a plane). These 
representations were classified by many authors. However, 
at the very basis of all such investigations we know about, 
there enters an unproven hypothesis that may, in its weakest 
form, be stated as follows. 

(i) Every representation of the proper orthochronous 
Poincare group that is obtained by restriction from an irre
ducible representation of the full Poincare group contains an 
irreducible subrepresentations. 

Note that group representations on infinite dimensional 
spaces need not have irreducible subrepresentations: 
Choose, for instance, any representation of the Poincare 
group with nonzero energy and restrict it to the translation 
group. Nevertheless, the truth of (i) is plausible: If it were 
false, there would exist an infinity of subspaces, all being 
invariant under the uncountable manifold of Poincare trans
formations, whereas none of these subspaces would be invar
iant under time reversal and space reflection, that is, under a 
set of only two transformations. If this crude argument is to 
the point, it also supports the truth of a more general 
hypothesis. 

(ii) is obtained from (i) by replacing the full Poincare 
group by any group G and the proper orthochronous Poin
care group by any subgroup S of finite index. (The index of a 
subgroup S is the cardinality I G /S I of the quotient space 
G /s.) Gmay then, for instance, be any Lie group with a finite 
number of connected components and Sthe unit component. 
(Then S is an invariant subgroup.) To prove the hypothesis 

(ii) is the main purpose of this paper. In fact, we will prove a 
little more, namely that the restricted representation decom
poses into finitely many i~feducible representations of S, the 
n umber of which does not exceed the index of S (Theorem 1). 
Under the special assumption that S is of index 2, this was 
proved earlier in Ref. I by methods that suggest no general
ization to higher indices. Due to the particular structure of 
the full Poincare group the index 2 case is in fact sufficient to 
establish (i). (The proper orthochronous Poincare group is 
of index 2 in the orthochronous Poincare group and the lat
ter group is of index 2 in the full Poincare group.) 

Let us now say something about the mathematical 
framework we will work in (for details, see Sec. 2). Since our 
results should be directly applicable to the physically rel
evant representations of the full Poincare group, we have to 
consider multiplier representations by unitary operators or 
by unitary and anti unitary operators. It will become appar
ent that taking into account multipliers and antiunitary op
erators causes only minor complications. The reader who is 
interested only in proper unitary representations should ig
nore all assumptions and statements concerning objects de
noted by G., liJ, 8, and K. No topological or measure theoreti
cal properties of groups or representations will be required. 

The main part of the paper is divided into two sections 
of rather different character. Sec. 3 contains our main result, 
Theorem 1, the content of which was indicated earlier in this 
introduction, and some further theorems, concerning the re
lation between the irreducible representations of G and cer
tain representations of G that are induced by irreducible re
presentations of a subgroup S of finite index. These theorems 
establish a generalized version of Frobenius' reciprocity 
theorem, and a procedure by which one can construct the 
irreducible representations of G if those of S are known. In 
Sec. 4 we assume that G contains an invariant subgroup of 
finite index. Then, a more practicable procedure for deduc-
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ing the irreducible representations of G from those of the 
subgroup is available. The pertinent facts are well known for 
finite dimensional linear or partially antilinear representa
tions (see Refs. 2-4), and for infinite dimensional unitary 
representations under additional topological assumptions 
(see Ref. 5). With Theorem 1 and the dimension-indepen
dent version of Schur's Lemma (see Sec. 2) at one's disposal, 
one can easily translated the proofs referring to the finite
dimensional case into general ones. Therefore, we have only 
stated the results and given no proofs in Sec. 4. 

2. PRELIMINARIES 

For reasons that are indicated in the introduction, we 
will consider group representations that are slightly more 
general than unitary representations. To be definite, we have 
to fix some terminology concerning these representations. 

Let G be a group (no topology implied) and let H be a 
Hilbert space (= complex Hilbert space of arbitrary dimen
sion). Suppose that U maps G to a set of operators on H such 
that: 

(i) for any gEG, the operator (= linear or antilinear, 
bounded, and everywhere defined, operator) U (g) is either 
unitary or antiunitary; 

(ii) any of the operators U (g)U (g')( U (gg,»-I is a com
plex multiple of the identity operator I; 

(iii) U (e) = 1, where e is the unit in G. 
Then U will simply be called a representation ofG, and 

H wiH be called the carrier space of U. The subset 
G.: = (gEG: U (g) is unitary J is an invariant subgroup of in
dex 1 or 2 and will be called the unitary domain of U (or the 
unitary subgroup of G). The mapping lU:G X G~C satisfying 
U(g)U(g') = lU(g,g') 
X U (gg') is called the multiplier of U. A function 
lU:G X G~C is a multiplier of a representation of G with uni
tary domain G. if and only if 

Iw(g,g') I = I, lU(e,e) = 1, 

lU(g,g'g")Dg (lU(g',g"» = (U(gg',g"}lU(g,g'), (2.1) 

where, for any complex number z, the number Dg(Z) is de
fined to bez for gEG. andzfor giG •. Therefore, any solution 
lU of (2.1) is called a G.-multiplier of G. (The if part of the 
preceding statement follows from the fact that the inducing 
formula (3.2), applied to the trivial representation of the sub
group S = t e J, gives an lU-representation of G, when the car
rier space is taken to be the Hilbert space of those complex
valued functionsf on G that differ from zero only on a denu
merable set of points and satisfy ~gEG I f(g)12 < 00.) 

We now fix once and for all a group G, a subgroup G. of 
Gwith G = G.or IG IG.I = 2, and a G+-multiplerlU ofG. We 
will be concerned mainly with those representations of G 
that have unitary domain G+ and multiplier lU. When such a 
representation is restricted to a subgroup S of G it has uni
tary domainSnG. and multiplier lUIS XS. Therefore, we will 
employ in the sequel the following 

Convention: Given a subgroup S~ G, the term "repre
sentation of S " means "representation of S with unitary do
main SnG •. " Further, the multiplier of a representation of S 
is lU IS X S unless a different specification is noted. 
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Since the identity operator is linear, the usual "trivial 
representation" is a representation with trivial multiplier of 
GonlyifG = G •. Ifwehave IG IG.I = 2, we obtain a similar
ly simple representation with trivial multiplier of G by 
choosing a conjugation operator C (i.e., Cis antiunitary, and 
C 2 = 1) and associating the identity operator with any gEG., 
and C with any giG •. Any representation obtained in this 
way will be called a trivial representation ofG. Equivalence of 
representations, denoted by ~, means always unitary equiv
alence. The equivalence class of a representation U is denot
ed by [U]. 

A representation U of S is irreducible if and only if the 
real multiples of the identity operator are the only Hermitian 
linear operators that commute with U(S) (Ref. 1, cf. Ref. 6). 
From this fact, we easily derive two important lemmas that 
are well known for unitary representations: (a) a linear oper
ator that intertwines two irreducible representations of Sis 
either zero or a real multiple of a unitary operator; (b) if a 
representation U is an orthogonal sum of irreducible subre
presentations, the subspaces that carry the primary compo
nents (i.e., the maximal sums of mutually equivalent subre
presentations of U) are uniquely determined by U. The set of 
equivalence classes of irreducible representations of Sis de-

A-

noted by S. 

3. RESTRICTION OF AN IRREDUCIBLE 
REPRESENTATION TO A SUBGROUP OF FINITE INDEX 

Throughout this section, S will denote a subgroup of G 
such that IG IS I = p < 00, rl, ... ,rp will denote a system of 
coset representatives (i.e., G = v: ~ IriS) chosen such that 
r l = e, andgi (for gEG, iEt 1, ... ,pJ) will denote the number 
defined by 

griS=rgiS. (3.1) 

As is well known, the correspondence (g,O f-+gi defines a 
transitive action of G on the set t I, ... ,p J (Sbeing the station
ary subgroup of the point 1). Conversely, a transitive action 
of G on a set of p points exists only if G possesses a subgroup 
ofindexp. 

Our main result is 
Theorem 1: Let Ube an irreducible representation of G. 

Then the restriction U IS of U to S is an orthogonal sum of at 
most p irreducible subrepresentations. 

Proof Let A be a linear operator that commutes with 
U (S). We claim that the following linear operator commutes 
with U(G): 

4> (A): = ~ f U(rJAU(r;)-I. 
p i~ 1 

To prove this claim, we compute 

U(g)U(ri) 
= lU(g,r;)U(gri) = lU(g,r,)U(rgirgl Igr;) 

= w(g,r;)lw(rg;,r;;-lgr;)U(rg;)U(rgf Igr,) 

= :ag,;U(rg;)U(sg), 

where ag,; is a complex number, and Sg,; belongs to S [see 
(3.1)]. Therefore, and since the operator U(rg;)AU (rg;)-I is 
linear, and since the mapping i ~gi is a permutation, we 
have 
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U(g)¢ (A )U(gt l = ~ f U(g)U(rJA (U(g)U(r;)-1 
p '=1 

= ~ f U(rJAU(r;)-1 =¢(A). 
p '=1 

The following useful properties of ¢ can be simply verified: 
(i)¢ (aA + (3B) = a¢ (A) + {3¢ (B ) for all real numbers 

a,{3; 
(ii) ¢ (A *) = ¢ (A )*; 
(iii) ¢ (A ) is a positive operator if A is so; 
(iv) ¢ (1) = 1. 

We now use that U is irreducible. For an Hermitian linear 
operator A that commutes with U (S), the operator ¢ (A ) is 
Hermitian [by (ii)] and commutes with U(G). Thus¢ (A lisa 
real multiple, say cp (A ) 1, of the identity operator. Suppose, in 
addition, that A is positive. Then, for any normalized vector 
x in the carrier space of U, we have 

cp (A) = (xl¢ (A)x) = (lIp)«xIAx) 

+ f (U(rJ-1xIAU(r,t1x»>(lIp)(xIAx). 
;=2 

This shows 

(v)cp(A»(lIp)IIA II. 
Assume now that the theorem is false. Then there exist q 
non-zero Hermitian projection operators QI,. .. ,Qq with 
q > p, all commuting with U (S), and satisfying 
QI + .. , + Qq = 1. [Obviously, a subspace X is invariant un
der U (S) if and only if the Hermitian projection operator 
associated withX commutes with U (S ).] Combining (iv), (i), 
and (v) we have 

1 = cp (1) = cp (Q 1 + ... + Qq) = cp (Q I) + ... + cp (Qq) 

> (lIp)(1I Qdl + .. , + IIQq II> = (qlp), 

that isp>q, in contradiction to our assumption q >p. There
fore, the theorem is true. 0 

Given an irreducible representation U of G, we know 
that it determines certain irreducible representations of S, 
namely the irreducible subrepresentations of U IS. Changing 
our point of view, we are led to an interesting question: Let 
an irreducible representation W of S be given. To what ex
tend an irreducible representation U of G is determined by W 
being a subrepresentation of U IS? We shall pursue this ques
tion throughout the remainder of this section. A partial an
swer will be, that U is equivalent to a subrepresentation of an 
induced representation WiG. Therefore, we shall need some 
facts on induced representations, which will be described 
now. 

Lemma I: Let Xbe a Hilbert space that carriers both a repre
sentation W of S and a trivial representation K of G (see Sec. 
2). Then we have: 

(a) The formula 

(v(g)x), = (f1)(g,rg _ 1)/f1)(r"r,-lgrg _ I» 
X K(r;)W(r,-lgrg_l)K(rg_l)xg_I" (3.2) 

957 J. Math. Phys., Vol. 21, No.5, May 1980 

defines a representation V of G on the carrier space X P (i.e., 
on the Hilbert space of X-valued p-tupels). 

(b) The projection operators Pi:X P -X P, (Pjx)j: = /jijXj 
satisfy 

V(g)P;V(gt l = Pg" f P, = 1, PjPj = /jijPj ' 
i= 1 

The set V(G)u! P,: 1 <J<p J of operators is irreducible if and 
only if W is irreducible. 

(c) Suppose that U is a representation of G such that 
U IS contains Was a subrepresentation. Denote the carrier 
space of U by H. (Then X is a subspace of H.) Suppose that 
the subspaces U (r,)X, iEf 1, ... ,p), are mutually orthogonal 
and span the space H. The the mapping 

T:XP~H, Tx: = f U(rJK(r;)x" 
i= 1 

is unitary and the representation T- 1 UTcoincides with Vin 
(3.2). 

Equation (3.2) is Shaw's and Lever'S prescription for 
"generalized inducing" (see Ref. 4). Part (c) is analogous to 
Mackey's imprimitivity theorem (see Ref. 5, Theorem 6.6). 
It shows that Eq. (3.2), though it might appear strange at a 
first glance, has a very natural origin. Since the proof of 
Lemma 1 is straightforward and purely computational, we 
omit it. 

Definition: Let Wbe as in Lemma I. Then any represen
tation V of G given by Eq. (3.2), with any choice of a trivial 
representation K and of coset representatives rp .. ·,rp ' is said 
to be induced by W, and is denoted by WiG. 

It is easily shown that all representations induced by W 
are equivalent, and that W~ W',implies W iG~ W'iG.Even 
if Wis irreducible, we cannot expect that WiG is irreducible. 
On the subrepresentations of WiG we have 

Theorem 2: Let Wand V( = WiG) be as in Lemma I. 
Suppose, in addition, that W is irreducible. Then W t G is an 
orthogonal sum of at most p irreducible subrepresentations. 

Remark: Generalizing the hypothesis "I G IS I < 00" 

into "G IS compact" invalidates the conclusions of Theo
rems 1 and 2: Ifwe take for G the Euclidean group of motions 
and forS the subgroup of translations, neither U ISnor W tG 
will, in general, contain any irreducible subrepresentation. 

Proof of Theorem 2: LetA be a linear operator that com
mutes with V(G). We show that 

¢ (A ): = f P,AP!> 
i= 1 

commutes with the irreducible set considered in part (b) of 
Lemma 1: 

V(g)¢ (A) = f V (g)P,AP, 
i= 1 

= f Pgi V(g)AP, 
i= 1 

= f Pg,APg, V (g) 
i= I 

= f ¢(A)V(g), 
i= I 
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and 

Pi ¢ (A) = PjAPj = ¢ (A )Pj. 

Hence¢ (A) = cp (A)1 with areal numbercp (A ) if A is Hermi
tian. If A is positive, we have for any normalized xEX P 

cp (A) = (xl¢ (A )x) 

f (P,xIAP,x) 
1"=---1 

f I/A 1/2p,XW 
i= 1 

> ~ Ctl IIA 1/2p,x llY 
> ~II t A 1/2p, 112 

P ,--I 

= ~ (xIAx). 
p 

Now, the proof becomes complete when we take over the 
final part of the proof of Theorem 2 [starting with (v)], with 
U(S) replaced by V(G). 0 

Let us now consider irreducible representations Wand 
U of Sand G respectively. Then W tG and U IS are represen
tations of G and S, respectively. Since, by Theorems 2 and 1, 
the last two representations are orthogonal sums of finitely 
many irreducible representations, we may ask how many 
times U appears (up to equivalence) in the decomposition of 
W r G and ltow many times Wappears in the decomposition 
of U IS It is a classical result on linear representations of 
finite groups that, there, these two multiplicities are equal 
(Frobenius' reciprocity theorem). Theorem 4 will establish 
this reciprocity also in our case as far as linear representa
tions are concerned; for partially antilinear representations 
the reciprocity law will have to be slightly modified. The 
next theorem states an algebraic fact that is the core of the 
reciprocity theorem. 

Theorem 3: Let Wand V( = WtG) be as in Lemma 1, 
and let U be a representation of G with carrier space H. 
Define the following sets of linear intertwining operators 

Int(WtG,U) = [A:.P_H:AV(g) = U(g)A, 'rIgEG l, 
Int(W,UIS) = [B:X_H:BW(s) = U(s)B, 'risES l, 

and the mapping 

F:X_XP, x _(x,O, ... ,O). 

Then 

.p:Int(W tG,U)-Int(W,U IS), A _AF, 

is a bijective mapping; it is linear with respect to the real
linear structure of the Int-spaces and its inverse is given by 

.p-I(B) = f U(r,)BK(r,)E" 
i= I 

where E, is the projection XP-X, x -~x,. 
Proof LetA belong to Int(V,U). We show thatAFbe

longs to Int(W,U IS): From (3.2) one easily infers 
V (s)F = FW (s) for all sES, and hence, AFW (s) = A V (s)F 
= U(s)AF. Now, letBbelongto Int(W,U IS). We show that 

A: = ~f __ I U(r,)BK(r,)E, belongs to Int(V,W): 
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AV(g)x = f U(r,)BK(r,)(V(g)x), 
i-.-J 

= f (w(g,rg,,)1 w(r, ,r, I gr~ ,,» 
i-=-= I 

x U(r,)BW(r, I grg,,)K (rg ")X g " 

= f (w(g,rg")/w(r,,r,-lgrR·,»U(r,)U(r,-lgrg") 
1---= 1 

XBK (rg ,,)xg " 

= f U (g)U (rg ., )BK (rg ,,)xg " 
i -.cc 1 

= U (g) f U (r, )BK (r,)x, 
i =- 1 

= U(g)Ax. 

Finally, we show that .p-I, as defined in the theorem, is a 
right inverse of .p:tJt(.p-l(B» = ~f~ I U(r,)BK(r,)E,F 
= U (rl)BK (r l ) = B, and also a left inverse of 
.p:.p-I(.p(A» = ~f~ 1 U(r,)AFK(r,)E, 
= A ~f ~ I V (r, )FK (r, )E, = A. To justify the last step we 

compute [occasionally writing r(a) for ra and x(t) for x,] 
~f ~ I (V (r,)FK (rJx,}j = ~f ~ 1 [w(r"r(r, 1 J)I 
w(rj,rj-- 1 r,r(r,- 1 J)]K (r) W (rj- I r,r(r, I J)K (r(r,- 1 J) 

X (FK (r,)x,)(r,-I J) = K (r)W(rl)K (rl)K (r)x, = Xj' since 
(FK (r,)x,}(r,-I j) vanishes unless r,- I} = 1, i.e.,} = i. 0 

For linear representations of finite groups, the assertion 
of Theorem 3 appears in Ref. 7, p. 185, Problem 10. The next 
theorem is a straightforward application of Theorem 3 to 
irreducible representations U and W. 

Theorem 4: Let U and Wbe irreducible representations 
ofG and Srespectively. Let WiG be an induced representa
tion. Then the multiplicity Il(W,U IS) of Win U IS (i.e., the 
number of times that a representation equivalent to Woc
curs within a decomposition of U IS into irreducible subre
presentations) is related to the multiplicity Il( U, W r G) of U 
in WiGby 

<5(W)Il(W,U IS) = <5(U)Il(U, W rG), 

where the function <5 assigns to an irreducible representation 
the dimension of the real-linear space of those linear opera
tors that commute with this representation. The possible val
ues of <5 are 1,2, and 4. 

Remarks: (a) If Wand U are linear representations (i.e., 
Sc;;;, G+) we have <5(W) = <5(U) = 2. (Then, the intertwining 
operators form not only a real-linear space but also a com
plex one.) Then Theorem 4 states 

Il(W,U IS) = Il(U, W rG), 

i.e., the usual reciprocity law of Frobenius . 
(b) For mixed unitary antiunitary representations, the 

situation <5(W)#<5(U) actually occurs, as can be seen from 
the following example. Take for Sand G the proper orthoch
ronous and the full Poincare group. There are irreducible 
representations U of G that are irreducible as representations 
of S and whose unitary domain is S. For W = U IS we then 
have <5(W) = 2 and <5(U) = 1. 

ProofofTheorem 4: One easily shows that the dimen-
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sions of the real-linear spaces Int(W, V IS) and Int(V, W tG) 
areb(W)/L(W,V IS)andb(V)/L(V, W tG)respectively. These 
dimensions are equal by Theorem 3 (note that the correspon
dence A ~A * establishes an isomorphism between In
t(V,W tG) and Int(WtG,V). We now consider the space 
Int(W, W), the dimension of which is b(W). If Wis unitary, 
Int( W, W) consists of the complex multiples of the identity 
operator, henceD(W) = 2. If Wis partially antiunitary,SnG+ 
is a subgroup of index 2 in S, and, by Theorem 1, W ISnG+ is 
either irreducible or an orthogonal sum of two irreducible 
subrepresentations. In the first case, Int( W, W) consists of 
the real multiples of the identity, hence b(W) = 1. In the 
second case one easily finds b( W) = 4 if the two subrepresen
tations are equivalent and D(W) = 2 otherwise (cf. Ref. 4, 
Theorem C). Clearly, the same analysis is valid for D( U). D 

Some immediate consequences of Theorem 4 are put 
together in the next corollary. Part (c) of this corollary de
scribes a procedure of constructing the irreducible represen
tations of G from the irreducible representations of S. As one 
step in this construction one has to decompose an induced 
representation of G into its irreducible subrepresentations, 
which is a rather involved algebraic problem. When S is an 
invariant subgroup, one can avoid this step by the procedure 
described in Sec. 4. Part (d) of the corollary states that an 
irreducible representation of G has always a generalized sys
tem ofimprimitivity based on G IS where the generalization 
consists of replacing projection operators by positive opera
tors (cf. Refs. 8,9 for the connection between such general
ized systems ofimprimitivity and usual ones). 

Corollary: (a) Let Ube an irreducible representation of 
G. Then there is an irreducible representation W of S such 
that U is equivalent to a subrepresentation of W tG. 

(b) Let Wbe an irreducible representation of S. Then 
any subrepresentation U of W t G has the property that W is 
equivalent to a subrepresentation of U IS. 

(c) Let Wbe an irreducible representation of S. By de
composing W t G into irreducible subrepresentations one ob
tains (up to equivalence all such irreducible representations 
V of G that satisfy /L( W, U IS) =I 0, and no others (but, gener
ally, some of these representations more than once). There 
are at most P such representations. By varying W in that 
procedure, we obtain all irreducible representations of G. 

(d) For any irreducible representation U of G there are 
positive operators T 1, ••• ,Tp such that 

U(g)Tj U(gt
1 

= TI!,i' for all gEG, i Ti = 1. 
i= \ 

Proof (a), (b): By Theorem 4 we have/L(W,U IS)#O if 
and only if /L(U, W tG )=10. (c) is clear from (a) and (b). (d): 
By (a) it is sufficient to consider the case that U is a subrepre
sentation of an induced representation. Let P and I be, re
spectively, the projection and injection that connect the car
rier spaces of U and of the induced representation. Then the 
operators T j : = PP;I, with Pi from Lemma l(b), have the 
required properties. D 
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4. ON THE IRREDUCIBLE REPRESENTATIONS OF 
GROUPS THAT CONTAIN AN INVARIANT SUBGROUP 
OF FINITE INDEX 

For later use, the following lemma introduces a rule of 
transforming the representations of subgroups of G. Part (b) 
of the lemma shows the origin of this rule. For purely unitary 
representations the rule appears in Ref. 5, p. 277, and for 
partly anti unitary representations in Ref. 4. 

Lemma 2: Let S be a subgroup of G. Let X by a Hilbert 
space that carries both a representation W of S and a trivial 
representation K of G. Then: 

(a) For any gEG, the formula 

W8(h): = «(i)(h,g-1)1(i)(g-I,ghg- I»K (g)W(ghg-I)K (g), (4.1) 

defines a representation WI( of the groupg-ISg. Up to equiv
alence, W g does not depend on the choice of K, and W ~ W' 
implies wg~ w'g. For all g,g/EG we have (Wilt 

= T g) Wgg'Tg,g' , where Tg.g, = (i)(g/-I ,g-I) 1. If S is an invar
iant subgroup, the correspondence (g,[W)) ~[W"'] defines 

'" an action of G on S. 
(b) Suppose that U is a representation of G with carrier 

space H such that W is a subrepresentation of U IS (then X is 
a subspace of H). Then, for any gEG, the subspace 
U (g-I)K (g)X carries a subrepresentation of U Ig-ISg that is 
equivalent [by means of the operator U (g-I)K (g)] to the re
presentation wg in (a). 

The structure of the restriction of an irreducible repre
sentation of G to an invariant subgroup is described in 

Theorem 5: Let N be an invariant subgroup of G such 
that I GIN I = P < <Xl. Let Ube an irreducible representation 
of G. Consider a decomposition of U IN into irreducible 
sub representations, and group equivalent subrepresenta
tions together, thus obtaining a decomposition 

q p, 

U IN = al al Vii' 
i~ 1)~ 1 

where Ui) ~ Ulk if and only if i = I, and PI + '" + Pq ~p. 
Then we have: 

(a) The carrier space Hi of the representation 
Ui : = al:~ 1 U i) is uniquely determined by the class [Ui ]: It 
does not depend on the particular decomposition of U IN into 
irreducibles. 

(b) The multiplicities Pi are all equal. 
(c) For any two subrepresentations Vi) and Ulk , there is 

a gEG such that U ~ ~ Ulk ' 

(d) For any iE! 1, ... ,q J, define Si: = !gEG:UYI ~ Uil J. 
Then any subspace Hi [see (a)] carries an irreducible subre
presentations Wi of U lSi (which is obviously equivalent to 
Pi Uil when restricted to N). 

(e) The correspondence (g,Hi H--U (g)Hi defines a tran
sitive action of G on the set! H]> ... ,Hq J. 

Note that (e), together with part (c) of Lemma 1, shows 
that U is equivalent to W, t G. The structure of the represen
tations Wi in (d) is analyzed in the next theorem. 

Theorem 6: Let N be an invariant subgroup of G such 
that IG IN I < <Xl and NC: G+. Let Vbe an irreducible repre
sentation of N. Suppose that W is an irreducible representa-
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tion of S: = tgEG:Vg~ V J-::2N such that 
(i) Wen) = V(n) Ell'" Ell V(n) = V(n) ® 1, for all nEN, 

where the sum consists ofp terms, and 1 is the identity opera
tor in the Hilbert space CPo Choose coset representatives 
rl, ... ,rq inS /Nsuch thatrl = e. For any iE! 1, ... ,q 1 choose an 
operator T(rJ such that T(r l ) = I and T(rj) is unitary (an
tiunitary) for rjEG+(ri.G+), 

(ii) V(n)T(r) = (w(n,rj)/w(rj,rj-Inr) 

X T (rj ) V (rj - I nrj ), for all nEN. 

(Since rj belongs to S, this is always possible; and since 
Vis irreducible, T(r) is determined up to a phase factor). 
Define T (s) for any sES by the rule 

(iii) T(rjn) = w(ri,ntIT(rj)V(n), for all nEN. Then we 
have: . 

(a) The mapping Tis a representation of S and the mul
tiplier T of T satisfies w(rin,rj n')/T(rin,rjn') = w(ri,rj )/ 
T(rJj) for all n,n'EN. Therefore the rulep(rjN,rjN): 
= w(rj ,r)/ 7(rj ,r;) defines a multiplier p of the quotient S / N. 

(b) ForanysESwe have W(s) = T(s) ®R (sN), whereR 
is an irreducible representation of S / N with unitary domain 
(SnG+)/N and multiplier p from (a). 

If Nr;;;, G+ is not assumed, the operators (T(s) ® 1)-1 W(s) 
cannot be shown to commute with W (N). Even if they would 
commute, we were not able to derive the form W = T ® R in 
that case. 

Finally, we shall answer the question how to obtain the 
irreducible representations of G if those of an invariant sub
group of finite index are known. Let M be an invariant sub
group of G with finite index. Then N: = MnG+ is also invar
iant with finite index. We now assume that the irreducible 
representations of N are known. To obtain, up to eqivalence, 
all irreducible representations of G we proceed as follows. 
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We consider the action of G on N that is described in part (a) 
of Lemma 2. From each orbit, we choose one point. For each 
such point, we choose a representative. For each chosen re
presentative V, we determine the group S = ! gEG: vg ~ V I 
and construct the mapping T and the multiplier p of S / N as 
in Theorem 6. The next step is to determine the irreducible 
representations of the finite group S / N, restricting ourselves 
to those representations with unitary domain (SnG+)!N and 
multiplier p (note thatp will, generally. not be trivial even if 
w is so). From each equivalence class of those representa
tions, we choose a representative. For each such representa
tive R, we construct an irreducible representation W of S by 
the rule W (s) = T (s) ® R (sN). Finally, for this W, we form 
any induced representation W rG. By this procedur~ we ob
tain just one representative from every element of G. 
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A general method is given for determining Clebsch-Gordan coefficients for corepresentations in 
terms of convenient Clebsch-Gordan coefficients for the normal subgroup, at which the 
considered Kronecker products are composed of corepresentations of type I only. 

INTRODUCTION 

An important application of group theory to physics is 
the problem of decomposing Kronecker products of unitary 
irreducible corepresentations (co-unirreps) into a direct sum 
of their irreducible constitutuents. 1-4 The reason for consid
ering this problem arises from the fact that selection rules 
governing transitions in magnetic materials are determined 
by Clebsch-Gordan coefficients (CG coefficients) for co
representations of anti unitary groups. 

The aim of this series of papers is to compute CG- coef
ficients for corepresentations by means of a general method 
which has been extensively described in Ref. 5 and applied to 
various problems in Refs. 6-12. In contrary to the methods 
given in Refs. 1-4, we assume from the outset that conve
nient CG-coefficients for the normal subgroup are given. 
The reason for supposing this will be suggested not only by 
the special structure of the antiunitary group G, which con
tain a normal subgroup H of index two, but also by the spe
cial values for multiplicities, which specify how many times 
a given co-unirrep is contained into the considered Kron
ecker product of co-unirreps. 

The crucial point of the present method consists of con
sidering the columns of the unitary CG matrices for corepre
sentations as H-adapted vectors, i.e., vectors which trans
form according to unirreps of the subgroup H, but which 
have to satisfy additional transformation properties origi
nating from a special representative of the antiunitary group 
elements. To suppose the CG-matrices for corepresentations 
as unitary implies no loss of generality and simplifies our 
considerations. This approach allows the derivation of sim
ple defining equations for unitary transformations which 
link CG coefficients for corepresentations with convenient 
CG coefficients for the normal subgroup H. Since the struc
ture of these defining equations depends on the three differ
ent types of co-unirreps, we consider them separately. Apart 
from two cases (contained in this paper) we solve these defin
ing equations quite generally without reference to a special 
group. These solutions allow one to identify the multiplicity 
index in a very special way. 

The material is organized as follows: In Sec. I we sum
marize the basic definitions and notations concerning co
unirreps, which are used throughout this and the following 
papers. The multiplicities, which specify how many times a 
given co-unirreps is contained in a Kronecker product 
whose constituents are of type I only, are written down in 
Sec. II. Section III is devided into three parts depending on 
the different types of co-unirreps. For each case a simple 

defining equation for those unitary matrices is derived, 
which link CG coefficients for corepresentations with CG 
coefficients for the normal subgroup H. Apart from the first 
two cases we give a general solution of our problem. 

I. DEFINITIONS AND NOTATIONS 

In this section we recall briefly the basic definitions and 
notations concerning corepresentations of finite groups, 
which are used throughout this and the following papers. 
Let 

G= IH,sHj (1.1) 

be the coset decomposition of the finite group G with respect 
to the normal subgroup H. Unitary corepresentations of G 
are matrix representations satisfying 13-15 

R*(s - Ihs) = R(s)tR(h )R(s), for all hEll, (1.2) 

R(s)R*(s) = R(S2), with s2Ell, (1.3) 

R(sh) = R(s)R*(h), for all hEll, (1.4) 

where 

R = IR(h ):hEll j, (1.5) 

is an ordinary vector representation of H. Furthermore, uni
tary corepresentations are equivalent if and only if 

WtR(g)Wg=R'(g), for all gEG, (1.6) 

W g = { W, for g Ell, 
W*, for g ESH, 

are satisfied, where W denotes a unitary matrix. 

(1.7) 

Concerning the co-unirreps of a given finite group G, 
one distinguishes three different types. 

Type I: 

RU(h) = R U(h ), for all hEll, 

RU(s) = U G, 

U uU a* = R U(S2), 

RU*(s - Ihs) = U at R a(h)U a, 

Type II: 

R P (h) = [R f3 (h ) 0] 
o R P(h) , 

RP(s) = [_ °UP ~1 
U pU P' = - R P(S2), 

R P'(s-Ihs) = Uf3tR f3(h)UP, 

(1.8) 

(1.9) 

(1.10) 

for all hEll; (1.11) 

for all hEll, (1.12) 

(1.13) 

(1.14) 

for all hEll; (1.15) 
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Type III: 

lfF(h ) = [R Y(h) ° ] for all hEll, ° Z rt R Y(h) Z Y , 

(1.16) 

(1.17) 

for all hEll. (1.18) 

Consequently, the matrix elements of the co-unirreps can be 
written as 

Type I: 

Rfj(h) = R fj(h ), 

Rfj(s) = U,), i,j = 1,2, ... ,na ; 

Type II: 

R~bj(h) = {jab R ~(h), 

R~;b/S) = (- 1).:1 (a){ja.b + 1 U~, 

a,b = 1,2 and i,j = 1,2, ... ,n /3' 

for a = 1, 

.1 (a) = {

o, 

1, for a = 2; 

Type III: 

R;'i;bih ) 

(1.19) 

(1.20) 

(1.21) 

(1.22) 

for a = b = 1, 

for a = b = 2, 

otherwise, 
(1.23) 

{

R L(S2), for a = 1 and b = 2, 

R;'i;bj(s) = tJij , for a = 2 and b = 1, 

0, otherwise, 

(1.24) 

a,b = 1,2 and i,j = 1,2, ... ,ny. 

The symbols a, {3, and y denote the elements of the set 
A H consisting of all equivalence classes. These equivalence 
classes decompose into three disjoint subsets Ai' i = 1,11,111 
with respect to the group elements of the supergroup G: 

A H = A \ uA II uA III' (1.25) 

Thereby our notation should always imply aE A I' {3E A II , 
and y( =l=y)EA III . 

II. MULTIPLICITIES FOR COREPRESENTATIONS 

Within this paper we consider only Kronecker products 
of the kind 

(ILl ) 

Ra,a, forms a unitary corepresentation of G which can be 

decomposed by a unitary n" n~ -dimensional matrix Wa,n, , '" 

= W into a direct sum of its irreducible constituents. This 
unitary matrix must satisfy 
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al I $ M u ,a,;/3 R/3(g) 
(lEA" 

$ I al Ma,o.,;), llF(g), 
YE:A II , 

for all gEG. (ILl) 

Using the orthogonality relations for the characters of the 
unirreps of H, we obtain the well-known results D 

(II.3) 

(11.4) 

(11.5) 

where the symbols m denote multiplicities which refer to 
subduction with respect to the subgroup H. Equations 
(II. 3)-(11. 5) show that the representation theory with re
spect to the subgroup H will playa fundamental role when 
calculating CG coefficients for corepresentations and that 
ma,a,; /3 must be either zero or an even integer. 

III. CG COEFFICIENTS FOR COREPRESENTATIONS 

Because of the special structure of the CG series (Il.2), 
it is suggestive to consider the three different cases separately 
depending on whether aEA\, or {3EA 11' or yEA H \. Before 
doing this let us recall that we assume from the outset that 
CG coefficients for Hare known, which allow one to decom
pose the subduced representation 

(III. 1) 

into a direct sum of its irreducible constituents, i.e., 

MtR alC<'(h)M = I $ ma,a,;a R U(h) al I Ell m",a,;{} 
crEAl (ltA 11 

X R /3 (h) al I al mu, ,,,; y {R Y(h) 
yEA1!1 

alZ rtR Y(h)Z r}, for all hEH,(III.2) 

where the Kronecker products ofunirreps of H are denoted 
by 

R a,a, = {R <x,U'(h) = R <X'(h) ® R fX'(h ):hEH}. (Ill.3) 

A. CG coefficients of type I 

Utilizing the unitarity of the CG matrix W, we can re
write the defining equations for CG coefficients of corepre
sentations in a similar way as in Ref. 5. These equations read 
as 

R",U'(h )W~W = I R fk (h )WfW, for all hEH, (IlI.4) 
l~ 1 

11" 

R"''''(s)Wkw* = I Ufk WfW, 
I ~ I 

W = 1,2, ... ,Ma,,,,;a' k = 1,2, ... ,nn' (111.5) 

at which we have to note that it suffices to take the trans
formation laws (IlLS) into account, in order to be able to 
satisfy Eq. (II.2) for each group element. Thereby we have 
introduced an abbreviated notation which reads in more 
detail 

{waw} . = Jwa,a,;aw} . = W a,'" 
k IJ 1. k I] 1];(;tW/.. 
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aEA 1 , w = 1,2, ... ,M",a,;", k = 1,2, ... ,na, 

i = 1,2, ... ,na" j = 1,2, ... ,nu ,. (111.6) 

Hence, Eqs. (111.4) and (111.5) allow one to interpret the 
columns of the CG matrix Was H-adapted vectors of a 

nu, n", -dimensional Euclidean space r'u" i.e., vectors 
which transform according to the considered unirrep of H, 
but which have to satisfy additionally the conditions (111.5). 
In order to get a unitary matrix W, it is necessary that the 
vectors Wj"" are orthornormal with respect to each index. 
The orthogonality with respect to a andj follows directly 
from their transformation properties, whereas orthogonality 
with respect to the multiplicity index w can only be achieved 
by further manipulations. 

In order to be able to calculate systematically H-adapt
ed vectors, we introduce like in Ref. 5 ana, na, -dimensional 
matrix representation of the group algebraA (H). In this con
nection we have to note that it is meaningless to extend the 
concept of group algebras to the supergroup G 3. The corre
sponding units of A (H) are given by 

(III. 7) 

where the symbol on the right-hand side should indicate that 
these units refer to the representation (11.3) of H. The units 
(III. 7) satisfy apart from their well known rules the follow
ing important relations: 

R",(l'(s)tEfjRa'''2(S) = I U~* UitEk;' (111.8) 
k.l 

which reflect the features of corepresentations in terms of 
the group algebra A (H). 

Since the CG matrix W is assumed to be unitary, the 
vectors 

Wau' 
k , 

form an orthonormal basis of 

(111.9) 

(111.10) 

Presupposing a unitary CG matrix M u
,a2 = M is known 

which satisfies Eqs. (111.2), it is obvious that because of 

IM!'V) .. = IMa,u,;!,") .. = M a.,u2 

k IJ k IJ 'J;!'vk 

j.-lEAf{, v = 1,2, ... ,m",a
2
;!', k = 1,2, ... ,n!" (111.11) 

the vectors 

(III. 12) 

form another orthonormal basis of 1//'O,a,;". Thereby we 
have to note that the multiplicity index v originates from the 
corresponding subduction with respect to the subgroup H 
and should therefore not be confused with w. Corresponding 
to their definition, the vectors (111.12) transform according 
to 

Ra,a'(h )Mk" = I R f,. (h )Mf", for all hER, (111.13) 
I 

whereas the additional conditions (111.5) are not satisfied in 
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general. 
For this reason we remember that the elements of both 

bases (111.9) and (III. 12) must be linked by a unitary trans
formation. Utilizing Schur's lemma with respect to the sub
group H, the unitary transformation must be independent of 
the index k: 

WaUJ_ 

k -

M a,,
k -

nZ"I"2.,t 

I B"",MkV' 
l'=- I 

,1\.1"1"1.<1 

~ B* wuw 
L vw k' 

w=-} 

(111.14) 

k = 1,2, .. ,n". (111.15) 

Obviously, unitarity of the Ma,,,,;a -dimensional matrix B 
implies orthonormality of the vectors Wkw also with respect 
tow. 

Hence, our problem is now reduced to the task of deter
mining a unitary Mu,a,;" -dimensional matrix D, so that the 
corresponding vectors satisfy Eqs. (111.5). For this purpose 
we consider 

where we have used Eqs. (111.5), (111.14), and (111.15). Intro
ducing the notation 

F",,, = IDBT)v/)' = IBv'wD"u" v,v' = 1,2, ... ,m",u
2
;", 

w 

(111.17) 

Eqs. (111.16) turn out to be 

(111.18) 

Conversely we obtain 

RU
,U

2(s)WkW* = I Uf,. WfW 
I 

IUf,. IIDt FD*)w'wWf"', (111.19) 
I w' 

by taking Eqs. (111.18), (111.14), and (111.15) into account 
and writing the matrix multiplication symbolically. Hence, 
if we can find a matrix B satisfying 

FB * = B, with BB t = B tB = 1M , (III ,20) 

the corresponding CG coefficients are immediately obtained 
from Eqs. (111.14). The symbol 1M denotes the Ma,a,;a -di
mensional unit matrix. Corresponding to its definition 
(111.17), the Ma,a,;a -dimensional matrix F is symmetric and 
unitary, which can be verified by means of 

R
a

,U'(S2)Mk" = IR fk (s2)Mf". (111.21) 
I 

Inserting Eqs. (111.18) twice into Eqs. (111.21) and utilizing 
Eq. (1.10), we obtain 

(111.22) 

which verifies our proposition. 
The unitary matrix F is uniquely fixed through Eqs. 

(111.18). Its matrix elements can therefore be determined by 
means of 

* (M%V', U'" ® U"2IIU kI M fV) 
I 
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v,v' = 1,2, ... , mu,u,;u' (111.23) 

whose values may not depend on the free index k. The corre
sponding proof can be carried out readily by utilizing Eq. 
(111.8) together with the well-known properties of the units. 

Presupposing the unitary CG matrix M can be calculat
ed by means of the method given in Ref. 5, its matrix ele
ments take the form 

!M~vlij 
= IM~'U';U(i"j)Lj 

= iiBu,u,;u(i,.j)II- 1 ~ '" R (l'(h)R (l2(h) R U
O (h) ao iH I';' II" Jj" kao ' 

V = 1,2, ... ,ma ,u,;u, k = 1,2, ... ,na , (111.24) 

where we have used the same notation as in Ref. 5. Inserting 
these special values into Eq. (111.23), we obtain after a 
straightforward calculation as matrix elements 

n 
X_a_ '" R~li (hs)R~2; (hs)R~Oa (hs), IH I';' " v """ 0 0 

(111.25) 

which are indeed independent of the free index k. 
To summarize our results, the problem of calculating 

CG coefficients of type I for corepresentations Ru,a, is re
duced to the task of solving Eq. (111.20). This problem is of 
courSe less complicated than that of calculating CG coeffi
cients for corepresentations directly from their defining 
equations (111.4) and (111.5) without utilizing the properties 
of CG coefficients for the subgroup. 

B. CG coefficients of type II 

Like in the previous case we utilize the unitarity of the 
CG matrix W which allows one to write the defining equa
tions for CG coefficients of type II for corepresentations in 
the following way: 

Ra,aZ(h) Wi;: = ~ R ~(h) Wit, for all hEll, (111.26) 
1=1 

RU,UZ(s) w pw* - (_ 1).:l (d + I) ~ U P W pw 
dk - L Ik d+I.I' 

1= 1 

W = 1,2, ... ,Ma,u,;p, d = 1,2, and k = 1,2.",n p , 

(111.27) 

where the special matrix notation (1.21) and (1.22) has been 
already taken into account. In this connection we have to 
note that it suffices to consider Eqs. (111.27) since the re
maining equations follow Eq. (I11.26) together with (!I1.27). 
Our abbreviated notation reads in more detail 

(WPW} _ (WU,U,;PW} _ WU'uz 
dk ij - dk ij - ij;pwdk' 

f3EA II , W = 1,2, ... ,Mu,az;P' d = 1,2, and 
k = 1,2, ... ,np , i = 1,2, ... ,nu " j = 1,2, ... ,nuz ' (III.28) 

Equations (111.26) and (111.27) allow one to interpret the 
columns of the CG matrix Was H-adapted vectors of ~,u', 
but which have to satisfy additionally Eq. (111.27). In order 
to be able to achieve that the CG matrix Wis unitary, it is 
necessary to require that the vectors Wi: are orthonormal 
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with respect to each index. Orthogonality with respect to f3 
and k is automatically guaranteed through their transforma
tion properties (111.26), whereas the orthogonality with re
spect to the index d and the multiplicity index w can only be 
achieved by further manipulations. 

Therefore, the vectors 

Wi:, w = 1,2, ... , Mu,uz;p, d = 1,2, and 
k = 1,2, ... ,n p, 

form an orthonormal basis of 

where the corresponding units are given by 

(111.29) 

(111.30) 

lE{:l = lEU~U2;P = ~ '" R {:lO(h )RU,U'(h) = E {:l (111.31) 
IJ IJ IH I';' IJ I)' 

The symbols on the right-hand side of Eq. (111.31) should 
reflect the special property (111.1). The units (III.3I) satisfy 
the following important relations: 

(111.32) 

which express the typical features of corepresentations in 
terms of the group algebra of the subgroup H. Because ofEq. 
(III. I I ), the vectors 

M~V, v = 1,2 ... ,mu ,u,; p' k = 1,2, ... ,n p' 

define a further orthomormal, H-adapted basis of 
~Ial; /3,i.e., 

RU,U'(h )MfV = :LR ~(h )MfV, for all hEll. 
1 

(111.33) 

(111.34) 

Schur's lemma with respect to the subgroup H requires 
that the elements ofthe bases (III.29) and (III.33) must be 
linked by a unitary transformation which is independent of 
the free index k: 

m O \"2· fJ 

Wi;: = L Bv;dw Mfv, (IIU5) 
v= 1 

(III. 36) 

Unitarity of the 2 Ma,a,; p-dimensional matrixB assures that 
the vectors W ~w are also orthonormal with respect to wand 
d. 

Therefore, the problem is now to determine a unitary 
2Mu ,u,;p-dimensional matrix B, so that the corresponding 
vectors are satisfying Eq. (!I1.27). For this purpose we 
consider 

Ra,U'(s)Mf
VO 

= LU fk L {:LBv;dw 
1 v' dw 

X( _l).:1(d+l) BV';d+I.W} Mf"', (III.37) 

where we have already used Eqs. (111.35), and (111.36). Let 
us introduce the following notations: 

Gdw;d'w' = (- 1).:1 (d)l5 d '.d + I I5 ww" 

d,d' = 1,2 and w,w' = 1,2, ... , Mu,az;P' (111.38) 
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Fv'v = {BGBT}vv' = LBv;dw(-l)4(d+I)Bv';d+I,w, 
dw 

v, V' = 1,2, .. "ma,a,;p' (111.39) 

which have as a consequence ofEq. (111.37) 

Ra,a,(s) MPv· - ~u P ~ F MPv' k - ~ Ik ~ v'v I' 
1 v' 

Conversely, we obtain 

Ru,a,(s)W pw• - ( 1) 4(d+l) ~u P W pw 
dk - - ~ Ik d+I,1 

1 

(111.40) 

= Luff r {Bf FB·}d'W',dW W%y, (111.41) 
1 d'w' 

by taking Eqs. (111.35), (111.36), and (III.40) into account. 
Utilizing the orthonormality of the vectors (111.29), Eqs. 
(111.41) yield 

(_l).:1(d+l) {jd',d+1 {jww' = rB~,w';v' Fv'v B:;dw, 

or in matrix notation 

GT=BfFB·. 

vv' 

(111.42) 

(111.43) 

Hence, if we can find a unitary matrix B which satisfies 

B G T = F B·, (111.44) 

the corresponding CG coefficients follow immediately from 
Eq. (111.35). Now it is easy to verify that the matrix Fis not 
only antisymmetric but also unitary. This can be seen from 

Ra,a'(s2)MfV = IR ff(S2)MfV, 
1 

(111.45) 

which has the nontrivial consequence 

F F· = - 12M , (III.46) 

where the symbol 12M denotes the 2Ma,a,;p-dimensional 
unit matrix. In order to verify Eq. (111.46) one has only to use 
Eq. (111.40) twice and Eq. (1.14). 

The anti symmetric unitary matrix F is uniquely fixed 
through Eq. (111.40). Its matrix elements are given by 

(
MPv' ua,,,,,ua2{~UPMPv}·)-F _FP(a,a,) 

k' '01 ,£., kl I - v'v - v'u , 
1 

V,V' = 1,2, .. " ma,a,;p' (111.47) 

and are of course independent of the free index k, which can 
be readily proven by means ofEq. (111.32). 

Assuming that the CG matrix M can be calculated by 
means of the method given in Ref. 5, its matrix elements take 
the form 

{M Pv} _ f.Ma,u,;P(i,jJ} 
k ij - 1! k ij 

= IIB~~a2;P(i,j'~II- I 1';;1 

XL R ~:(h )R ;,~(h ) R ~:o (h ), 
h 

v = 1,2, ... ,ma,a,;p k = 1,2, ... ,n p' (111.48) 

A straightforward calculation yields for Eq. (111.47) 
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n 
X _P ~ Ra

,. (hs)Ra
2 (hs) {R P(h)U pY IH I -f' 1".1,. J,d,· a,p,,' 

(111.49) 

which are indeed independent of the index k. 
Now let us return to the problem of determining a uni

tary matrix B which satisfies Eq. (111.44). Introducing the 
following notation: 

{Bd,W} - B 
u - v.dw' 

d = 1,2 and w = 1,2, ... ,Mu ,a,;p, v = 1,2, ... ,mu ,a,;p, 

Eq. (111.44) can be written as 

FBd.w· = (_ 1)4(d+ I) Bd+ I,w, 

(111.50) 

d = 1,2 and w = 1,2, ... ,Ma,a,;p' (111.51) 

Hence the columns of the matrix B can be seen as vectors of a 
2Ma,a,;p-dimensional Euclidean space which have a special 
transformation law with respect to F. Because of 

FBd+ I,w· = F{( _ 1)4(d+ I)FBd,w·Y 

= (_ l).l(d) Bd,w, (111.52) 

it suffices to determine, for example, for d = 1 just Ma,a,; P 

orthonormal vectors BI,w, w = 1,2, ... ,Ma a . D, 
12· fJ 

(BI,w, BI,w') = {jww,~(B2,w, B2.w') = {jww" (111.53) 

which satisfy additionally 

(BI,w, FBI,w'.) = 0, for all w,w' = 1,2" .. ,Ma ~ . D. (111.54) 
lU2' IJ 

Condition (111,54) is necessary and sufficient that the corre
sponding matrix B is unitary, 

Although F T = - F implies Fvv = 0, Eq. (111.54) re
presents a nontrivial condition, if ma,a,; P ;>4 .. For the special 
case ma,a,; P = 2 it follows from 

Fll = F22 = 0 (111.55) 

that we can choose 

{BI,w}v = 8vw ' w = 1, (111.56) 

which implies for 

{B2,wt = - F21 8,,2' (111.57) 

The corresponding CG coefficients are immediately ob
tained by inserting Eqs. (111.56), and (111.57) into (111.35), 
ForthisspecialcaseF12 mustbea unimodular number, since 
Fis a unitary matrix. In this connection we have to note that 
the condition F T = - F requires that the multiplicity 
ma,a,;p must be larger than one, if Ma,a,;p=I=O. 

To conclude this section we realize that Eqs. (111.52) 
together with Eq. (111.54) will simplify the determination of 
a unitary matrix B. 

C. CG-coefficients of type III 

Utilizing once more the unitarity of the CG matrix W, 
the defining equations for CG coefficients of type III for 
corepresentations can be written as follows: 

Ra,a'(h )W?t = r R IHh )Wtr, (111.58) 
1=1 

Ra,a'(h )Wr:: = r {Z rtR Y(h)Z r}lk W.Jj, 
1=1 
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for all hEll, (III. 59) 

(III. 60) 

~ R Y(S2) wyw L Ik 11 , w = 1,2oo.,Mu,u,; Y' 
I~ 1 

k = 1,2,oo.,n Y' (III.61) 

where the special matrix notation (1.23), and (1.24) has al
ready been taken into account. Analogous to the previous 
cases, it suffices to consider Eqs. (III.60) and (III.61), since 
the remaining are then automatically satisfied: 

{W yw} _ {W",u,; yw} - Wu,a, EA 
dk ii - dk ii - ii;ywdk' r Ill> 

w = 1,2,oo.,Mu ,a,; y,d = 1,2 and k = 1,2,oo.,n y = ny, 

i= 1,2,oo.,nu " j= 1,2,oo.,na ,. (III.62) 

However, contrary to the previous cases, one has to be more 
careful when considering the transformation properties of 
the columns of the CG matrix Wwith respect to the sub
group H. Of course they can be seen as H-adapted vectors 

'Jr'u" but one must be aware of the different transformation 
laws (III.58) and (111.59). Nevertheless, the columns of the 
CG matrix Ware H-adapted vectors which have to satisfy 
additionally Eqs. (111.60) and (III.61). Unitarity of W re
quires orthonormality of the vectors W I;:~ with respect to 
each index. Since the unirreps R y and R Yare inequivalent, 
the vectors WIt are automatically orthogonal with respect 
to the indices r,k,d. 

This property can also be shown by means of the corre
sponding units 

lEY = lEu,a,; y = ..!!.L ~ R .r.·(h )RU,U'(h ) = EY (111.63) 
IJ IJ IHI ~ IJ 'J' 

E.Y = E",a,; y 
IJ IJ 

=..!!.L ~ {Z rtR Y(h) Z Y}'Ru,U'(h) = EY (III. 64) INI ~ IJ IJ' 

which satisfy furthermore the following important relations: 

R",U'(s)t lE/; RU,U,(s) = IR r(s2) R }(S2) lEl,', (III.65) 
kl 

R",(l'(s)t lE,~ RU,U,(s) = lE/;·. (III. 66) 

These relations reflect the typical features of corepresenta
tions in terms of the corresponding group algebra of the sub

group. Note that the symbols E ,j and E,~ refer to R u,a,. 
Since the CG matrix Wis presupposed as unitary, the 

vectors 

WIt, w = 1,2,oo.,Mu ,u,; Y' d = 1,2, and k = 1,2,oo.,n Y 

are an orthonormal H-adapted basis of 

'Jf~"'u,; y = ~ {KY + KY}'Jr,(l, L II Ii , 

i 

dim /f/'U'u,; Y = 2n Y Ma,u,; y' 

Because of Eq. (111.11), the vectors 

M y" 
k , 

M yt· 
k , 

v = 1,2,oo.,ml1 ,u,; y' k = 1,2,oo.,n y' 

lJ = 1,2,oo.,m",a,; y' k = 1,2,oo.,n Y' 

(III.67) 

(111.68) 

(III.69) 

(III. 70) 

form a further orthonormal H-adapted basis of r,a,; y. 
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These vectors transform according to 

R",U'(h )M{" = IR ,r(h )Mr, (II 1.7 I) 
I 

Ru,a'(h )MiV = I {Z yi'R Y(h)Z Y}lk MP", for all hEll. 
I 

(III. 72) 

Due to Schur's lemma with respect ot the subgroup H, 
it follows that the elements of the bases (III.67) and (III.69), 
and (111.70) must be linked by special unitary transforma
tions which may not depend on the index k: 

W yw
lk -

M"lrr2') 

I B"w Mr, 
v=1 

M<LI((2» _ 

W f"w = I Cvw Mr, 
V= 1 

_ M"I"2'} 

MYu- ~ C· Wyw 
k - L IJW 2k' 

UJ= I 

(I1I.73) 

k = 1,2,.oo,n y' (III. 74) 

(I1I.75) 

k = 1,2,oo.,n y' (III. 76) 

Hence, if the matrices Band C are unitary, the correspond
ing vectors WI;: are also orthonormal with respect to the 
multiplicity index w. 

Thus, our problem is now reduced to the task of deter
mining M u,u,; y-dimensional unitary matrices Band C, so 
that Eqs. (111.60) and (III.61) are satisfied. For this purpose 
we consider the following expressions: 

RU,U'(s)MkYV' = ~{~C B }M yv' 4 L.. v'w vw k, 
V I~I 

(III. 77) 

RU,U'(s)Ml'" = IR IHs2) 4 {IBv'wCuw} Mr', (III. 78) 
I l' IL' 

which can be readily verified by means of Eqs. (III.74), 
(III.60), and (III. 75), respectively Eqs. (111.76), (III.61), and 
(III.73). Introducing the notation 

Eqs. (III.77), and (I1I.78) read as 

R"'U,( )M yu' = ~ F, M yv' 
S k L vv k' 

v' 

Ru,a'(s)Miv* = I R IHs2) I Fvv' Mr'· 
I v' 

Conversely we obtain 

I{CtF B '}W'w Wf"W, 
u/ 

R"'U,(s)Wf"W' = IR IHs2)Wl~W 
I 

(III. 79) 

(III. 80) 

(I1I.81) 

(I1I.82) 

~R Y( 2) ~{CtF'B *}T W yw' L Ik S L.., /{l'll' 11 
I Wi 

(III.83) 

from what follows: 

CtFB * = 1m (III. 84) 
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and which represents the defining equation for Band C. 
Thereby we have to note that F is a unitary matrix. This can 
be shown, for example, by means of 

1R",a'(s2)Mt' = 2:,R IHs2)M/", (III.85) 
I 

by using Eqs. (III.80), and (III.81) 

Since Band C must be unitary matrices satisfying Eq. 
(111.84), it is obvious to choose as a special solution 

B =0 Im~F= C, (111.86) 
from what follows that the vectors 

Wi~w = MtW, 

w = 1,2, ... ,m",,,,, y' k = 1,2, ... ,n y' 
wyw- ~F MY" 

2k - L.,. vw k' 

" 
W = 1,2, ... ,m",a,; y' k = 1,2, ... ,n y' 

(III.87) 

(III.88) 

are the desired columns of the CG matrix. Hence, it follows 
that the multiplicity problem is solved in a special way, since 
the multiplicity index w can be identified with v. 

In order to be able to write Eq. (111.88) explicitly, it is 
necessary to calculate the matrix elements of F. This has to 
be done by means of 

(M rv' U a , U'" M yv
o > = F, = F ~a,(2) 

k' ® k vv vv' 

v,v' = 1,2, ... ,m",u,; y' (111.89) 

whose values must be independent of the free index k. This 
proposition can be proven with the aid of Eq. (111.66). 

Presupposing that the CG matrix M can be computed 
by means of the method described in Ref. 5, the correspond
ing matrix elements are given by 

{M yv}, = {M"''''; Y(i,},)}" 
k IJ k IJ 

v = 1,2, ... ,m",a,; Y' k = 1,2, ... ,n y' 

{M rll} , = {Ma,a,; iii,},)}, 
k ij k IJ 

- , , n 
= liB"'"'' l'(I,J,)1 'I -\ -Y ~ R a'(h)R '>,'(h) 

a" IH I ~ II, j), 

X {Z ytR Y(h)Z y}ta" 
V = 1,2, ... ,m",a" y' k = 1,2, ... ,n 1" 

(I1I.90) 

(1I1.91) 

where the index sets {(i",j,,)} occurring in Eqs. (111.90), and 
(111.91) are of the same order, but in general not identical. 
Inserting Eqs. (111.90) and (1II.91) into Eq. (III.89), we 
obtain 

which are of course independent of the free index k. 

Summarizing our results, CG coefficients of type III for 
corepresentations are obtained by simple formulas in terms 
of CG coefficients for the subgroup H. Hence, if the corre
sponding CG coefficients for H are known, the only problem 
is to compute the matrix elements of F. 
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SUMMARY 

The aim of the first of this series of papers was to calcu
late for Kronecker products being composed of co-unirreps 
of type I only, CG coefficients in terms of ones for the normal 
(unitary) subgroup H. The first step of the present method 
requires one to determine a suitable CG matrix M which 
provides a decomposition oflR"'''' LH = R a,", into a direct 
sum of unirreps of H. Provided this has been done, CG coef
ficients for corepresentations can be determined as follows. 

In the case of CG coefficients of type I, one has to com
pute the matrix elements (III.23) of the M ",a,;a -dimensional 
unitary matrix F, whose property to be symmetric should be 
utilized in any case. In order to obtain CG coefficients of 
type I for G, it suffices to find a unitary matrix B satisfying 
F B * = B, since B connects CG coefficients for G with them 
for H. 

CG coefficients of type II have to be computed as fol
lows: Calculate the matrix elements (111.47) of the 2M",u,;/3-
dimensional antisymmetric unitary matrix F and determine 
a unitary matrix B obeying F B * = B G T, where G is a spe
cial antisymmetric unitary matrix. Due to the special form of 
the matrix G, this equation can be rewritten as an eigenva
lues equation, which leads to further simplifications. Any 
solution of the previous equation yields corresponding CG 
coefficients for G in terms of such ones for the normal sub
group [use Eq. (11I.35)]. If M",a,;/3 = 1, a special solution is 
given by Eqs. (11I.56) and (1l1.57). 

In the last case, i.e., CG coefficients of type III, it is only 
necessary to calculate the matrix elements (1I1.89) of the 
M u ,,,,; y-dimensional unitary matrix F, since because of the 
special solutionB = 1M and C = FofEg. (111.84), the corre
sponding CG coefficients for G are given by Eqs. (I11.87), 
and (111.88) in terms of CG coefficients for H. 

Concluding this paper, we summarize that we succeed
ed in deriving simple defining equations for those unitary 
transformations which link CG coefficients for corepresen
tations with ones for the unitary subgroup. Apart from the 
first two cases, we were able to give special solutions of these 
equations which lead us to a simple solution for the multi
plicity problem without reference to a special magnetic 
group. 
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A general method is given to determine quite generally Clebsch-Gordan coefficients for 
corepresentations in terms of such ones of the normal subgroup, where the considered Kronecker 
products are composed of corepresentations of type I and II. 

INTRODUCTION 

This paper, being the second of a series of papers, deals 
with the problem of decomposing Kronecker products of co
unirreps of type I and II (as indicated by the title) into their 
irreducible constituents. The main point of the present meth
od is to utilize the representation theory of the non unitary 
group G insofar as to assume that, for the normal subgroup 
H of index 2, CG coefficients are known. This leads to the 
much easier task of determining unitary transformations 
which link CG coefficients for corepresentations with ones 
of the subgroup H. 

The material is organized as follows: In Sec. I we state 
our problem, and write down the multiplicities which are 
needed for this subduction. Section II is devided into three 
parts according to the possible types of co-unirreps. For each 
case we derive simple defining equations for those unitary 
transformations which link CG coefficients for corepresen
tations with ones of the subgroup H. These unitary transfor
mations will be determined for each type without reference 
to a special group G. This leads us to a special solution of the 
multiplicity problem. 

I. MULTIPLICITIES FOR COREPRESENTATIONS 

As already pointed out, this paper deals with the task of 
decomposing Kronecker products of the kind 

Ra, ff, = t Ra, 1\ g) = Ra,( g) ® R 1\ g):gEG 1, (1.1) 

into a direct sum of their irreducible constituents. Since 

nf"' fi, forms in general a reducible correpresentation of G, 
there must exist a unitary 2n", n ff, -dimensional matrix 

W a
, (3, = W which leads to the desired decomposition of 

Ru ,(3,: 

WtRa, (3,( g) W g = I EB M a , Il,;a Ra( g) 
a~~1 

EB I EBMa,(3,;{3RfJ(g) 
(3EA ll 

EB I EBMa , (3,;y RY(g), 
yEA HI 

for allgEG. (1.2) 

The multiplicities M ... occurring in Eq. (1.2) are well known 1 

and read as 

M a , (3,;a = 2ma , (32;a' 

M a,13,;(3 = ma,(3,;(3' 

(1.3) 

(1.4) 

(1.5) 

where the multiplicities m ... refer to corresponding subduc
tions with respect to the subgroup H. 

II. CG COEFFICIENTS FOR COREPRESENTATIONS 

The structure of the CG series (1.2) suggests that it is 
resonable to discuss the three different cases separately, de
pending on whether aEA[, or (JEAu, or rEAm. Before start
ing this discussion we remember that a unitary na , n (3, -di
mensional matrix M is known from the outset, which 
satisfies 

MtR u,(3'(h)M 

I EB ma, f3"aR a(h ) 
UEA 1 

EB I EB m a , (3,;(3R (3 (h ) 
f3EA n 

EB I EB ma,H,), IR Y(h) EBZrtR Y(h)Z Yj, 
yE.A m 

for all hER. (11.1) 

Thereby Kronecker products of unirreps of H are denoted 
by 

R a, (3, = [R ",fi'(h) = R <l'(h) ® R (3'(h ):hER I. (11.2) 

In this connection we have to note that R a, (3, occurs twice in 

Ra,ti" which is in accordance with the formulas (1.3)-(1.5), 
i.e., 

R'" (3'!H = (EB 2)R a, (3,. (11.3) 

A. CG coefficients of type I 

Due to our general procedure which has been described 
in Ref. 2 for projective unitary representations and general
ized to corepresentations in Ref. 3, we can write the defining 
equations for CG coefficients of type I in the following way: 

Ra
, 1

3'(h )w~W = I R ;~ (h )W7", for all hER, (11.4) 
I 

R",f3,( )W"w* - '" ua wall S k --. L.. Ik I' 
I 

W = 1,2, ... ,Ma ,IJ"cr' k = 1,2, ... ,n,o (lI.S) 

by utilizing the unitarity of the CG matrix W. Thereby, our 
notation has to be understood as 

{W~U'l i,b) == {W~I {31;aw L,b) == W7.b:~wk , 
aEA[, w = 1,2, ... ,Ma,{3,;a' k = 1,2, ... ,n" , 

i = 1,2, ... ,n"" b = 1,2, and j = 1,2, ... ,n {3, ' (Il.6) 
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where the double index b,j is necessary by virtue of Eqs .. 
(1.21) and (1.22) of Ref. 3 and indicates that the matrix Wis 
2na, n f3, -dimensional. Equations (11.4) allow one to interpret 
the columns of the CG matrix Was H-adapted vectors of a 
2na, n f3, -dimensional Euclidean space r' f3" but which 
have to satisfy additionally Eq. (11.5). As already pointed out 
in Ref. 3, unitarity of W requires orthonormality of the vec
tors W~w with respect to each index. Whereas the orthogona
lity of these vectors with respect to a and k is automatically 
guaranteed because of their transformation properties with 
respect to H, the orthogonality with respect to the multiplic
ity index w can only be achieved by further manipulations. 

Obviously, the vectors 
WZ w

; w = 1,2, ... ,Ma ,f3,;a' k = 1,2, ... ,na (II.7) 

form an orthonormal, H-adapted basis of 

(11.8) 

where the units IE;; are defined as usually, but can be written 
in this case as the direct sum of the matrix E;; which refers to 
the Kronecker product R a, f3" i.e., . 

lE~ = IE",' f3,;a = ( Ell 2)E a, f3,;a = ( Ell 2)E ~ , 
I) IJ I) IJ (11.9) 

E" = ~- " R a*(h )R a, f3'(h ). 
lj IHI ~ lj 

(1I.10) 

By means of the following definitions: 
(Q~,'aL.bj = Dab (MzvJij; a = 1,2, (lI.11) 

we can introduce a further H-adapted basis of '/r'" f3,;a, 
namely, 

Qava. 
k , 

a = 1,2,; v = 1,2, ... ,ma ,f3,:a' k = 1,2, ... ,na , (11.12) 

where the vectors M~v represent columns of the CG matrix 
M. The vectors (11.12) are orthonormal with respect to each 
index. In this connection we have to note that the multiplic
ity index v originates from subductions with respect to Hand 
should therefore not be confused with w. Although the 
transformation law 

lR a
, f3'(h )Qt'a = I R 't. (h )Q7va, for all hER, (11.13) 

I 

is automatically satisfied, we cannot except that these vec
tors are already a solution of Eq. (11.5). 

Hence, our problem is now reduced to the task of deter
mining a unitary matrix which link the elements of the bases 
(11.7) and (11.12). Due to Schur's lemma with respect to H, 
this unitary transformation may not depend on the free in
dex k, i.e., 

waw "B Qava 
k =,£"", al';W k. , 

Q ava _ "B * w aw 
k - ~ av;w k' 

(11.14) 

k = 1,2, ... ,na • (11.15) 

In order to be able to determine a suitable Ma , f3,;a -di
mensional unitary matrix B, let us proceed in the same way 
as in Ref. 3. By using 
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lRa,f3'(s)Q~va' = I U7k I Fa'v';avQ7v'a', (11.16) 
I a'v' 

where 

Fa'v';av = {BB T}av;a'v' = I Bav;wBa'v';w' 
w 

a,a' = 1,2 and v,v' = 1,2, ... ,ma,f3,;a' (11.17) 

we obtain 

lRa,f3,(s)W~w* = I u~ I {BtFB*}w'wW7W'. (1I.18) 
I w' 

Obviously, any unitary matrix B satisfying 

FB * = B, with BBt = B tB = 1M , (11.19) 

leads immediately to the desired CG coefficients for corepre
sent at ions by inserting the matrix elements of B into Eq. 
(11.14). The matrix Fis not only symmetric, which follows 
from Eq. (11.17), but also unitary, which can be verified with 
the aid of Eq. (11.13) by taking the special group element 
h = S 2 and utilizing Eq. (I.1 0) of Ref. 3. This lead us to 

FF* = 1M = 12m , (11.20) 

which proves our assertion. 
In order to be able to solve Eq. (11.19), it is necessary to 

compute the matrix elements of F, at which of course its 
property to be symmetric is of practical lise. The matrix ele
ments follow directly from Eq. (11,16): 

(Qz"a,lR'" f3,(s) { ~ UZ/Q;x"° r) = F:"L";al' , 

a,a' = 1,2, v,v' = 1,2, ... ,m",f3,;n' (11.21) 

whose values must be independent of the free index k. This 
can be readily verified with the aid of 

lRa,f3'(stIE7j lRa,f3,(s) = I U7k*U5'/lE~i· (11.22) 
kl 

Because of Eq. (11.11) we write the matrix elements as 

F - ( 1)..l (a')£ Fa(n, (3,) 
I./V';Oll - - Ua',a + 1 P'l' , 

F",(a, f3,) = (Map' U a, ® U f3,{" ua Mat'}*) 
VI' k , L kl I , 

I 

(11.23) 

(11.24) 

at which the scalar product on the right-hand side of Eq. 
(11.24) refers to the corresponding subspace. Obviously, the 
matrix elements (11.24) must also be independent of the free 
index k. This can be shown by means of 

{Ua, ® U /3,}tEa {U a
, ® U (3,} = " ua*u" Ea* 

I) £.., Ik ) I kl' 
kl 

(11.25) 

and the well-known properties of units. In matrix notation, F 
reads as 

(11.26) 

h F a(a, f3,) d d" I . S' were enotes a m a ,(3,;a- ImenSlona matnx. IDce 
Fis a symmetric unitary matrix, it follows immediately that 

Fa(a, (3,)r = _ Fa(a, f3,), 

F'*2,f3')F u (a,(3,)* = -1 
m' 

(11.27) 

(11.28) 

d th t F a(n, f1,) b . .. , an a must e a antlsymmetnc umtary matnx. 
Furthermore, Eqs. (11.27) and (11.28) 
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matl3,:" > 1, if rna, /3,:a =1=0, (11.29) 

which is an nontrivial byproduct of these considerations. 
Assuming that the CG coefficients for H can be com

puted by means of the method given in Ref. 2, they have the 
form 

{Mav} . . = {Ma, /3,:a(i,.j..>} 
k I] k ij 

= IIB~~/3,:a(i,j,)ll- I I~ I 

X ~ R a'(h )R t1'(h)R a* (h ) 
~ fl" 11" kao ' 

h 

V = 1,2,oO.,ma,/3,;a' k = 1,2,oO.,na . (11.30) 

Inserting these special values into Eq. (11.24), we obtain after 
a straightforward calculation 

X ~ ~ R~\ (hs){R /3'(h)U /3,} . Ra* (hs). I H I "'f' " ],], aoao 

(11.31) 

Now let us return to the task of determining a unitary 
matrix B which satisfies Eq. (11.19). If taking the special 
structure ofEq. (11.26) into account, it is suggestive to make 
the following ansatz: 

[
A Fa(a, /3')B*] 

B= _FaCa,/3,JA..* B ' (11.32) 

where A and B shall be proportional by numerical factors to 
unitary rna, /3,:a -dimensional matrices, but otherwise arbi
~rary matrices. The last condition implies no loss of general
Ity. Furthermore, it can be easily shown that, for every pair A 
and B, the matrix (11.32) is a solution ofEq. (11.19). Since B 
is required to be unitary, we obtain as conditions 

(11.33) 

(AAt)Fu(a,/32)t = F a(a,/3')*(BB T )*, (11.34) 

which suggest that we choose as special solutions of Eqs. 
(11.33) and (11.34) the following matrices: 

i 1 
A = V'2 1m and B = V'2 Fa(a, /3,). (11.35) 

Hence, the corresponding unitary matrix B reads as 

1 [ilm - 1m ] 
B = V'2 iFa(a, /3,) Fa(a, /3,) , (11.36) 

which allows one to identify the multiplicity index w with 
the pair (a,v), i.e., 

w = (a,v), a = 1,2 and v = 1,2,oO.,ma, /3,;a' (11.37) 

The corresponding CG coefficients are immediately ob
tained from Eqs. (11.14): 

W~(lv) = .. ~_ {Q~VI + I F~~a'/3')Q~V'2}, (11.38) 
V 2 v' 

Wa(2v) = ~ {_ QaVI + ~ F",(a,/3')Qav'2} 
k .... / k £..i uv k' 

V 2 v' 

v = 1,2"oO,m",/3,;a' (11.39) 
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To summarize our results, we have shown that CG co
efficients of type I for corepresentations can be traced back 
by simple formulas to CG coefficients for the subgroup H. 
Hence, if the corresponding CG coefficients for Hare 
known, the only problem is to compute the antisymmetric 
rna, /3,:a -dimensional unitary matrix Fa(a, /3,). Thereby, we 
obtained as a byproduct that the multiplicity m . must be u./3z,a 

larger than one, if rna, /3,:a =1=0, which however cannot be 
verified by means of the representation theory for the sub
groupH. 

B. CG coefficients of type II 

The defining equations for CG coefficients of type II for 
corepresentations are rewritten as 

Ra, f3'(h )Wt/I1' = ~ R /3 (h )Wf3w 
&' 11 hElJ dk L Ik dl' lor a , (11.40) 

I 

Ra , f3'(s)W/3w* = ( _ 1).:1 (d -+ I) ~ U /3 W /3«' 
dk L Ik d·j 1.1 , 

I 

w=I,2,.oO,Ma ,/3,;{i' d=I,2, and k=I,2,oO.,n/3' 
(11.41 ) 

by using the unitarity of the CG matrix W, which allow one 
to consider the columns of the CG matrix as H-adapted vec
tors of 'IF'" f3,. The abbreviated notation used in Eqs. (11.40) 
and (H.4I) reads in more detail as 

{w /3w} . . = {Wo, /3,: /3w} . _ a, /3, 
11k I,b] dk i,b] - W i,hi; {iwdk , 

f3EA Il , W= 1,2,oO,M",/3,:/3 d= 1,2, and k= 1,2,oO.,n/3' 

i= 1,2,oO.,n"" b= 1,2, andj= 1,2'oO.,n/3, ' (11.42) 

where the double index b,j has been already explained in the 
previous part of this paper. 

Provided that the CG matrix W is unitary, the vectors 

W!!~v, w = 1,2,'oO,Ma a .f3' 
I/JZ' 

d = 1,2, and k = 1,2,oO.,n {i (11.43) 

form an orthonormal H-adapted basis of 

(11.44) 

where the corresponding units lE~ are defined as usually and 
decompose into the direct sum of the submatrices E /3. Ij' 

lE!~ = lE~/': /3 = ( fB 2)E ~j /3,: /3 = ( fB 2)E ~, (11.45) 

n E /3 = _/3_ ~ R /3*(h)R a, /3'(h) 
I] IH I 1; I] • 

(11.46) 

An other orthonormal basis of 'Jfrl2
, /3,: /3 can be introduced by 

means of the following definitions: 

(11.47) 

where the vectors Mf" are the corresponding columns of the 
CG matrix M satisfying Eq. (11.1), The vectors 

Q/!"", a = 1,2, v = 1,2'oO.,ma,/3,;/3' k = 1,2,oO.,nt/ 
(11,48) 

are orthonormal and transform according to 
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Ra
, /3'(h )Q/!va = L R ~ (h )Qfua, 

I 

for all hEll, (1I.49) 

but are in general not a solution ofEq. (11.41). 
In order to be able to satisfy Eq. (1I.41), we remember 

that the elements of the bases (11.43) and (1I.48) must be 
connected by a unitary transformation which may not de
pend on the free index k in accordance to Schur's lemma 
with respect to H: 

w/3w - '" B Q/3va 
dk - LJ av;dw k ' 

(11.50) 
au 

Qfva = L B ~v;dwW!lt, k = 1,2,,..,n /3 . (1I.51) 
duo 

Since the vectors Qfva are orthonormalized, the correspond
ing vectors W jkw have the same property if the matrix B is 
unitary. 

Hence, the problem is now reduced to the task of deter
mining a 2M", /3,; /3-dimensional unitary matrixB, so that the 
corresponding vectors (11.50) satisfy the conditions (11.41). 
For this reason we derive 

Ra , /3,( )~va* '" U /3 "'F Q /3u' a' S 'Lk = ~ Ik £... a'v';atJ I , 
I a'v' 

where we have introduced the notations 

Gdw;d'w' = (_l).:1(d+ I)Dd'.d+ IDww" 

d,d' = 1,2, w,w' = 1,2,,..,Mo ,/3,;/3' 

Fa'v';av = {BGB T} av;a'v' 

= L Bav;dw( - 1).:1(d+ I)Ba'v';d+ I,w' 

dw 
0,0' = 1,2; v,v' = 1,2,.,.,mo,/3,;/3 . 

(II. 52) 

(11.53) 

(II. 54) 

Equations (11.52) allow one to transcribe Eq. (11.41) as 
follows: 

R",/3'(s)W/3w* - '" U /3 '" {B tFB *} W/3w' (11.55) dk - L Ik L d'w';dw d'I' 
I d'w' 

which lead us immediately to 

BGT=FB*. (11.56) 

Now, if we can find a unitary matrixB satisfying Eq. (11.56), 
the corresponding CG coefficients of type II are readily ob
tained from Eq. (11.50). Before attacking this problem let us 
remark that F must be an antisymmetric unitary matrix. 
This can be easily verified by considering Eq. (11.49) for the 
special group element h = s 2 and using Eq. (Ll4) of Ref. 3. 
Thereby, we obtain 

FF* = -12M' (11.57) 

which proves our assertion. 
In order to be able to solve Eq. (11.56), it is necessary to 

compute the matrix elements of F which are uniquely fixed 
through Eq. (11.52): 

(Q /3,,'a' RU,/3,(s){", U/3Q/3va }*) =F 
k' .L kl I a'v';av' 

I 

a,a' = 1,2, v, v' = 1,2,,..,mo,/3,;/3' (11.58) 

These matrix elements must be independent of the free index 
k, which can be shown by means of 
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Ru,/3'(s)tE~ Ru,/3,(s) = L u !f*Uj~ Eft*· (11.59) 
kl 

Corresponding to the special structure of the vectors Qfua, 
the matrix elements (11.58) tum out to be 

Fa'u';a" = ( - 1).:1 (a')Da',a + IF /:..,(a, /3,\ (11.60) 

F!~,(a,/3,)= (Mfv"ua'®U/3'{~ UftMf"r), (11.61) 

where of course the matrix elements (11.61) may also not 
depend on the index k. Thereby, the scalar product which 
occurs on the right-hand side ofEq. (11.61) refers to the 
corresponding subspace. The previous proposition can be 
shown by means of 

{Ua, ® U /3,}tE ~{Ua, ® U /3,} = L U,~*U fi Efr (11.62) 
kl 

and the fact that the vectors Mf" are H adapted. Because of 
Eq. (11.60), the matrix F takes theform 

F _ [ 0 F /3(u, /3')] 
- _F/3(a,/3,) 0 ' (11.63) 

where the mal /3,; /3-dimensional submatrix F /3(a, /3,) must be 
symmetric and unitary, since F is itself antisymmetric and 
unitary, i.e., 

F /3(a, /3,)' = F /3(a, /3,), 

F /3(u, /3')F /3(u, /3,)* = 1m. 

(11.64) 

(1I.65) 

If the corresponding columns of the CG matrix M can 
be determined with the aid of the method given in Ref. 2, 
there components are given by 

{M /3,,} _ {M'" /3, ;/3 (i,.j,.)} 
k ij - k ij 

= IIB~~/3,;/3(i,.j·.)II-1 I~ I 

XL R ~,~(h )R jf'(h )R l~(h ), 
h 

v = 1,2,,..,ma,/3,;/3' k = 1,2,,..,n/3' (1I.66) 

Inserting these special values into Eq. (1I.61), we obtain after 
a straightforward calculation 

X ~ '" Ra
, (hs){R /3'(h)U /3,} . I H I 1;- 1,1, f,.f, 

X{R /3(h)U /3}:oao' (1I.67) 

Apart from these special values for Eq. (11.61), we are 
now in the position to determine unitary matrices B which 
satisfy Eq. (11.56). For this purpose we define by 

{Bd,w}av = Bav'dw ' 

0= 1,2, and v = 1,2,,..,ma./3,;/3' 

d = 1,2, and w = 1,2,.,.,Ma./3,;/3 (11.68) 

vectors representing the columns of B. Consequently, Eq. 
(11.56) can be replaced by 

FBd.w* = (_ It(d+ l)Bd + I.U'; 

d = 1,2 and w = 1,2,.,.,,..,Mu,/3,;/3 ' 

which show that if we choose the vectors Bl.w, 
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w = 1,2, ... ,Ma•tlz;tI' the corresponding vectors B2
,w, 

w = 1,2, ... ,Ma, tlz; tI are automatically fixed through Eq. 
(11.69). In order to achieve the requirement that B is unitary, 
we must require that the vectors are orthonormal with re
spect to both indices d and w. Therefore, it is obvious to make 
the following ansatz: 

(II. 70) 

which implies 

{Bl,w} = _{FB 1•w*} =D FtI(a. tlz) 
av av a2 t'W , (11.71) 

in matrix notation 

[
1m 

B= o (11.72) 

Now it is easy to verify that B is unitary and a solution ofEq. 
(II.56). Hence, the corresponding CG coefficients of type II 
are given by 

(11.73) 

W tlw = ~ F tI(a. tl2)Qtlu2 
2k ~ vw k' 

which make it obvious that we can choose as multiplicity 
index w the index v refering to subductions with respect to H, 
I.e., 

(11.75) 

Consequently, we have shown that CG coefficients of type II 
for corepresentations can be traced back by simple formulas 
to CG coefficients for H, at which the only problem is to 
compute the symmetric unitary submatrix F P(a. f32 ). 

C. CG coefficients of type III 

Due to our procedure we rewrite the defining equations 
for CG coefficients of type III as follows: 

Ra
,tl2(h )Wrr = I R rk(h )Wrr, 

/ 

Ra
, tl2(h )Wrr = I {ZrtR Y(h )ZY}/k wrr, 

/ 

for all hEll, 

Ra
,tl2(s)Wrr* = I R rk(s2)Wrr, 

/ 

w = 1,2, ... ,Ma,tl2;Y k = 1,2, ... ,ny' 

where the symbols have to be understood as 

{w yw} {wa. tlz;rw} wa• f3z dk i.bj = dk i.bj = i,bj;rwdk' 

rEAm, w = 1,2, ... ,Ma•tl2;Y' 

d = 1,2, and k = 1,2, ... ,ny , 

(11.76) 

(1I.77) 

(1I.78) 

(11.79) 

i=I,2, ... ,na., b=I,2, and j=I,2, ... ,ntlz' (1I.80) 

Provided that the CG matrix W is unitary, the vectors 

w~'t:, 
w = 1,2, ... ,Ma• tl2;Y' d = 1,2, and k = 1,2, ... ,ny' 

(II.81) 

define an orthonormal H-adapted basis of 
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(II. 82) 

where the corresponding units are defined as usually and 
decompose into a direct sum of the submatrices E ;j and E fj: 

Er = ~ ~ {ZrtR Y(h )ZY}*, R a. f32(h). 
IJ IHI ~ IJ 

By means of the following definitions: 

{Qra}i,bj = Dab {MrVl j , a = 1,2, 

{Qrual.bj = Dab {Mr}ij' a = 1,2, 

(II.83) 

(11.84) 

(11.85) 

(II.86) 

(II. 87) 

(II.88) 

we introduce a further orthonormal basis of 'JY'" tl2;Y, 
namely, 

Qfa
, a = 1,2, v = 1,2, ... ,ma,f32;Y' k = 1,2, ... ,ny' (1I.89) 

Qfa
, a = 1,2, v = 1,2, ... ,ma,f32;Y' k = 1,2, ... ,ny. (11.90) 

Although they transform according to 

Ra
, tl2(h )Qfa = I R rk(h )Qra, (II.91) 

/ 

Ra
, f32(h )Qra = I {Z rt R Y(h )Z Y} Ik Qra

, 

/ 

for all hEll, (11.92) 

we cannot expect that they are already a solution of Eqs. 
(11.78) and (II.79). 

Nevertheless, the elements of the bases (1I.81), (II.89), 
and (1I.90) must be linked by unitary transformations which 
are due to Schur's lemma with respect to H independent of 
the index k: 

w yw - ~B Qrva 
lk - ~ av;w k , 

au 

Qyva _ ~ B* w yw 
k - ~ av;w lk' 

w 

W yw - ~C Qrva 
2k - ~ av;w k , 

au 

Qyva _ ~ C* w yw 
k - ~ av;w 2k' 

w 

k = 1,2, ... ,ny' 

k = 1,2, ... ,ny' 

(1I.93) 

(II.94) 

(II.95) 

(II.96) 

Hence, we are now confronted with the less complicat
ed task to determine M a, f32;Y -dimensional unitary matrices B 
and C so that the corresponding vectors (II.93) and (1I.95) 
are solutions ofEqs. (II.78) and (II.79), respectively. Let us 
proceed as in the previous paper by deriving 

Ra
• tl2(s)Qrva* = ~ F, QYv'a' 

k L a v';av k , 
a'v' 

Ra , tlz(s)QYva* = ~ R Y (S2) ~ F Qrv'a' 
k L lk ~ av;a'v' I , 

I a'v' 

where 

Fa'v';av = {CB T}a'v';au = I. Ca'v';wBav;w, 
w 

a,a' = 1,2, and v,v' = 1,2, ... ,ma•tl2;y· 
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These equations allow one to transform Eqs. (11.78) and 
(11.79) as follows: 

RCl,t\s)Wrr* = L {CtFB*}w'w Wrr', (11.100) 
w' 

RCld\s)Wrr* = L R rk(s2) 
I 

XL {CtFB*}~,wWIT", (11.101) 
w' 

respectively, which lead immediately to 

CtFB * = 1M = 12m , (11.102) 

Before solving this equation, let us remark that F is a unitary 
matrix, which can be readily verified with the aid of Eq. 
(11.91) by setting h = s 2 and utilizing Eqs. (11.97) and 
(11.98). 

Now it is obvious to choose 

(11.103) 

as a special solution ofEq. (11.102) which yield immediately 
the corresponding CG coefficients of type III, namely, 

W J1:av) - '" F QYv'a' 
2k - ~ a'v';av k ' 

a'v' 

a = 1,2 and v = 1,2, ... ,mCl,P,;Y' 

(11.104) 

(11.105) 

Consequently, the multiplicity index w can be identified with 
the double index (a,v): 

w = (a,v), a = 1,2 and v = 1,2, ... ,mCl, P2;Y' (11.106) 

Now there remains the task of computing the matrix 
elements of the unitary matrix F. This can be done by means 
of 

(QYv'a' RCl,P2( )Qrva*) - F 
k' S k - a'v';av' 

a,a' = 1,2, v,v' = 1,2, ... ,mCl, P2;Y' (11.107) 

These matrix elements must be independent of the free index 
k. This can be readily verified with the aid of 

(11.108) 

and the transformation law (11.91) and (11.92). If taking the 
special structure of the vectors (11.89) and (11.90) into ac
count, the matrix elements (11.107) can be simplified to 

F - ( 1).:1 (a')£ FY<Cl , Pi> 
a'v';av - - Uo',a+l v'v , 

Fy<aIP,) = (MYv' Ual.o. U P'Mrv*) 
v'v k ,101 k' 

(11.109) 

(11.110) 

where the scalar product on the right-hand side of Eq. 
(11.110) refers to the corresponding subspace. The matrix 
elements (11.110) must also be independent of the index k. In 
order to verify this proposition, we have to use the following 
relations: 

{U ClI ® U Pl}tEr{u al ® Uti,} = Er~ 
I) I} , (11.111) 

and the fact that the vectors Mr, and Mr are H-adapted 
vectors, whose transformation properties are fixed through 
Eq. (11.1). In this conne~tion we have to note that the mal p,;y 
-dimensional matrix FJ1:a, P,) is also unitary. 

Provided that the corresponding columns of the CG 
matrix M can be computed by means of the method de-
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scribed in Ref. 2, their components take the form 

{Mrv} _ I ... .a, f32;J1:i"j,l} 
k ij - l..lnk ij 

= IIB~;P,;J1:i"j')II- 1 I~ I 

XL R ~,~(h)R t~(h)R r:o(h), 
h 

V = 1,2, ... ,ma, f3,;y' k = 1,2, ... ,ny, (11.112) 

{M Yv} - {Mal tI,;Y<i"j,,)} 
k ij - k ij 

= "B~;P';Y<i,j")1I-1 I~ I ~ R a'(h) 

X R tI'(h ){Z rt R Y(h )Z Y}* 
Jl" kao ' 

v = 1,2, ... ,ma, f32;Y' k = 1,2, ... ,ny, (11.113) 

and give rise to the following values for Eq. (11.110): 

F~va, tI,) = IIB~; p,;Y<i,j")II - 1 "B~; P,;J1:i,j,) " -- 1 

n 
X -Y- '" Ral (hs) IHI + 1,1" 

x{R f3'(h)U P'hi,fZrtR Y(h )ZY}:oao' 
(11.114) 

where the sets {(iv ,jv)}in Eqs. (11.112) and (11.113) in gener
al are not equal. 

To summarize the results of this part, we have shown 
that CG coefficients of type III for corepresentations are 
obtainable by simple formulas in terms ofCG coefficients for 
H, namely, 

(11.115) 

wJ1:av) = ( _ 1).:1 (a + I) '" Fy<a, tI')Qyv'a +1 
2k ~ v'v k , 

v' 

a=I,2 and v=I,2, ... ,ma,P2;Y' (11.116) 

Hence, the problem reduces to the task of computing the 
unitary ma,Pa-dimensional matrix FY<a IP1) in order to ob
tain the desired CG coefficients of type III, provided corre
sponding CG coefficients for H are known. 

SUMMARY 

Within this paper we considered Kronecker products 
which are composed of co-unirreps of type I and II. Due to 
our general procedure the first step must be the calculation 
of a suitable CG matrix M decomposing the Kronecker 
product R ClI P', which is contained twice in Ra, tI, ~H 

= ( (I) 2)R a
l P', into a direct sum of its irreducible constitu

ents. Provided this task has been solved, CG coefficients for 
G have to be calculated as follows. 

CG coefficients of type I are immediately obtained, if 
the mal p,;a-dimensional unitary submatrix Fa(a, P,) of Fis 
computed, since the corresponding CG coefficients are be
cause of 

given by Eqs. (11.38) and (11.39) in which the definitions 
(11.11) have to be taken into account. When calculating the 
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matrix elements of F a
(a,f3,) by means ofEq. (11.24), one 

should utilize its property to be antisymmetric. 
In the case of the calculation of CG coefficients of type 

II, it is only necessary to compute the rna, f3,; f3 -dimensional 
symmetric unitary submatrix F f3(a, f3,) of F, since the special 
solution 

B=[llm 0] o F f3(a, fJ,) 

of Eq. (11.56) leads immediately to the corresponding CG 
coefficients (11.73) and (11.74) in which the definitions 
(II.47) have to be used. The matrix elements of F f3(a, f3,) are 
obtainable from Eq. (11.61). 

Because of the special solution (11.103) of Eq. (11.102), 
i.e., 
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the corresponding CG coefficients of type III are given by 
Eqs. (II. 115) and (11.116), in which the definitions (11.87) 
and (11.88) have to be used. Thus, it suffices to compute the 
rna, fi,;y -dimensional unitary submatrix F y<a, f3,) of F by 
means of Eq. (11.110). 

Summarizing our results, we succeeded not only in de
riving simple equations for those unitary transformations, 
which link CG coefficients for G with convenient ones for H, 
but also in solving these equations. This lead us to simple 
solutions for the multiplicity problem, at which the multi
plicity index referring to subductions with respect to H plays 
an essential role. 

IC.J. Bradley and A.P. Cracknell, The Mathematical Theory of Symmetry 
in Solids (Clarendon, Oxford, 1972). 

'R. Dirl, J. Math. Phys. 20, 659 (1979). 
'R. Dirl, J. Math. Phys. 21, X X X (1980). 
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Clebsch-Gordan coefficients for corepresentations. I ® III 
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A general method is applied to compute Clebsch-Gordan coefficients for corepresentations in 
terms of such coefficients for the normal subgroup. The considered Kronecker products are 
composed of corepresentations of type I and III. 

INTRODUCTION 

The present paper deals with the task of computing CG 
matrices for corepresentations, at which the considered 
Kronecker products are composed of co-unirreps of type I 
and III. An essential simplification of this problem is 
achieved by utilizing the representation theory of the normal 
subgroup insofar as one presupposes the knowledge of con
venient CG matrices for this subgroup. This leads to a much 
easier task of determining unitary transformations which 
link CG coefficients for the supergroup G with those of the 
subgroup H. 

We organize the material as follows: In Sec. I we formu
late our problem and derive useful symmetry relations for 
the multiplicities. Section II is divided into three parts due to 
the different types of co-unirreps, which have to be distin
guished. For each case we are able to compute quite general
ly those unitary transformations which link CG coefficients 
for corepresentations with appropriate CG coefficients for 
the normal subgroup H. 

I. MULTIPLICITIES FOR COREPRESENTATIONS 

Throughout this paper we dicuss the problem of de
composing the following Kronecker product: 

Ra,
y
, = ffia,y,( g) = Ra'(g) ® RY'( g): gEG }, (1.1) 

into a direct sum of its irreducible constituents. Since Ra,y, 
forms a 2na, ny, -dimensional corepresentation of G, which is 
in general reducible, there must exist a unitary matrix 

W aIY
, = W which provides such a decomposition: 

WtR"'Y'(g)W g = 2: EIlMa,y,;aRa(g) 
aEA, 

Ell 2: Ell Mu,y,;f3Rf3(g) 
/3EA 1I 

Ell 2: Ell Mu,y,;y RY( g), 
YEA III 

for all gEG. (1.2) 

By utilizing the orthogonality relations for the characters of 
the unirreps of H, we obtain the following well-known 
results l

: 

Muly1;a = mu,y2;a + mUtY2;u' 

M u ,y,;f3 =! {m U ,y,;f3 + ma,y,;f3}' 

Ma,y,;y = m",y,;y + ma,y,;y, 

(1.3) 

(1.4) 

(1.5) 

where the multiplicities m ... refer to the corresponding sub
ductions with respect to the subgroup H. Considering in 
more detail the multiplicity formulas 

we attain the following symmetry relations: 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

if using Eqs. (1.11), (1.15), and (1.18) of Ref. 2. Hence, we 
arrive at the final formulas 

M uly2;a = 2mUly2;a, 

M U1Y2 ;/3 = mUIY2;/3' 

(1.11 ) 

(1.12) 

(1.13) 

Thereby, we have to note that we cannot expect, despite the 
symmetry relations (1.13), that the multiplicities ma,r,;y and 
ma,y,;y are equal, although it seems to be obvious. 

II. CG COEFFICIENTS FOR COREPRESENTATIONS 

From the outset it is assumed that appropriated deter
mined CG matrices for H are known. For this reason we 
consider 

(11.1) 

where we have introduced the notation 

(11.2) 

R a,y, = (R a'Y'(h ) = R a'(h ) ® Z y,tR Y'(h )Z y': hER l, 
(11.3) 

which refer to Kronecker products of unirreps of Hand 
whose dimensions are just nu , nr, = nUl ny,' Hence, for our 

procedure it is necessary to know the CG matrices Ma,r, 
= M and Na, y

, = N which satisfy 

MtR a'Y'(h)M 

= 2: Ell m",y,;a R a(h ) Ell 2: Ell m atY,; f3R f3 (h) 
aEA. f3EAII 

Ell 2: Ell (mulr,;y R Y(h ) 
YEA HI 

Ell mUIY,;y Z rt R Y(h)Z yj, 

for all hER, (11.4) 
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EEl L EEl mu,l',;{3R {3(h) 
{3EA lI 

EEl L EEl [ ma,y,;y R Y(h) 
yEA111 

EEl ma,l',;l' Z l'+R Y(h)Z l' ), 

for all hEll, (11.5) 

and where we have already used the symmetry relations 
(1.8)-(1.10). 

A. CG coefficients of type I 

Due to our general procedure, we rewrite the defining 
equations for CG coefficients of type I in the same way as in 
the previous papers: 

Ru,l"(h )WZW = L R 7k(h )WfW, for all hEll, (11.6) 
I 

RU,Y,(s)WZw* = L U'tk Wfw, 
I 

W = 1,2, ... ,Mu ,y,;u' k = 1,2, ... ,n". (11.7) 

The notation reads in more detail 

{waw} {Wu'l',;a",} Wu,l', 
k i,b) = k i,b) == i.b) ;awk' 

aEA(, w = 1,2, ... ,M",l";'" k = 1,2, ... ,n", 

i = 1,2, ... ,nu " b = 1,2, and j = 1,2, ... ,n l'" (II.8) 

where the double index b,j originates from Eqs. (1.21) and 
(1.22) of Ref. 2. Because ofEqs. (11.6) and (11.7), it is possible 
to interpret the columns of the CG matrix Was H-adapted 

vectors of an 2n" nl' -dimensional Euclidean space 'Jf~"l'2, , , 
which have to satisfy additionally Eq. (II.7). 

Since W is assumed to be unitary, the vectors 

Wr"', w = 1,2, ... ,Ma ,l',;'" k = 1,2, ... ,n" , (II.9) 

define an orthonormal basis of 

'If"')";" = L lE;; JF"'Y" 
i 

(11.10) 

where the units lE;j decompose into a direct sum of two sub
matrices E~j"'l") and E:ju,y,) in accord with Eq. (11.1). 

n 
Eu~y,;a = _"_" R "*(h)R a,l"(h) 

IJ IH I T IJ ' 

- n -
E",l',;(1 = __ a _ " R a*(h)R o,l"(h ). 

IJ IHI T IJ 

By means of the following definitions: 

{Q~ull.hj = Db I {Mr"lJ ' 
{Q av2} I: .{N""} 

k j,/)}==Uh2 k ii' 

it is obvious that the vectors 

(II. 11) 

(II. 12) 

(11.13) 

(11.14) 

(11.1 5) 

Q~"a, a = 1,2, v = 1,2, ... ,lnu,l',;a, k = 1,2, ... ,n" ' 
(II. 16) 

form an other orthonormal basis of 'Jf..a,y,,,,, where the vec
tors Mr" and N~" have to be identified with the correspond-
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ing columns of the CG matrices M and N. Although the 
vectors (11.16) transform according to 

R CI'l'l(h )Qkva = L R fk (h )Qfva, for all hEll, (II. 17) 
I 

we cannot expect that they are already solutions of Eq. 
(1I.7). 

However, the elements of the bases (11.9) and (II. 16) 
must be linked by unitary transformations which may not 
depend on the index k: 

",'aw " B Qava k == £..- av;w k , (II. 18) 
av 

(II. 19) 
IV 

In this connection we realize that the symmetry relation (1. 8) 
for the multiplicities plays an essential role. 

In order to be able to determine unitary matrices B so 
that the corresponding vectors (II. 18) satisfy Eq. (II. 17), we 
derive 

R"'l"(s)Q"va* = " U a " F ' Quv'a' k L lk £., a v';av I , 
I a'v' 

where 

Fa'v';al' = {BB T}av;a'v' = L Ba'v';wBav;w' 
w 

(11.20) 

a,a/ = 1,2 and v,v/ = 1,2, ... ,m",y,;(1' (11.21) 

These equations transform Eq. (11.7) as follows: 

R"'l',(s)WkW* = L Ufk I {B tFB * }""w WfW', (lI.22) 
I w' 

which leads immediately to the defining equation for B, 
namely 

FB * = B, with BB t = B tB = 1 M , (11.23) 

Hence, if we can find a unitary M a,l',;a -dimensional matrix B 
satisfying Eq. (11.23), the corresponding CG coefficients fol
low immediately from Eq. (II. 18). Before attacking this 
problem let us remark that F is a symmetric unitary matrix 
which can be readily verified with the aid of Eq. (11.17) by 
taking the special group element h = s 2 and utilizing Eq. 
(11.10) of Ref. 2. This leads to 

(11.24) 

which proves our assertion. 
The next problem which has to be solved is to compute 

the matrix elements of F. This can be done by carrying out 
the scalar products 

(Qk""',Rad"(S){~ UrIQi""'}*) = Fa'v';a,,' (11.25) 

which are independent ofthe free index k. This can be shown 
by means of 

(II.26) 

together with the well-known properties of units and the 
transformation law (11.17). The matrix elements (11.25) can 
be simplified if taking the special structure (II. 14) and 
(ILlS) of the vectors Qk,'a into account: 
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Fat.;av = 0, a = 1,2, (II. 27) 

F - Fa(a,y,) 
lv'.2v - v'v 

= (M~v·,ua, ®R Yl(.r){~ U~I Nfv
}"'), (II.28) 

F - Fa(a,f,) 
2L,',lv - v'v 

= (N%V',U a
, ® 11'2 {~ U~/MfV} *). (II.29) 

The scalar product occurring in Eqs. (II.28) and (11.29) is 
analogously defined. Furthermore, we note that the matrix 
elements (11.28) and (11.29) must also be independent of the 
index k. This property has to be shown with the aid of the 
following relations: 

{Ua, ®R Y'(s2)}tE~t2;"{Ua, ®R Y2(S2)} 

)' Ua*U" {Ea,l"\'" = tf ik j I kl r~ , 

{ U a,® 1 ITE",y,;a{U"'® 1 } 
h J IJ Yl 

_ '" ua*ua {Ea,l',;a \", - L ik jl kl J, 
kl 

(11.30) 

(11.31) 

and the corresponding transformation law for the vectors 
Mr" and Nrv with respect to H. Now let us consider in more 
detail the matrix F, which reads in matrix notation 

(11.32) 

where the submatrices Fa(u,),,) and FU(U,y,) have the same 

dimension Ina,y,;a' Furthermore, sinceFis a symmetric, uni
tary matrix, these submatrices must satisfy 

(11.33) 

(II.34) 

which implies that both submatrices must be unitary and 
that F calculates, for example, Fu(a,y,\ since the other matrix 
follows directly from Eq. (11.33). 

Provided the corresponding columns of the CG matrix 
M and N can be computed with the aid of the method given 
in Ref. 3, their components can be written as 

{M("'} - {MU,y,;"i, j.)} 
k ij --" ij 

= IIBO,y,.o(i"j')II- I ~ '" R U'(h ) 
ao I H I f;- II" 

XR n. (h)R ~:o(h), 

u = 1,2, ... ,tnu,v"u' k = 1,2, ... ,no , (11.35) 

{Nuv},. = {N",j:,;(l(i,J,)} .. 
k IJ J. k f) 

u = 1,2, ... ,Inu,)";c,, k = 1,2, ... ,nu' (11.36) 

If carrying out the scalar products (11.28) and (11.29) with 
these special values, we obtain the following formulas: 
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(11.38) 

Thereby, we have to note that the index sets «iv,ju)J in 
general are quite different and that Eqs. (U.37) and (U.38) 
have to satisfy Eq. (II.33), even though they are represented 
by different expressions. 

Now let us return to the problem of determining unitary 
matrices B which are solutions of Eq. (11.23). For this pur
pose we make the following ansatz: 

(11.39) 

where A and B shall be ma,y,;a -dimensional matrices being 
proportional by numerical factors to unitary ones, but other
wise arbitrary. Each matrix of the type (11.39) is a solution of 
Eq. (11.23) which can be readily shown by means of Eqs. 
(II.33) and (11.34). Taking into account that B must be uni
tary, we obtain 

AA + + hB + = 1m , (11.40) 

_ (AA T)Fa(u'Y2)t = F"(U,Y2\BBT)* (11.41) 

as additional conditions, which suggest that one chooses, for 
example, 

i 
A=-l Y2 m 

d B _1 F"(U,y,) 
an -Y2 ' (11.42) 

as special solutions of Eqs. (11.40) and (11.41). Hence, 

(11.43) 

represents a special solution ofEq. (II.23). Consequently, 
one can identify the multiplicity index w with the pair (a,v), 
i.e., 

w = (a,u), a = 1,2, and u = 1,2, ... ,ma ,y,;a' (II.44) 

and the corresponding CG coefficients of type I take the 
form 

wa(Iv) = _I _ {Qaul _ '" Fa(a,Y2)QuV'Z} 
k "'\. /- k L uv k' 

V 2 v' 

(II.4S) 

\\'a(2u) = __ 1_ {QUVI .t '" Fo,(a,Y2)Qav'1} 
k '" /- k L..t P I' k' 

v 2 ,,' 

u = I ,2, ... ,mu ,y,,«. (II.46) 

Thus, we have shown that, also for this case, CG coeffi
cients of type I for corepresentations can be traced back by 
simple formulas to convenient CG coefficients for the sub
group H. The only problem is to compute, for example, the 
matrix F,,(a,y,). 
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B. CG coefficients of type II 

As already known we start our considerations from 

R"'Y'(h )W!ft' = L R ~(h )W!ft, for all hEll, (II.47) 
I 

R"'Y'(h )W!ft* = ( _l).:I(d+ IlL U ~W!f~ 1.1' 
I 

W = 1,2, ... ,M",y,;!], d = 1,2, 
and k = 1,2, ... ,n{J' (11.48) 

which are the defining equations for the CG coefficients of 
type II for corepresentations, where 

{w~wl.bj = {W~t';PW }bj = W~i,rPlVdk 
{3s411' W = 1"2, ... ,M,,,y,;p, d = 1,2, 

and k = 1,2, ... ,np , 1,2, ... ,n"" b = 1,2, 

and j = 1,2, ... ,n yz ' 

For fixed {3s4 11 the vectors 

W!!//" w = 1,2, ... ,M",y,;{3' 

d = 1,2, and k = 1,2, ... ,n{i 

form an orthonormal basis of 
'11'-"")"; (3 = L Et'Jf"<I'J'z, 

i 

(II.49) 

(11.50) 

dl·mJI/·",y,;tl = 2n M (11.51) 
f3 cc,Yz;/3' 

where the corresponding units decompose in a similar way as 
in the previous part of this section, namely, 

1,' ",Yz;ff = ~ " R fJ*(h)R a'Y'(h) 
'Ij IHI L.. Ij , 

, h 

- n -
E ",),,; fl = _fl_ '\:' R tl*(h)R a'Y'(h ). 
-Ij IHI + IJ 

(II. 52) 

(II. 53) 

(II. 54) 

Another H-adapted orthonormalized basis of this subspace 
can be introduced by means of 

{Q f!vI} _ '" {M(l,,} 
k i.hi - U h I k i j , 

IQfJI'2} _ '" {NP"} ·t k i,ly -Ub2 k ii' 

which imply that the vectors 

(11.55) 

(II. 56) 

Qt"", a = 1,2, 1.'= 1.2, ... ,m",Y,;f!' k ~o= 1,2, ... ,np • 

(II. 57) 

arcH adapted but in general not a solution ofEq. (II.48), i.e., 

In order to be able to satisfy Eq. (1I.48), we remember 
that the elements of the bases (11.50) and (11.57) must be 
linked by unitary transformations which are independent of 
the free index k: 

Q fJva 
_ " B * Wpw 

k - L.t aV;dlL' dk' 
du' 

(II. 59) 

k = 1,2, ... ,np . (II. 60) 

By similar arguments as in the previous papers we 
derive 
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R"'Y'(S)Qflua* = '\:' U (.<" F" Qf3v'a' k L lk L a V;(.I(,' J , 
I a'l" 

where our notations represent 

Gdw;d'w' = ( - 1)4 (d -r IlOd',d + I O"I(li' 

d,d
l = t,2, W,W' = 1,2, ... ,M"'I',;fI' 

F"'I,';al' = {BGB T}ol';a'v' 

- ",' S ( 1).:I(d+ I)S 
- ~ au;dlv - a'v';d -+ I,w, 

dill 

a,a' = 1,2, v,v' = 1,2, ... ,ffl"'l',;fJ' 

Using Eq. (II.61) we obtain for Eq. (lI.48) 

RIX'Y'(s)W!ft* = 2: u ~ I {StFB *}d''''';J",Wf-';'', 
{ d'w' 

(l1.61) 

(11.62) 

(II.63) 

(H.64) 

which provides us immediately with the defining equation 
for B, namely, 

BG[=FB"'. (11.65) 

Hence, if we can find a 2Mail',;o-dimensional unitary matrix 
satisfying Eq. (II .65), the corresponding CG coefficients fol
low from Eq. (II. 59). In this connection we remark that the 
2Mu ,y,; Irdimensional matrix Fis uniquely fixed through Eg. 
(n.64) as antisymmetric and unitary, i.e., 

FF* = --12M = - 1 2m , (II.66) 

Equation (IU8) with h = s 2 and Eq. (1.14) of Ref. 2 are 
needed to prove the last assertion, 

The next step is to calculate the matrix elements of F. 
This can be done by carrying out the scalar products 

~Qt"a·,R"'y,(s){~ ueQf3va}*) =f:",,';a,,, (11.67) 

whose values are independent of the index k. In order to 
verify this proposition we have to use 

R"tl"(s)tEf3R"'Y'(s) = ",' U fJ*U liE"* (II.68) 
Jj L.. Ik I} kI 

together with the transformation law (1I.58) for the vectors 
Qf,·a. The structure of these vectors can simplify Eq. (II.67) 
to 

F,,,,.,,,,,, :co: 0, (J = 1,2, 

F ' - F (J(",y,) 
11":211 - I"U 

(1l.69) 

(II.7!) 

where the vectors Me' and Nf" are the corresponding col
umns of the CG matrices ill and N, respectively, and where 
the scalar products occurring in Eqs, (1I,70) and (II.7]) arc 
analogously defined. The following matrix identities: 

{U "I !ill R 1'(S2)}i E ;y' fJ{U'" !ill R "(S2)} 

(II,72) 

(11.73) 
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together with the transformation properties of the vectors 
Mfv and N fV with respect to Hallow to show that the matrix 
elements (11.70) and (11.71) are independent of k. Because of 
Eqs. (11.69)-(11.71), the matrix Freads as 

_ [0 F p(a,yz)] 
F- -F p(a,y,) 0 ' (11.74) 

and whose property to be unitary and antisymmetric gives 

F /3(a,y,)' = _ F /3 (a,yz), 

F P(a,Y')F {3(a,y,)* = - 1 
m' 

(11.75) 

(11.76) 

which implies that both mu ,y,;{3-dimensional submatrices 
are unitary and that F suffices to calculate one of them. 

If the columns of the CG matrices M and N can be 
calculated by means of the method described in Ref. 3, their 
components take the special values 

{MfVl
j 

= {M~'Y2;f3(i,j')lj 

= IIBa,yz; {3(i,,J,.jII- I ~ " R ".'(h) 
ao IHI + II,. 

XR Ji,(h)R fa~(h), 

v = 1,2, ... ,mu ,y,; {3' k = 1,2, ... ,nf3, (11.77) 

{NPv} .. = I Nu,y,;{3U,j,l} .. 
k IJ 1, k IJ 

= IIBU ,Y,;{3(i.}..lII- I ~ " R ".'(h) 
ao IHI + ", 

X {z )', t R Y'(h )Z y,} R {3*(h) 
llt, kao ' 

v = 1,2, ... ,mu,Yz;{3' k = 1,2, ... ,n{3' (11.78) 

which give rise to the following expressions: 

F f3(u,y,) = IIBa,yz; {3(i,··j,·)/I-IIIBU ,yz; {3(i,·j'.)II-1 
(J v Go an 

X ~ '" Ra
, (hs) 

IHI + 1,1, 

X {z y,tR Y'(h )ZYz}j,j,{R {3(h)U {3}:oao' (11.80) 

and where the same arguments concerning the sets {(iv ,j.,) ) 
and the symmetry relation (II.75) hold as before. 

Now we are in the position to determine unitary matri
ces B which satisfy Eq. (II.65). For this purpose we define 

{ Bd,w} - B 
av - av;dw' 

a = 1,2, v = 1,2, ... ,mu ,Y,;{3' 

d = 1,2, w = 1,2, ... ,Mu ,h;{3' (11.81) 

so that Eq. (11.65) can be written as 

FBd.w* = ( _l)LI (d + I)Bd + I.w, 

d = 1,2, w = 1,2, ... ,Ma ,y,;{3' (11.82) 

The condition that B shall be unitary requires that the vec
tors Bd.w must be orthonormal with respect to both indices, 
which presupposes an appropriately defined scalar product 
for these vectors. Furthermore, fixing the vectors BI,w, 
w = 1,2, ... ,Ma,yz;p, the corresponding vectors B2,w, 
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w = 1,2, ... ,Mu,y,;{3 are uniquely determined through Eq. 
(II.82). In order to obtain orthonormal vectors we choose 

{BI,w}av = OalOvw' (11.83) 

which implies for the remaining vectors 

[B2.W] = 0 F {3(a,y,) 
au a2 wv • (11.84) 

These vectors define a unitary matrix 

[
1M 0] B= 'r, o F {3(u,y,) (11.85) 

which gives rise to the following CG coefficients of type II: 

W {3w - '" F {3(U I Y')Q{3V2 
2k - ~ WI-' k t 

(11.86) 

(11.87) 

Hence, it is possible to identify the multiplicity index w with 
the original index v, i.e., 

w = v, v = 1,2, ... ,mu ,y,;p' (11.88) 

Consequently, we have shown that, also for this case, 
CG coefficients of type II can be traced back by simple for
mulas to convenient CG coefficients for H. 

C. CG coefficients of type III 

The defining equations for CG coefficients of type III 
can be written in the following form: 

Ru,Y'(h )Wrt' = I R ~(h )Wri, (11.89) 
I 

Ra,YZ(h )W~~ = I {z rt R Y(h )Z y} lk W~I' 
I 

for all hElf, (11.90) 

Ra,y'(s)Wr~'* = WiJ:'. (11.91) 

R""Y'(s)Wrr* = I R rk (s2)Wii, 
I 

w = 1,2, ... ,Ma ,Y2;Y' k = 1,2, ... ,ny, (11.92) 

where we have introduced the notation 

{wyw} _ {Wa,y,;yw} _ wa,y, 
dk i.b) - dk i.b) - i.bj ;ywdk ' 

yEAni' w = 1,2, ... ,Mu ,y,;y' 

d = 1,2, and k = 1,2, ... ,n y , 

i= 1,2, ... ,n
u" 

b= 1,2, and j= 1,2, ... ,ny,. (11.93) 

Since the CG matrix W is assumed to be unitary, the 
vectors representing columns of W, i.e., 

W~~, w = 1,2, ... ,Mo ,y,;y, d = 1,2, k = 1,2, ... ,ny' 

form an orthonormal basis of 

'lr"'Y,;y = I {lET, + lED'lr"'Y" 
i 

(11.94) 

(11.95) 

where the units lEij and lEij decompose into a direct sum of 
submatrices, namely, 

(11.96) 
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E a~l";l' = ~ " R l'~(h )R a,l"(h ) 
IJ IHI ~ IJ ' 

E a,r,;l' = ~ " R l'*(h )R alr'(h ) 
IJ IHI ~ IJ ' 

Er = Eaa,;r = Ea~l',;r ffiEa~l":l' 
I) IJ IJ I}' 

- n -
E a,l',;l' = -l'-" {Z rt R l'(h )Z l'}*.R a,l"(h ) 

IJ IHI ~ IJ' 

- - n - -
E a,l',;l' = -l'- " {Z rt R l'(h )Z l'}*.R all"(h ) 

IJ IHI ~ IJ' 

By means of the definitions 

{QrV11.bj = 8b I {Mrv 1), 

{Qr21.bj = 8b2 {Nrv}i)' 

{Qrl}i.bj =8bl {Mr'liJ' 

{QfV2 }i.bj = bb2 {Nrl;, 
we define a further orthonormal basis of 'IF''ty,;l': 

Qrva, a = 1,2, v = 1,2, ... ,m 1 (a), 

(II. 97) 

(II.9S) 

(II. 99) 

(11.100) 

(II. 101) 

(II. 102) 

(II. 103) 

(II. 104) 

(II. 105) 

k = 1,2, ... ,nl' , m l (1) = matl',;l" m l (2) = mu,r,;l" 
(II. 106) 

Q["a, a = 1,2, v = 1,2, ... ,m2 (a), 

k = 1,2, ... ,n l' , m 2(1) = ma,r,;l" m 2(2) = matl',;l" 
(II. 107) 

Since the multiplicities mUtl',;l' and ma,r,;l' are in general dif
ferent, we are forced to distinguish them by introducing the 
notation miCa). Nevertheless, the transformation properties 
of the vectors (11.106) and (II. I 07) with respect to Hare 
given by 

RU'Y'(h )Qra = I R rk(h )Q["a, (II. lOS) 
I 

RUIY'(h )Qfva = L {ZrtR r(h )ZY}'kQfva, 
I 

for all hEll. (11.109) 

Although Eqs. (II. lOS) and (11.109) are in accordance 
with Eqs. (II.S9) and (11.90), we cannot expect that they are 
also solutions of Eqs. (11.91) and (11.92). However, due to 
Schur's lemma with respect to H, both bases (11.94) and 
(11.106) and (11.107) must be linked by unitary transforma
tions which are independent of the index k: 

w yw - IB Qrva 
lk - av;w k , (11.110) 

av 

Qyva - IB* wyw 
k - av;w lk' k = 1,2, ... ,n y• (11.111) 

Wl'W - I C Q''Vo 2k - av;w k , (11.112) 
av 

Qyva - I C* wyw 
k - av;w 2k' k = 1,2, ... ,ny. (11.113) 

Concerning the matrix notation for Band C, we have to 
realize that the index (a,v) differs for Band C, if mUtl',;y 
:i=m",),,;l" This fact should always be taken into account for 
the following considerations. 
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Hence, our problem is now reduced to the task of deter
mining Ma,y,;l'-dimensional unitary matrices Band C, so 
that the corresponding vectors (11.110) and (11.112) satisfy 
Eqs. (11.91) and (11.92). A simple calculation yields 

RUtl"(s)Qrva* = " F ' QYv'a' k ~ a v';av k , 
a'v' 

RUll"(s)QYva* = " R l' (S2)" F Qrv'a' k ~ lk £.. av;a'u' I , 
I a'u' 

where we have introduced as notation 

Fa'v';av = {CB T}a'v';av = I Ca'v';wBav;w' 
w 

a' = 1,2, and v' = 1,2, ... ,m2 (a'), 

a = 1,2, and v = 1,2, ... ,ml (a), 

(11.114) 

(11.115) 

(11.116) 

These equations now allow Eqs. (11.91) and (11.92) to be 
written as 

(11.117) 

Ratl"(s)W~r* = IRrk(s2)I {CtFB*}~'wWrr", (II. lIS) 
I w' 

respectively, from which follow the defining equation for B 
and C, namely, 

C=FB*. 

As in the previous papers we can choose 

B = 1 M<===?C = F, 

(II.119) 

(11.120) 

as a special solution of Eq. (11,119), since F is a unitary ma
trix. Thus, we arrive at the final formulas 

Wnav) = Qra
, (II.121) 

2 m,(a') _ 

W1':V) = I I Fa'v';avQrv'a', 
a' = 1 v' = 1 

a = 1,2, and v = 1,2, ... ,m l (a), k = 1,2, ... ,nl' , 
(11.122) 

which make it obvious that the multiplicity index w can be 
identified with the double index (a,v), i.e., 

w = (a,v), a = 1,2, and v = 1,2, ... ,m l (a). (11.123) 

Consequently, the remaining problem is to compute the 
matrix elements of F. This can be done by means of 

(Q rv'a' lRa,l',( )Qrva*) - F 
k' S k - a'v'-ap, (11.124) 

whose values must be independent of the index k. In order to 
verify this assertion, one has to use among others 

Ra'Y'(s)tEr) Ra,l',(s) = Eft. (11.125) 

Utilizing the special structure of the vectors (11.106) and 
(11.107), the matrix elements (11.124) simplify to 

Fav';av = 0, a = 1,2, (11.126) 

F = F~a,l") = (MYv' U UI ®R l"(s2)Nl'v*) (11.127) Iv';2v v v k , k , 

F , = F~a,r2) = (NYv' U a1 ® 1 Mrv*) (11.12S) 
2v;lv vu k' Y2 k , 

where the scalar products occurring in Eqs. (11.127) and 
(II. 12S) have to be defined analogously. Together with the 
relations 
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{UUI ®R r2(S2)}tE~,rz;Y{Uu, ®R rZ(S2)} 

= {E~/z;r}, (II. 129) 

{Uu, ® lr,}tE~/z;Y{Uu, ® IrJ= {E~t,;r}, (II. 130) 

it is easy to show that the matrix elements (11.127) and 
(11.128) are indeed independent of the index k. In this con
nection we remark that both submatricesFiiu,r,) andFiia,yz) 

are also unitary. 
Before summarizing our results let us assume that the 

corresponding columns of the CG matrices M and N can be 
calculated with the aid of the method given in Ref. 3: 

{Mr}ij = {M~,rz;l1i,j")lj 

= IIB~~r';l1i,j')1/ ~ I I~ I 

X I. R ~,~(h)R Jj,.(h)R r:o(h), 
h 

v = I,2, ... ,m l (1), k = I,2, ... ,nr , (II.I3I) 

{ N rv} _ ];Nu,Yz;l1i,,j,.)} 
k ij - 1.: k ij 

= IIBu ,rz;l1;"j')II- I ~" R ':.'(h ) 
a IHI ~ II" 

X {z YztR Y'(h)Z rz}.. R r* (h) 
ill' kao ' 

v = I,2, ... ,m l (2), k = I,2, ... ,ny , (II. 132) 

{MYv} _ {Ma'Yz;iii,j,.l} 
k ij - k ij 

= II Ba,r2;iii,j')11 ~ I ~ " R c:,'(h) 
au IHI ~ 11,. 

XR Y, (h ){ZrtR Y(h )zr}* 
JJ~ kao , 

v = 1,2, ... ,m2 (1), k = 1,2, ... ,ny, (11.133) 

{NYv} _ {NU,y,;iii,,j,)} 
k ij - k ij 

= IIBa,Yz;iii,j..)ll- I ~ " R ':.'(h) 
ao IHI ~ 11,. 

X {zrztR YZ(h )Zrz}jj,{ZrtR Y(h )Zr}ta, 

V = 1,2, ... ,m2 (2), k = I,2, ... ,nr. (II. 134) 

Thereby, we have to note the different sets {(iv,jv) J occur
ring in (II. 131)-(II. 134). Inserting Eqs. (II. 131)-(II. 134) 
into Eqs. (II. 127) and (II. 128), we obtain 

n 
X _r_ " lit" (hs)R rz. (hS2) IHI ~ 1,1, f"f,. 

X {Z rt R Y(h )Z Y}:oOo' (11.135) 

Concluding this part we summarize our final results 

a = 1,2 and v = 1,2, ... ,m l (a), 

k = 1,2, ... ,nr , (II. 137) 
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m,(2) _ _ _ 

Wl1lv) - "Fl1a,rz)Qrv'2 
2k -,4.; v'v k, 

v'= 1 

v = 1,2, ... ,ml (1), k = 1,2, ... ,nr , (II. 138) 
m,(l) _ 

W112v) _ "Fl1a,r')QYv'1 
2k -,4.; v'v k, 

v' = I 

v = 1,2, ... ,m l (2), k = 1,2, ... ,nr , (II. 139) 

which show that CG coefficients of type III are linked by 
simple unitary transformations with convenient CG coeffi
cients for the subgroup H. The only problem is to compute 
the unitary submatrices Fiia,r,) and Fiia,y,), whose dimen
sions however are in general not equal. 

SUMMARY 

This paper deals with the computation of CG coeffi
cients for Kronecker products which are composed of co
unirreps of type I and III. The first step of the present meth
od is to compute convenient CG matrices M and N which are 
nee<!ed to decompose the Kronecker products R aIr, and 

R a,y, into a direct sum of their irreducible constituents, since 
Ra'Y'tH = R a,r, $ R a,rz. Provided this task has been 
solved, one has to proceed as follows. 

In order to obtain CG coefficients of type lone has to 
compute the matrix D, i.e., 

D = _1 [ ilm _ 1m _ ] 
V2 - iFa(atrz) Fa(utr,)' 

which link CG coefficients of type I with convenient ones for 
H, presupposing the definitions (II. 14) and (11.15) are taken 
into account. For this purpose it suffices to calculate the 
matrix elements of the mu,r,;a -dimensional unitary matrix 
Fu(u,rz) by means of Eq. (II.29). Thereby, we have to note 

that the symmetry relation ma,rz;u = mUtr,;u gives a simple 
solution for the multiplicity problem. 

CG coefficients of type II are given by Eqs. (II.86) and 
(11.87), where the definitions (II.55) and (11.56) have to be 
used. Therefore, the only problem is to calculate the matrix 
elements of the rnu,rz; p-dimensional unitary submatrix 
F P(u,r,) of D, where 

which links the corresponding CG coefficients. The matrix 
elements of F P(utr,) are defined by Eq. (11.70). As in the 
previous case the symmetry relation mu r . P = rnu r . P gives 
rise to a simple solution for the multiplicity probl~~. 

Because of the special solution (11.120) ofEq. (11.119), 
i.e., 

[ 
0 FiiatYZ)] 

D = 1M and C = ;;,. -) , F"u,yz 0 

the corresponding CG coefficients of type III are given by 
Eqs. (II. 137)-(11. 139), where the definitions (11.102)
(11.105) have to be taken into account. Consequently, it suf
fices to compute the matrix elements of the unitary subma
trices Fiiu,r,) and Fiia,yz) by means ofEqs. (11.127) and 
(11.128), respectively. 
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Although the considered case i~ more complicated than 
the previous ones, since R y, and R y, are inequivalent unir
reps of H, we succeeded in solving the multiplicity problem 
for each type of co-unirreps without reference to a special 
magnetic group. 
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A general procedure is used to determine quite general Clebsch-Gordan coefficients for 
corepresentations in terms of convenient Clebsch-Gordan coefficients for the normal subgroup. 
The considered Kronecker products are composed of corepresentations of type II only. 

INTRODUCTION 

In this paper we compute CG coefficients for corepre
sentations where the considered Kronecker products are 
composed of co-unirreps of type II only. Like in the previous 
papers we simplify this problem essential by assuming that 
convenient CG coefficients for the normal subgroup H of G 
are known. This gives rise to the much easier task of deter
mining unitary transformations which combine these 
coefficients. 

The material of this paper is organized as follows: In 
Sec. I we state our problem and summarize the required 
multiplicities. Due to the present approach we divide the 
following section into three different parts according to the 
possible types of co-unirreps. We derive not only the defining 
equations for the above mentioned unitary transformations 
but solve them also quite generally without reference to a 
special group. 

I. MULTIPLICITIES FOR COREPRESENTATIONS 

Throughout this paper we are confronted with the 
problem to decompose the following Kronecker product: 

RP,P, = {RP'p,( g) = RP,( g) ® RP,( g): gEG}, (1.1) 

into a direct sum of its irreducible constituents. Since the 
corepresentation RP,P, forms a 4np, np, -dimensional repre
sentation which is in general reducible, there must exist a 
unitary matrix Wp,p, = W satisfying 

W + RP,P'(g)wg 

= 2: $ M/],p,;a Ra
( g) $ 2: $ Mp,p,;p RP (g) 

w_AI !lEAli 

til 2: $Mp,p,;yR"(g), for allgEG, (1.2) 
YE-A II I 

where the corresponding multiplicites take the values l 

M =4m /3,P,;" /3,13,;a' 

M(i,(3,./3 = 2mr',f3,;/3' 

M/3,/3,;Y = 4mp,/3,;y = M/3,p,;y' 

(1.3) 

(1.4) 

(1.5) 

II. CG COEFFICIENTS FOR COREPRESENTATIONS 

Due to the present procedure we assume from the out
set that convenient CG coefficients for H are already known. 
For this reason we consider at first the subduced 
representation 

lR(i,/iz lH = ( $ 4)R /3,/32, (11.1) 

which indicates that the Kronecker product 

R {J.f3, = (R /3,P'(h ) = R (\h ) ® R P'(h ):hER } (11.2) 

is contained four times into the reducible representation 
R/3,/3'tH, where R /3,/3, is a n/3, n/3, -dimensional representation 

of H. Since R /3,/3, is in general reducible, there must exist a 
unitary matrix M/3,/3, = M which satisfies 

M + R /3,f\h )M 

= 2: $ m/3,/3,;a R a(h ) $ 2: $ mp,p,;pR P (h) 
aEA 1 /3EA 11 

$ 2: $ mp,p,;y (R r(h) $zr' R Y(h )zr}, 
YEAIJI 

for all hER. (11.3) 

A. CG coefficients of type I 

Let us start from the already known defining equations 
for CG coefficients of type I: 

R/3,/3'(h )W~W = I R fk(h )WfW, for all hER, (11.4) 
I 

RP,P,(s)W~W* = I Ufk WfW
, w = 1,2, ... ,MP,/3,;a' 

I 

k = 1,2, ... ,na , (11.5) 

where the abbreviated notation has the following meaning: 

{W~wtj.bj = {Wf,P,;awtbj = W~;!J;awk' 
aEAp W = 1,2, ... ,Mp ,p,;a' k = 1,2, ... ,na , 

a= 1,2andi= 1,2, ... ,np" b= 1,2andj= 1,2, ... ,np,.(1I.6) 

Both double indices a,i and b,j originate from Eqs. (1.21) 
and (I.22) of Ref. 2. Similar to the previous cases we interpret 
the columns of the CG matrix Was H-adapted vectors of an 
4np, np, -dimensional Euclidean space rIP"~ which have to 
satisfy additionally Eq. (11.5). 

Since it is assumed that W is unitary, the vectors 

W~w, W = 1,2, ... ,Mp,p,;a' k = 1,2, ... ,na , (II.7) 

define an orthogonal basis of 

r,p,;a = '" Eel 7f?{3,P, 
~ II , 

j 

dimr,P,;a = n M 
a 13tf32 ;a' (11.8) 

where the units Eij decompose in accordance with Eq. (11.1) 
into a direct sum of four identical submatrices, i.e., 

(11.9) 
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n 
E a. = _a_ E a.*(h )R f3,/3'(h ) 

lj IH I I} • 
(11.10) 

A further orthogonal basis of this subspace can be intro
duced by means of 

Qkuvab, a,b = 1,2, v - 12m - , , ... , /3,/3,;a' 

k = 1,2, ... ,na , (11.11 ) 

whose components are defined by 

{Qk'"abt'ib'J = 8aa,8w {Mk'v}ij' (11.12) 

where the vectors M~v are the corresponding columns of the 
unitary CG matrix M. Although these vectors transform ac
cording to 

R/1,f3'(h )Qk'vab = L R ~ (h )Qfvab, for all hEll, (11.13) 
I 

we cannot expect that they are already a solution ofEq. 
(11.5), 

In order to be able to accomplish this task we remember 
that, by virtue of Schur's lemma, the elements of the bases 
(11.7) and (11.11) must be linked by a special unitary trans
formation, namely, 

waw - "B Qavab 
k - £..t abl';W k , (11.14) 

abv 

Qavab -- "B * W ClW k I 2 k - £.. abv;w k' =, , ... ,na· (11.15) 

Hence, the problem is now to determine unitary M/3,/3,;a
dimensional matrices B, so that the corresponding vector 
(11.14) satisfy Eq. (11.5). Therefore, we derive 

R/3,/3'(S)Qk'll'ab* = " U Cl "F Qav' a' b ' 
~ lk L a'b'v';abv I , (II. 16) 

I a'b'p' 

where 

L Babv;wBa'b'v',w' a,a',b,b' = 1,2, 
w 

v,v' = 1,2, ... ,rn/3,/3,;a' (11.17) 

These equations together with Eqs. (11.14) and (11.15) trans
form Eq. (11.5) as follows: 

R
f3
,/3,(s)Wk''''* = 22 Ufk L {B + FB*}w'w Wfw

', (11.18) 
I Wi 

which leads us immediately to 

FB* =B, with BB + =B + B = 1M , (11.19) 

By similar arguments as in the foregoing papers we can show 
that F is a symmetric unitary matrix, i.e., 

(II.20) 

Before attacking the problem of determining unitary 
matrices B which satisfy Eq. (11.19), it is necessary to com
pute the matrix F. The matrix elements of F are obtained by 
calculating the scalar products 

(Q"''''b' Rf3,fI,( ){ "ua Qavab}*) F (11.21) 
k' S + kl I = a'b'v';abv' 

whose values are independent of the index k. This can be 
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verified with the aid of 

R
f3
•
fI
,(s) + lEijR

f3
,fI,(s) = L U~* U'fllEk'r (II.22) 

kl 

and the transformation law (11.13). A simple calculation 
yields for Eq. (11.21) 

F - ( 1).1 (a')8 (1).1 (b ')8 F a(f3,/3,) 
a'b'v';abv - - (I',a + I - b',b+ 1 v'v , 

(11.23) 

F",(f3·f3,) = (Mal" U f3• ,0, U f3,{ " ua Mal'}*) 
II I' k' 101 "- kl I , 

I 

(11.24) 

if taking Eq. (11.12) into account and where the scalar prod
uct in Eq. (11.24) is analogously defined. Using the relations 

{U f3, ® U/3,} + E" {U f3, ® U/3,} = "UC'*U"Eu* (11.25) 
I} £.. Ik }l kl 

kl 

together with the transformation properties of the vectors 
Mk'v with respect to H, it is easy to prove that the matrix 
elements (II.24) are independent of k. Now let us consider in 
more detail the symmetric unitary matrix F, which reads in 
matrix notation 

[j~" 
0 0 

F= 
0 _ F a(f3,/3,) 

_ F a(f3./3,) 0 

0 0 

FT']· 
(11.26) 

Since F is symmetric and unitary 

F a(f3./3,) I = F Cl(}3,/3,), (11.27) 

(11.28) F u (}3,/3')F,,(f3·/3,)* = 1 
m' 

respectively, it follows that the mf3,t3,;a -dimensional subma
trix F u (f3,/3,) is also symmetric and unitary. 

Provided the corresponding CG coefficients for H can 
be computed by means of the method given in Ref. 3, i.e., 

{Mal'} .. = {Mf3tf3,;a(i, j,.J} .. 
k Ij k Ij 

= IIB/3,/3,;a(i,,j'.)11 . 1 ~ " R /3'(h )R f32(h)R a* (h) 
"'0 I H I ~ III P, kao' 

v = 1,2, ... ,mti,f3,;", k = 1,2, ... ,n", (11.29) 

the matrix elements of F,,(f3,{J2) take the special values 

= IIB~,:f3,;a(i,J')II-l IIB~~(j,;a(i,,j')II" 1 

x~,,{Rtl'(h)uf3,} {Rtl'(h)U f3,} . Ra * (hs) I H I + 11 ii' J,jl' GoQo ' 

(11.30) 
which are of course independent of the free index k. 

The next step of the present method is to determine a 
unitary matrix B which satisfies Eq. (11.19). If taking the 
special structure (11.26) of F into account, it is obvious to 
make the following ansatz for B: 

o 
A 

-FA* o 

o 

-FB* 
B 

o 

F~*] 
o ' 
B 

(11.31 ) 

where we have introduced for the sake of simplicity the ab .. 
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breviated notation F = F U(f3,P2). The mpJj2;u-dimensional 
matrices A and B shall be proportional by numerical factors 
to unitary ones, but otherwise arbitrary. Now it is easily veri
fied that, for every pair A, B, Eq. (11.19) is automatically 
satisfied. Furthermore, unitarity of 0 is achieved if 

AA t + BB t = 1m , 

F U(f3,P')(AA T)* = _ (BBT)Fu(f3,P,)t 

is satisfied. Clearly, the matrices 

i 
A = ---= 1m 

\12 

(11.32) 

(11.33) 

(11.34) 

represent a solution of Eq. (11.33), which lead immediately 
to 

[ 

ilm 

1 0 
B= ---= 

\12 0 
-IF 

o o 

F 
o 

(II.35) 

Concerning the multiplicity index w, we realize that w can be 
identified with the triplets (a,b,v), i.e., 

w = (a,b,v), a,b = 1,2 and v = 1,2, ... ,mp,p,;u' 

Hence, we arrive at the final results 

Wu(II,,) _ i {QUVII "FU(f3,P')QUl"22} 
k - -----=- k - £., v'v k , 

\12 ,,' 

Wf(l2v) = J"2 {Qf1'12 + f F~~'P')Qkv'21}, 
Wa(2Iv) = _1_{_ QuvI2 + "Fa.(f3,P')QUV'21} 

k ... '- k L uv k , 
V 2 v' 

Wa(22v) = _1_ {QUVII + "FU(f3'P')QUV'22} 
k " /- k ~ vtv k , 

V 2 v' 

(11.36) 

(11.37) 

(II. 38) 

(11.39) 

v = I,2, ... ,mp,p,;u' (11.40) 

which show that CG coefficients of type I for corepresenta
tions are connected by simple unitary transformations with 
convenient CG coefficients for the normal subgroup H. The 
only problem is to compute the matrix elements of F u

({3,P,), 

where its symmetry should be utilized in any way. 

B. CG coefficients of type II 

The defining equations for CG coefficients of type II 
read as already known: 

RP,P'(h )W~k' = 2:R ~ (h )W~;", for all hEll, (11.41) 
I 

RP,P,(s)WPW" = ( _ l)d (d + I) ~ uP Wpw dk £.. Ik d+ I./' 
I 

W = 1,2, ... ,MI1,I1,;{3' d = 1,2, and k = 1,2, ... ,n/3' 

(11.42) 

where our notation means 

{W~k'}ai,bj = {W~f,;/3wli,bj = W~:~j;PWdk 
{JEAn, W = 1,2, ... ,Mp ,p,;p, d = 1,2, and k = 1,2, ... ,np , 
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a = 1,2 and i= 1,2, ... ,np" b = 1,2, and j= 1,2, ... ,np,' 

(11.43) 

Due to the present procedure we interpret the vectors 

W~k', w = 1,2, ... ,Mp,P2;P' d = 1,2, k = 1,2, ... ,np, (11.44) 

as H-adapted orthonormalized basis of 

r'P';P = 2:lE~ r'P', 
i 

d· ,wAi,P,;P 2 M (II 45) Imff' = n/3 p,p,;a' . 

which have to satisfy additionally Eq. (11.42). The units lEf 
can be written in the following form: 

E f! = ~ " R f!*(h )R P,P'(h ) 
IJ IH I f;- IJ ' 

(11.46) 

(11.4 7) 

which is in accordance to Eq. (11.1). A further basis of this 

subspace of r,P,;!3 are the vectors 

nBuab Vk , a,b = 1,2, v = 1,2, ... ,mp,/3,;p, 

k = 1,2, ... ,n/3' 

whose components are given by 

(11.48) 

{(jf"ab}a'i,bj = Daa,Dw{MfVlj (11.49) 

and where the vectors Mfv represent corresponding columns 
of the unitary CG matrix M. These vectors satisfy the first 
condition, namely, 

RP,P'(h )Q'fvab = I R ~ (h )~Vab, for all hEll, (11.50) 
I 

but we cannot expect that they are already a solution ofEq, 
(11.42). 

For this purpose we define unitary transformations 
which link the elements of the bases (11.44) and (11.48): 

Wpw - "0 nfJvab dk - £.. abv,dw Vk , 
ab" 

nfJvab _ ~ B * WPw 
'Lk - ~ abv,dw dk' 

dw 

(11.51) 

k = 1,2, ... ,np ' (11.52) 

In order to determine unitary matrices 0, so that the 
corresponding vectors (11.51) are solutions ofEq. (11.42), we 
derive 

RP,P'(S)nfJkvab* = "U /3 "F nfJv' a' b ' (11.53) VI< £.. Ik £.. a'b '"';ab,, v, , 
I a'b'v' 

where 

Gdw;d'w' = (- l)d(d+ I)Dd',d+ I Dww' , 

d,d' = 1,2, w,w' = 1 ,2, ... ,Mp,/3,;/3 , (11.54) 

Fa'b'v';ab" = {BGB T}abv,a'b'''' 

- ~ B ( l)d (d + I) B 
-..£,. abv;dw - a'b 'v',d + t,w' 

dw 
a,a',b,b' = 1,2, v,v' = 1,2, ... ,m/3,p,;p' (11.55) 

Equation (11.53) transforms Eq. (11.42) as follows: 

RP,P,(s)WPw* - "UP ~ {B +F1J *} Wpw' dk - £.. Ik £.. d'w',dw d',!' (11.56) 
I d'w' 

which yields immediately the defining equation for B, 

R. Dirl 985 



                                                                                                                                    

namely, 

BG T =FB*. (11.57) 

In this connection we remark thatFis a 2Mp,pz;p-dimension
al antisymmetric unitary matrix which can be shown by 
similar arguments as in the foregoing papers: 

FF * = - 12M = - 14m , (11.58) 

In order to be able to solve Eq. (11.57) it is necessary to 
calculate the matrix elements of F. This can be done by car
rying out 

/ ~v'a'b' R13.t3Z{ ) {~UI3 ~vab}*) F 
\ Vk , ,S.,.. kl VI = a'b 'v';abv' (11.59) 

whose independence of the index k has to be proven by 

RI3,I3Z(s)tlE~RP,I3Z(s) = IU~*U7zlE~r. (11.60) 
kl 

!ftaking the special structure (11.49) ofthe vectors fitvab into 
account, the matrix elements (11.59) turn out to be 

F - ( 1).:1 (a')o (1).:1 (a') 
a'b'v';abv - - a',a +) -

X o FP(f;I,Pz) 
b',h+l v'v , (11.61) 

(11.62) 

where the scalar product in Eq. (11.62) is analogously de
fined. The following relations: 

{UtJ, ® Ul3z}tE~{UP' ® U 13z} = I U~ U7zE~r (11.63) 
kl 

are needed to prove that the matrix elements (11.62) are inde-
pendent of the index k. The matrix F written down in matrix 
notation 

[J.p" 
0 ° 

F= ° 
_ F 13 (f;1,Pz) 

_ F 13 (f;1,l3z) ° 
° ° (11.64) 

makes obvious that the following relations must hold: 
FtJ(P,Pz)T = _ F P(f;I,{3z), 

F{3(J3.t!z) F 13 (f;1,{3z)* = - 1
m

, 

(11.65) 
(11.66) 

since F is itself an antisymmetric unitary matrix. Thus, we 
obtain the non obvious by-product 

m{3.fJdl > 1, if m{3,tJz;tJ*O, (11.67) 

since the mtJ,I3,;{3-dimensional submatrix F 13 (f;1,l3z) is antisym
metric and unitary. 

Now let us assume that the required columns of the CG 
matrix M can be computed by means of the method de
scribed in Ref. 3. Their components therefore take the form 

{Mf''};j 

986 

_ {M13 ,l3z;{3(i,,j,)} 
- k ij 

= 11~,I3,;I3(i,j'.)II- 1 ~ ~ R i3.'(h)R i3.Z(h)R 13* (h), 
ao IH I ~ lII1 11" kao 

V = 1,2, ... ,m13,l3z;p, k = 1,2, ... ,n13 , (11.68) 
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which lead us to 

x ~ ~ {RP'(h)U 13,}. {RI3Z(h)Ul3z}. 
IHI ~ 1,1" j,.j, 

X{RI3(h)UI3}!,a", (11.69) 

whose values are independent of k. 
Now we are in the position to determine unitary matri

cesBsatisfying Eq. (11.57). For this purpose we proceed as in 
the foregoing papers and consider the columns of B as vec
tors of an 2M13,l3z;l3-dimensional Euclidean space 

{Bd.w}abv = Babv;dw' 

d = 1,2, w = 1,2, ... ,M13,l3z;I3' 

a,b = 1,2, v = 1,2, ... ,m13,I3,;tJ. 

Therefore, Eq. (11.57) can be written as 

FBd,w* = (_ 1).:I(d+ 1) Bd+ l.w, d = 1,2, 

(II. 70) 

w = 1,2, ... ,MfJ ,fJz;fJ' (11.71) 

Since B must be unitary, it suffices to determine, for exam
ple, the vectors Bl,w,W = 1,2, ... ,MfJ ,fJz;fJ in such a way that 
B fulfills the required property. By taking this property into 
account, it is obvious to choose 

{B
1
•
W

}a'b'v' = Oa'l Obb'Ovv" 

b = 1,2, v = 1,2, ... ,mfJ ,p,;I3' (11.72) 

which allows one to identify the multiplicity index w with 
the pair (b,v), i.e., 

w = (b,v), b = 1,2, and v = 1,2, ... ,m13,fJz;/3' (11.73) 

The remaining vectors B 2
•
w follow directly from Eqs. (11.71) 

and (11.64). Their components take the values 

{B2,(bv)} _ 0 (- 1).:1 (b')o FfJ(fJ,fJ,) 
a'b'v' - a'2 b '.b + 1 v'v (11.74) 

and show that the corresponding matrix B is indeed unitary: 

° 
° 
° 

° 
° 
° 

(11.75) 

Inserting the special values (11.72) and (11.74) into Eq. 
(11.51), we obtain immediately the corresponding CG coeffi
cients of type II: 

W fJ(bv) - ~l'lb (11.76) 
lk - Vk , 

WI3(bv) = ( _ 1).:1 (b + 1) ~ FI3,(f;I,I3,)~v'2,b + 1 
2k L.. Ill! 'Lk , 

v' 

b = 1,2, and v = 1,2, ... ,m13,PdJ' (11,77) 

Concluding this part, we remark that CG coefficients of type 
II for corepresentations are connected by simple unitary 
transformations, whose dimensions must be larger that one, 
with convenient CG coefficients for the subgroup H. 

C. CG coefficients of type 11\ 

Let us start once more with the defining equations for 
CG coefficients of type III: 

R
fJ

,I3'(h )Wfl:' = IR rk (h )Wf;V, (11.78) 
I 
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JIf3"\h )W1'k' = ~ {ZY+ R Y(h )ZY}lk W~'t', 

for all hEH, (11.79) 

(11.80) 

RPli\S)Wr,:'* = IR fk(S2)Wr/, 
I 

W = 1,2, ... ,Mp,P,;Y' k = 1,2, ... ,ny, (111.81) 

where our notation means 

{W~r}ai.bj = {W~}ai,bj = W~i!}ywdk' 
rEA III , w = 1,2, ... ,Mp,P,;y, d = 1,2, and k = 1,2, ... ,ny' 

a = 1,2 and i = 1,2, ... ,nf/,' b = 1,2, and j = 1,2, ... ,np,. 
(11.82) 

Since W is supposed to be unitary, the vectors 

w = 1,2, ... ,Mp,P,;y' 
(11.83) 

d = 1,2, k = 1,2, ... ,ny' 

representing columns of the CG matrix Wform an orthonor
mal basis of 

'lf~J,fi,;y = ~ {lE>: + lEr} r'P,. L.t Ii II , 

i 

dim r,f/,;y = 2n M , y f/,f/"y' 

where the units lE]j and lE]j are defined analogously: 

lE>: = lEtI'P';y = ( Gl 2) E tI,f/,;y = (Gl 2)E >: 
IJ l) lj l)' 

E T = ~ ~{Z r+ R Y(h)Z Y}~R f/lf/'(h) 
u IH I -f u' 

(11.84) 

(11.85) 

(11.86) 

(11.87) 

(11.88) 

Equations (11.85) and (11.87) are in accord with Eq. (11.1). 
Obviously, the following definitions: 

{Qrvabl'i,b'J =8aa.8bb ,{Mrl;, (11.89) 

{Qf"abl'i,b'J =8aa·8w {Mfvlv, (11.90) 

allow one to define a further orthonormal basis of r,f/,;}', 
namely, 

Q yvab 
k , a,b = 1,2, v = 1,2, ... ,mf/lf/,;y, 

k = 1,2, ... ,n y , 

QYvab b 12 1 2 k , a, = , ,v = , , ... ,mf/,f/,;y, 

k = 1,2, ... ,ny , 

(11.91) 

(11.92) 

where the vectors Mr' and Mr are the corresponding col
umns of the CG matrix M. In virtue of their definition they 
transform with respect to H according to 

Rf/,f/'(h )Qrab = I,R ~(h )Qrab, (11.93) 
I 

Rf/,f/'(h )Qrab = I,{Z y + R Y(h)Z y}lk Qrab, 
I 

for all hEH, (11.94) 

but are in general not vectors which fulfill Eqs. (11.80) and 
(11.81). 
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In order to be able to solve this problem we define uni
tary transformations which link the elements of the bases 
(11.83) and (11.91) and (11.92): 

WIT' = 'LBabv;wQF
b
, 

abv 

Wyw - ~C Qyvab 2k - "- abv;w k , 
abv 

Q rvab - ~C* WY2w k = 1,2, ... ,ny, k - "- abv;w k' 
w 

(11.95) 

(11.96) 

(11.97) 

(Il.98) 

and determine them in such a way that Eqs. (11.80) and 
(11.81) are satisfied. 

For this reason we derive 

Rfi,f/'(S)QYkvab* = ~ F QYvab (11.99) L.. a'b'v';abl' k , 
a'b'v';abv 

Rf/,f/'(s)Qrab* = IR ~(S2) I F:'b'v';abvQfv'a'b', (11.100) 

where 
/ a'b'v' 

Fa'b'v';abv = {CB T} a'b 'v';abv 

= ICa'b'v';wBablJ;w' 
w 

a,a',b,b' = 1,2, v,v' = 1,2, ... ,mf/,f/,;y' (II.101) 

These equations transform Eqs. (11.80) and (11.81) as 
follows: 

Rf/,f/,(s)Wyw* = ~{C + FB *} . Wyw' 
lk L.. ww 2k, (11.102) 

w' 

Rf/lf/,(s)W~t'* = I R fk(S2) I{C + FB * }~'w Wr;v'. (11.103) 
I w' 

Hence, if we can find Mf/lf/,;y -dimensional unitary matrices B 
and C which satisfy 

C=FB*, (11.104) 

the corresponding CG coefficients follow immediately from 
Eqs. (11.95) and (11.97). 

Since F is a unitary matrix, we can choose 

B = IM¢::=::}C = F (11.105) 

as a special solution of Eq. (11.104). Hence, we obtain 

(11.106) 

Wy(abv) - ~ F Qyv'a'b' 
2k - L.t a'b'v';abv k , 

a'b'v' 

a,b = 1,2, v = 1,2, ... ,mf/,f/2;Y' (11.107) 

which show that we can take the triplets (a,b,v) as the multi
plicity index W: 

W = (a,b,v), a,b = 1,2 and v = l,2, ... ,mf/lf/,;y' (11.108) 

Accordingly, the problem remains of computing the 
matrix elements of F. This can be done by means of 

(Qr'a'b',Rf/lf/2(s)Qrab*) = Fa'b'v';abv' (11.109) 

whose independence of the index k has to be shown with the 
aid of the following relations: 

(11.110) 
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By virtue of the special structure of the vectors Qr"b and 
Qrab, the matrix elements (II. 109) simplify to 

F - (l)':\(a')o (l)':\(b')l1 FYw,P,) 
a'b'v';abv - - a',a+ 1 - Ub',b+ 1 v'u , 

(11.111) 

(II. 112) 

where the scalar product in Eq. (11.112) is analogulsy de
fined. In this connection we have to note that the mp.fJ,;Y
dimensional submatrix F Yw,f3,) is also unitary. Furthermore, 

{U f3,® UP,}+ EY. {U f3,® U f3'}=Er.* (11.113) 
lJ J) 

can be used to verify that the matrix elements (11.112) are 
independent of k. 

Now let us assume that it is possible to compute the 
corresponding columns of the CG matrix M with the aid of 
the method given in Ref. 3, which implies that their compo
nents can be written as 

{M Yv} _ {Mf3,f3,;r(i"j,)} 
k Jj - k Jj 

= IIBf3,f3,;r(i j ")II-1 ~ '\:' R tJ.'(h)R f3, (h)R Y* (h) 
an I H I -f' ltv .Dt' kao ' 

V = 1,2,,,.,mf3,f3,;Y' k = 1,2,,,.,n y , (11.114) 

{M Yv} _ {Mf3,f3,;Y(i,j,)} 
k Jj - k Jj 

= IIBf3,f3,;Y(i j ')II-1 ~ '\:' R tJ.'(h)R tJ.'(h) 
ao I H I -f' Hv }jl)' 

X {Z r+ R Y(h)Z Y}ta
o

' 

V = 1,2,,,.,mf3,f3,;Y' k = 1,2,,,.,n y ' (11.115) 

Accordingly, Eq. (11.112) turns out to be 

FX,f3,) = 11w,:;f3,;Y(i,j')II- I 1Iw,:;f3,;r(i"j')II- I 

X ~ '\:' {R {"(h )Uf3t} . {R P'(h )Uf3,} . IH I -f' 1"1,, j"j" 

X {ZY+ R Y(h)Z Y}:oao (11.116) 

and where the index sets {(iv,jv} occurring in Eqs. (11.114) 
and (11.115) are however in general not identical. 

Inserting Eq. (II. 111 ) into (11.107), we arrive to the fi
nal results 

(11.117) 

Wr(abv) _ ( _ 1),:\ (a + I) +,:\ (b + I) '\:' FYw,f3')Qyv',a + I,b + I 
2k - £.J v'u k , 

p' 

a,b = 1,2, V = 1,2,,,.,mf3,f3,;Y' (II.118) 

which show that CG coefficients of type III are linked by 
simple unitary transformations with CG coefficients for H 
and that the multiplicity problem is solved in a very special 
way, 

SUMMARY 

In this paper we considered Kronecker products which 
are composed of co-unirreps of type II only. Because of 
Rf3,f3, ~H = ( EB 4)R f3,f3" the fist step of the present approach 
is to determine a suitable CG matrix M which decomposes 
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R f3,P, into a direct sum of its irreducible constituents. Pro
vided this has been done, CG coefficients for co-unirreps are 
obtainable as follows. 

CG coefficients of type I are given in this case by Eqs. 
(11.37)-(11.40) where the definitions (11.12) have to be taken 
into account. Therefore, the only problem is to calculate the 
submatrix F a(f3,f3,) of the special solution (11.35) of Eq. 
(11.19): 

o o 

il 
The matrix elements of the mf3,f3,;a -dimensional unitary ma

trix F = F a(f3,P,) are uniquely fixed through Eq. (II.24), at 
which its property to be symmetric should be utilized in any 
case. 

In the second case, i.e., the computation of CG coeffi
cients of type II, it suffices to compute by means of Eq. 
(11.62) the matrix elements of the mf3,f3,rdimensional anti

symmetric unitary submatrix F f3 (f3,f3,) of 

o 

o 
o 

since the corresponding CG coefficients are given by Eqs, 
(II.76) and (11.77) where the definitions (II.49) have to be 
used. 

Corresponding to the special solution (11.105) of Eq. 
(II. 104), i.e., 

B=lM 

and 

FTl lL'J 
0 0 

0 _ F Yw,f3,) 
c= _ F Yw,f3,) 0 

0 0 

CG coefficients of type III are given by Eqs. (11.117) and 
(11.118), where of course the definitions (11.89) and (11.90) 
have to be used. Consequently, the only problem is to com

pute the mf3,f3,;y-dimensional unitary matrix F Yw,f3,), whose 
matrix elements are uniquely defined by Eq. (11.112). 

Summarizing our results, we succeeded in solving the 
multiplicity problem for each type of CG coefficients with
out reference to a special magnetic group. 

IC.J. Bradley and A.P. Cracknell, The Mathematical Theory a/Symmetry 
in Solids (Clarendon, Oxford, 1972). 

2R. Dirl, J. Math. Phys, 21, xxx (1980). 
3R. Dirl, J. Math. Phys. 20, 659 (1979). 
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Clebsch-Gordan coefficients for corepresentations are determined quite generally in terms of 
such coefficients for the normal subgroup, at which the Kronecker products are composed of 
corepresentations of type II and III. 

INTRODUCTION 

This paper continues a series of papers which deal with 
the problem of computing CG coefficients for corepresenta
tions in terms of appropriately determined CG coefficients 
for the normal subgroup. Within the present paper we re
strict our considerations to Kronecker products which are 
composed of co-unirreps of type II and III. Like in the pre
vious cases we utilize the representation theory of the normal 
subgroup by taking convenient CG coefficients for this 
group for granted. 

We organize the material of this paper as follows: The 
first section is devoted to stating the considered problem and 
to derive useful symmetry relations for the required multi
plicities. In accordance to the possible types of co-unirreps 
we divide the second section into three parts. For each case 
we find simple defining equations for the unitary transfor
mations which link CG coefficients for the underlying core
presentation with convenient ones for the normal subgroup. 
These equations are solved quite generally without reference 
to a special group. 

I. MULTIPLICITIES FOR COREPRESENTATIONS 

Throughout this paper we consider the Kronecker 
product 

JRP'y, = {RP'Y'(g) = RP'(g) ® JRY'(g):ge:G j, (1.1) 

which defines a 4np, ny, -dimensional unitary corepresenta
tion. Since this representation is in general reducible, there 
must exist a unitary matrix wp,y, = W which decomposes 

RP,Y, into a direct sum of its irreducible constituents: 

W + JRP,Y2(g) wg 

Ell L Ell Mp,y,;yRY(g), for all gEG. (1.2) 
YEAUI 

The multiplicities occuring in Eq. (1.2) are well known! and 
take the following values: 

M p,Y2;a = 2{mp,y,;a + mp,y,;a}, (1.3) 

M p,Yd3 = m p,Yd3 + mp,y,;p, (1.4) 

Mp,y,;y = 2 {mp,y,;y + mp,y,;y} = M p,Y2;y' (1.5) 

By similar arguments as in Ref. 2 we derive the symmetry 
relations 

(1.6) 

which allow one to simplify the multiplicity formulas as 
follows: 

Mp,y,;a = 4mp,y,;a' 

M p,Yd3 = 2mp,Yd" 

Mp,y,;y = Mp,y,;y = Mp,y,;y, 

(1.7) 

(1.8) 

(1.9) 

but where we cannot conclude from the last equation that 
the multiplicities mp,y,;y and mp,y,;y are equal. 

II. CG COEFFICIENTS FOR COREPRESENTATIONS 

Due to the present approach the first task is to find out 
what kind of Kronecker products of unirreps with respect to 
the normal subgroup H are contained in the subduced 
representation 

JRP'y, iH = (EIl2){R P,y, EIlR PlY'}. (11.1) 
Thereby, we have introduced the notation 

R P,y, = {R P'Y'(h ) = R P'(h ) ® R Y'(h ):hER }, (11.2) 

R P,y, = {R P'Y'(h) = R P'(h) ® Z Y2 + R Y'(h )Z Y2:hER }, 

(11.3) 
which distinguishes the different Kronecker products occur

ing twice into JRP,y'iH. Since both np, ny, -dimensional uni

tary representations R p, y, and R p, y, are in general red ucible, 

there must exist two unitary matrices M(3,y, = M and NP,yz 
= N satisfying 

MtR P'Y'(h)M 

= L Ell mp,y,;a R a(h) Ell L Ell mp,y,J,R (3 (h) 
aEAI {JeAII 

Ell L Ell {mp,y,;yR Y(h) Ell mp,y,;yZ rtR Y(h)Z Y}, 
{JeAIII 

(11.4) 
NtR P'Y'(h)N 

= L Ell mp,Y2;aR a(h ) Ell L Ell mp,y,J,R p (h) 
aeA J {JeAII 

Ell L Ell {mp,y,;yR Y(h ) Ell mp,y,;yZ rt R Y(h )Z Y}, 
reAm 

for all hER, (11.5) 

respectively, whose matrix elements are taken for granted. 

A. CG coefficients of type I 

Let us start from the defining equations for CG coeffi-
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cients of type I: 

RP'Y'(h )WfW = I R fdh )WfW, for all hEll, (11.6) 
I 

R{3IY'(s)W~W* = I Ufk WfW; 
I 

W = 1,2, ... ,M{3IY2;U' k = 1,2, ... ,no , (11.7) 

where the components of the column vectors W~w are given 
by 

aEAp W = 1,2, ... ,M{3IY2;a' k = 1,2, ... ,na , 

a = 1,2 and i = 1,2, ... ,np" b = 1,2 and j = 1,2, ... ,ny,. 
(11.8) 

The double indices (a,1) and (bJ) originate from Eqs. (1.21) 
and (1.22) and (1.23) and (1.24), respectively, of Ref. 3. Like 
in the previous cases we interpret the columns of the unitary 
4np, nY, ,-dimensional CG matrix Was H-adapted vectors of 

a corresponding Euclidean space '1f/*,Y" which have to satis
fy additionally Eq. (11.7). 

Consequently, the vectors 

W~W, W = 1,2, ... ,Mp,y,;a' k = 1,2, ... ,na , 

form an orthonormal basis of 

~,A1IY2;a = ~ IE':' 'If/'/3IY' Jr. L II , 

i 

(11.9) 

(11.10) 

where the corresponding units IEij decompose in accordance 
with Eq. (11.1) into a direct sum of the submatrices E~,y,;a 
and E~'Y';o.: 

E'!,J',;a = ~ ~ R ':'*(h)R P'Y2(h) 
Ij fHf+ Ij , 

E'!,y,;a = ~ ~ R ':'*(h)R P'Y'(h) . 
lj fHI + IJ 

(11.11) 

(11.12) 

(11.13) 

The structure of R{31 1', LH suggests a definition by means of 

{Q~lIalt'i,h'j = Daa'{;b'l {M~l}ij' a = 1,2, 

{Q~I'a2t'i.b'j = Daa'{;b'2 {N~'}ij' a = 1,2, 

a further orthonormal basis of '1f/*1Y2"', namely, 

Q~"ab, a,b = 1,2, v = 1,2, ... ,mp,y,;a , 

k = 1,2, ... ,na , 

(11.14) 

(11.15) 

(11.16) 

which are especially suited to simplifying the following con
siderations, since they are already H adapted, i.e., 

RP'Y'(h )Q~"ab = I R fk (h )Qfuab, for all hEll. (11.17) 
1 

Despite this transformation law we cannot expect that 
these vectors transform also according to Eq. (11.7). Never
theless, the elements of the bases (11.9) and (II.l6) must be 
linked by unitary transformations which are independent of 
the index k: 

990 

Waw _ ~ B Qallab 
k - ~ abv;w k , 

abv 
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(11.18) 

Quuab - ~ B * waw k - 1 2 k - L abv;w k' -, , ••• ,na . (11.19) 

In order to be able to determine unitary matrices B, so 
that the corresponding vectors (11.18) are satisfying Eq. 
(11.7), we derive 

R{1IY2(s)Qakvab* = ~ ua ~ F Qav'a'b' (11.20) £.J Ik L a'b'll';abu / , 
1 a'b'v' 

where 

Fa'b'u';abu = {BB T}abu;a'b'v' = I Babv;wBa'b'v';w , 
w 

a,a',b,b' = 1,2, v,v' = 1,2, ... ,mp,y,;a • 

By utilizing these relations we obtain 

(11.21) 

~IY,(S)W~W* = I U'/k I {BtFB*}w'wW,/w'. (11.22) 
1 w' 

Hence, any Mp,y,;u-dimensional matrix B satisfying 

FB * = B, with BB + = B + B = 1M , (11.23) 

allows one to write down the corresponding CG coefficients 
of type I. By similar arguments we can show that F is a 
symmetric unitary matrix, i.e., 

(11.24) 

The next problem is to compute the matrix elements of 
F. This can be done by means of 

(Q~u'a'b',RPIY2(S){ ~ U~/Q,/lIab} *) = Fa'b'v';abv , (11.25) 

whose values are independent of the index k, This property 
can be readily verified with the aid of 

(11.26) 

If we take the special structure of the vectors Q~"ab into ac
count, the matrix elements (11.25) simplify to 

Fa'bv';abv = 0, b = 1,2 , 

F - ( 1).:1 (a'){; F a({3IY') 
a'11l';a2v - - a',a + 1 v'v , 

F (1).:1 (a')~ F a({3,Y,) 
a'2v';alv = - Ua',a + 1 v'v , 

F~r;;'Y2) = (M~u',U{11 (fJR Y2(S2){ ~ U~IN'/v}*), 

F a ({3IY') _ (Nuv' UPI (fJ 1 {~UU Mau}*) 
u'v - k' 1'2 £., kl I , 

I 

(11.27) 

(11.28) 

(11.29) 

(11.30) 

(11.31) 

where the scalar product on the right hand side of Eqs. 
(11.30) and (11.31) is analogously defined. The following 
relations: 

{UPI ®R Y2(S2)}tE~'Y';U{UP' ®R Y'(S2)} 

- ~ ua*u a {E p,y,;a1. - L.J ik jl kl r , (11.32) 
kl 

_ ~ uu*ua{E P,Y2;a 1. 
- L.J ik JI kl .r , (11.33) 

kl 
which connect the units (11.12) and (11.13), have to be used 
among others to prove that Eqs. (11.30) and (11.31) are inde
pendent of k. Now let us consider in more detail the matrix 
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F: 

0 0 0 F a(f3,y,) 

0 0 F a(f3,r,) 0 
F= _ F a(f3,y,) 0 0 0 

_ F a(f3,r,) 0 0 0 
(11.34) 

Since F is a symmetric unitary matrix, it follows for the 
m . -dimensional submatrices F a(f3,y,) and F a(f3,r,) that 

!3'Yba 

they are linked by transposition and that both are unitary, 
i.e., 

F a(f3,y,)T = _ F a(f3,r,) , 

F a(f3,Y,lF a(f3,Y,l* = _ 1 . 
m 

(11.35) 

(11.36) 

Consequently, it suffices to calculate one of them by virtue of 
Eq. (11.35). 

Like in the previous papers we assume that it is possible 
to calculate the matrix elements of the CG matrices M and N 
with the aid of the method given in Ref. 4. Therefore, their 
matrix elements can be written as 

{ M av} _ {MP'Y2;a(i"j,.)} 
k ij - k ij 

= 11~'Y2;a(i,.j.JII- I ~ '" R Pl(h)R y, (h)R a* (h) , 
ao IH I ~ II" }}" kao 

V = 1,2, ... ,mp'Y2;a' k = 1,2, ... ,na , (11.37) 

{ Nav} _ {NP,r2;a(i"j,,)} 
k ij - k ij 

= 11~,r2;a(i,.jJII- I ~ '" R P,'(h) 
ao IHI ~ II" 

X{zY2tR r'(h )zy'}.. R a*(h) 
Jll! kao ' 

V = 1,2, ... ,mp,y,;a' k = 1,2, ... ,na , (11.38) 

with in general different sets {(iv ,jv)}. Equations (11.30) and 
(11.38) tum out to be 

X~ '" {R P'(h )U p,}. . {zY2tR r'(h )ZY2}. . 
IH I ~ ld

l
" }".j" 

X R~o~o (h) , (11.40) 

but must satisfy in any way the relation (11.35). 
Apart from these special values for the matrix elements 

of F, we are now in the position to solve Eq. (11.23). Because 
of the relatively complicated structure (11.34) of F, we are 
forced to make a more general ansatz for B: 

o 0 
B FC* 

-FB* C 
o 0 

~*] o . 
D 

(11.41) 

For the sake of simplicity we have introduced the abbreviat
ed notation F = F a({3,y,) and F = F a({3,r2). Furthermore, the 
matrices A, B, C, and D shall be proportional by numerical 
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factors to mp'Y2;a-dimensional unitary ones, but otherwise 
arbitrary. Now it is easy to verify that any matrix B of the 
type (11.41) is a solution ofEq. (11.23). SinceB is required to 
be unitary, we obtain the following restricting conditions: 

AA t + DDt = 1m and BBt + cct = 1m , (11.42) 

F a(f3'Y2)(BB T)* = (CC T)F a(f3,r,)t , 

F a({3,r2)(AA T)* = (DDT)Fa({3,1'2l t . 

Consequently, it is obvious to choose 

i 
A = B = ---= 1m , 

V2 
which implies 

C = - _1_ Fa(f3,Y2) and D = 
V2 

so that the corresponding matrix B reads as 

[

'l m 
0 0 1m] 

B = _1_ 0 il m 1m 0 
V2 0 IF -F 0 . 

iF 0 0 -F 

(11.43) 

(11.44) 

(11.45) 

(11.46) 

(11.47) 

Obviously, this special solution allows one to identify the 
multiplicity index w with the triplet (a,b,v), i.e., 

w = (a,b,v); a,b = 1,2 and v = 1,2, ... ,mp,1'2;a . (11.48) 

The corresponding CO coefficients of type I follow immedi
ately from Eq. (11.18): 

Wa(llv) = _i_ {QavII _ '" Fal.f!'Y2)Qav'22} 
k .. '- k L.. vv k , 

V 2 v' 

(11.49) 

W~(12v) = ~ {Q~VI2 + ~ F~~'Y2)Q~V'21} , (11.50) 

W~(2Iv) = ~2 {Q~VI2 - ~F~~'1")Q~V'21} , (11.51) 

W~(22v) = ~ {Q~Vll + L F~vl.f!'1'2)Q~V'22} , 
V2 v' 

v = 1,2, ... ,mp'Y2;a' (11.52) 

To summarize our results, we have shown that CG co
efficients of type I for corepresentations are linked by simple 
unitary transformations with convenients CG coefficients 
for H and that it suffices to calculate for example, F a(f3,1',). 

B. CG coefficients of type II 

As already known the defining equations for CG coeffi
cients of type II read as 

RP,1'2(h )W~f = L R '/,.,(h )W~r, for all hEll, (11.53) 
I 

RP,y,(s)WPw* - ( _ 1).:l (d + I) '" uP Wpw 
dk - L.. lk d + 1,/ , 

I 

W = 1,2, ... ,Mp,y,;p, d = 1,2, and k = 1,2, ... ,np , (11.54) 

where 

{W~fti.bj = {W~kY2PW}ai,bj = W~;.~j,pwdk , 
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/3EA,1' W = 1,2, ... ,M{3IY,;/3' d = 1,2 and k = 1,2, ... ,n{3 , 

a = 1,2 and i = 1,2, ... ,n{3I' b = 1,2 and j = 1,2, ... ,n1', . 
(11.55) 

Since the CG matrix W is assumed to be unitary, the 
following vectors: 

W'/iu' - 12 M 
dk' W - " ••• , f3 l y-;o.;{] ' 

d = 1,2, and k = 1,2, ... ,n{3 , 

form an orthonormal basis of 

dim »,~,y,;{3 = 2n M {3 {311',;{3' 

where the units lE?j can be written as 

lE{3 = lE{3Iy,;{3 = ($ 2){Ef!'1'2;{3 $ E{3IY2;{3} 
IJ I) I} l) , 

Ef!,1'2;{3 = ~ ~ R (3*(h)R (311'2(h) 
IJ IHI T' l) , 

Ef!,Y2;{3 = ~ ~ R f3.*(h )R (3IY'(h) 
IJ IHI T' IJ ' 

(11.56) 

(11.57) 

(11.58) 

(11.59) 

(11.60) 

which is in accordance with Eq. (11.1). Similar to the pre
vious case, the structure of R{3I1', ~H suggests that one can 
define by means of 

{~va!la'i,h'j = Daa,Db,! {M~v}ij' a = 1,2, 

{~va2la'i.b'j = Daa, Db'2 {N~v}ij' a = 1,2, 

a further orthonormal basis of r l 1'l;{3, namely, 

(1I.61) 

(11.62) 

~vab, a,b = 1,2, v = 1,2, ... ,m{3I1'2;{3' k = 1,2, ... ,n{3 . 
(11.63) 

Although these vectors transform already according to 

R{3'Y'(h )(jfvab = L R fk (h )(jfvab, for all hEH, 
1 

(11.64) 

we cannot assume that they are also solutions ofEq. (11.54) 
which have to be satisfied in any way. 

Therefore, we consider 

W{3w - ~ B Q{3vab 
dk -.£", abv;dw k , 

ahv 

(jfvab = L B :bv;dw W~r , k = 1,2, ... ,n{3 , 
dw 

(11.65) 

(11.66) 

and determine the 2M{3,1',;{3-dimensional unitary matrices B 
in such way that the corresponding vectors (11.65) satisfy 
Eq. (11.54). 

The following relations: 

R{3'Y'(S)~kvab* = ~ U{3lk ~ F ~v'a'b' (11.67) 'Lk £.." L a'b'll';abv'L/ , 
I a'b'v' 

containing the definitions 
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Gdw;d'w' = (- 1).:l(d+ !)Dd'.d+ !Dww' , 

d,d' = 1,2, w,w' = 1,2, ... ,M{3,1',;{3 , (11.68) 

Fa'b'v':abl' = {BGB T}ab,';a'b'v' 

= LBabv;dw( -1).:l(d+!)Ba'b'v';d+!,W , 
dw 
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a,a',b,b' = 1,2, v,v' = 1,2, ... ,m{3,1',;{3 , 
(11.69) 

have to be used to transform Eq. (11.54) as 

(11,70) 

Hence, if we can find a unitary matrix B satisfying 

BG T = FB. , (II.71) 

the corresponding CG coefficients of type II are immediate
ly obtained from Eq. (11.65), at which F represents a anti
symmetric unitary matrix, i.e., 

FF· = - 12M = - 14m , (11.72) 

The matrix elements of F are uniquely fixed through 
Eq. (11.67) by calculating the scalar products 

(~3v'a'b' R{3,y,( ){ ~ U{3 ~vab}*) F (11.73) ~k , S..,.. k/~1 = a'b'v';abv' 

whose values must be independent of k. This assertion can be 
proven by means of 

R{3,1"(s)+ lEZR{3,1"(s) = L U'!.:*U~lE~r (11.74) 
kl 

and the transformation properties (11.64). The matrix ele
ments (11.73) simplify to 

Fa'bv';abv = 0, b = 1,2 , 

F - ( 1).:l (a')£ F{3({3.r2) 
a'll,';a2u - - Ua',a + I t,'v , 

F - ( 1).:l (a')£ F{3({3,y,) 
a'2v';alv - - Ua'ta + I (1'1) , 

(11.75) 

(11.76) 

(11.77) 

(11.78) 

F!3,({3,y,) = (N{3v' U{3, ® 1 {~ur3 M{3V}*) (11.79) 
u t' k , Y2 ~ kl I , 

1 

if inserting Eqs. (11.61) and (11.62) into Eq. (11.73) and where 
the scalar product occuring in Eqs. (11.78) and (11.79) is 
analogously defined. The values (11.78) and (11.79) are inde
pendent of k. The last proposition can be shown by using 

{U(3, ® R 1'2(S2)} + Ef')',;f3{U f3
, ® R 1'2(S2)} 

_ ~ U{3*U{3{E{3'Y2;{3l... - L ik jl kl ,r, 
kl 

_ ~ U{3*U{3{E f3'1',;{3l... - L ik jl kl .r , 
kl 

(11.80) 

(11.81) 

and the fact that the vectors M~v and N~v transform accord
ing to the unirrep R (3. Summarizing our results, the matrix F 
can be written as 

[ 0 

0 0 

F':""] 0 0 F{3({3,y,) 
F= _ F{3({3,1',) (11.82) 

_ F~({3,y,) 0 0 

0 0 0 

and makes obvious that the following relations must hold: 
F{3({3,y,)T = F{3({3,y,!, 

F{3({3,h) F f3 ({3'Y2)* = 1 
m' 

R. Dirl 
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since F is a anti symmetric unitary matrix. Consequently, it 
suffices to determine the mp,Y,fl-dimensional submatrix 

FP(fJ.y,i, since the other matrix follows from Eq. (11.83). 
Provided the corresponding columns of the CG matri

ces M and N can be computed by means of the method dis
cussed in Ref. 4, their components take the form 

{ M Pv} _ {MP'Y,;P(i,j,)} 
k ij - k ij 

= 11Tf!'YZ;{J(i,·j")11 - 1 ..!!!!..... " R '!'(h )R r,'(h )R P* (h ) , 
ao IH 1 ~ 1I" JJt" kao · 

V = 1,2, ... ,mp•Yz;p. k = 1,2 •... ,np , (11.85) 

{ N iJv} _ {Np·r,;P(;"j..l} 
k ij - k ij 

= 11Tf!·r,;iJu,j.,)ll- I ..!!!!..... " R {J'(h) 
ao IHI ~ II,. 

X {z y, + R r'(h )Z y, }jj"R ~:o (h) , 

v = 1,2 •... ,miJ.Yz;iJ, k = 1,2, ... ,np , (11.86) 

and lead to the following values for Eqs. (II.78) and (11.79): 

F~~.h) = II~;Y';PU,j")II - IIIB!;r,;iJ(i"j")II- 1 

X..!!!!....." {R iJ'(h )UiJ.} . IHI ~ 1"1,, 

XR 2j,(hs2){R P(h )UP}:oao • (11.87) 

F~(fJ·r,) 
vv 

= "~~r,;iJ(i,j,,),, - I "~;Y';P(i"j,),, - 1 

X..!!!!....." {R iJ'(h )UiJ.} . {zy' + R r'(h )Zy,} . IHI ~ 1"1,, J,J,. 

X{RiJ(h)UP}:oao' (11.88) 

respectively, at which the same argumentation must hold as 
before. 

Now let us return to the problem of determining unitary 
matrices B which satisfy Eq. (11.71). For this purpose we 
introduce once more the vector notation 

{Bd.w} abv = B abv,dw , 

d = 1,2 and w = 1,2, ... ,Mp ,h;P , 

a,b. = 1,2 and v = 1,2, ... ,mp.rzfl ' (II.89) 

which allows one to rewrite Eq. (II.71) as follows: 

FBd.w* = ( _ 1).<1 (d + I)Bd + I,w , 

d = 1,2 and w = 1,2, ... ,Mp.l',;p . (11.90) 

In this connection we have to note that, fixing the vectors 
BI.w. w = 1.2, ... ,Mp•y ,;p • the remaining vectors B2,w, 

w = 1,2, ... ,M{J.y,;p , are uniquely determined through Eq. 
(11.90). Furthermore, if we can choose the vectors BI.w in 
such a way that the corresponding matrix B is unitary, we 
have solved our problem. This property of B can be achieved, 
choosing, for example. 

{B I,,,, -' (bvJ} _""" 
ab'v' - Ual Ubb' U vv' , (11.91) 

which allows one to identify the multiplicity index w with 
the pair (b,v), i.e., 

w = (b,v), b = 1,2 and v = 1,2, ... ,mp,l'2;p, (11.92) 

Hence, it follows from Eq. (11.90) 
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{B2,(lV)} - 8 8 F P(fJ,r2) 
abv' - a2 b2 v'v ' 

{ B2 ,(2vl} ,= 8 8 F~(fJ,y,) 
abl) 02 b 1 t) v ' 

in matrix notation 

0 0 

lim 0 

0 0 

0 F/3(I1,y,)T 
[
1; 

B= 
o 
o 

F'~·,·)l· 

(11.93) 

(11.94) 

(11.95) 

where we have already taken into account the symmetry 
relation (11.83). Consequently, the corresponding CG coeffi
cients are given by 

WP(bv) _ rVlvlb 
Ik - '-Zk , 

WP(lv) _ "FP<P.y,)rVlv'21 
2k - £. vv' '-Zk , 

v' 

(11.96) 

(II.97) 

WP(2v) _ " F P<P,h)rVlv'22 
2k - ~ v'v 'Lk , v = 1,2, ... ,mp•y,;p . (11.98) 

v' 

To summarize the results, we have shown that CG coef
ficients of type II can be traced back by simple unitary trans
formations to convenient CG coefficients for the normal 
subgroup H, where the only problem is to compute the 
mp.y,;p-dimensional unitary matrix FP(fJ.y,l. 

C. CG coefficients of type III 

We start our considerations by summarizing the defin
ing equations for CG coefficients of type III for the consid

ered Kronecker product RP,
y

,: 

RP'h(h )WYU' - "R y (h )WYU' Ik - £. Ik II , (11.99) 
/ 

RP'Y'(h )Wrr = L {zy+ R r(h )zr}/k WTI", for all hEll, 
I 

RP,y,{s)Wrw* - wrw 
\' lk - 2k' 

(11.100) 

(11.101) 

w = 1,2, ... .Mp,y,;y, k = 1,2, ... ,ny . (11.102) 

The vectors W~ whose components are defined by 

{W~t;.bj = {W~it';yuti,bj = W~:.~j.YU'dk , 

yEAu!> w = 1,2, ... ,Mp•y ,;y, d = 1,2, and k = 1,2, ... ,ny , 

a = 1,2 and i = 1,2, ... ,np" b = 1,2 and j = 1,2, ... ,nr, 
(11.103) 

represent columns of the unitary CG matrix W. 
Consequently, the vectors 

W~k' w = 1,2, ... ,Mp ,y,;y, d = 1,2, and k = 1,2, ... ,nr , 
(11.104) 

define an orthonormal basis of 

'!f'..f3.y,;y = "{lEr + lEr}r'y,;y 
..4,., II JJ , 

i 

dim 'If--{3.y,;y = 2n M (11.105) 
y P,y,;y' 

where the corresponding units lE)j and Et can be written in 
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accordance with Eq. (11.1) as 

EY. = ~.y,;y = (EIl2){E tJ•y,;y Ell EtJ,r,;Y}, 
I) I} IJ IJ 

Ef!'y,;y = l ~ R Y.*(h)R f3'Y'(h) 
Ij IHI ~ IJ ' 

Ef!·r,;y = l ~ R Y.*(h)R tJ.r'(h) 
Ij IHI ~ IJ ' 

and 

Ef = EP,Y,;y = (EIl2){E fJ,y,;r Ell Efi.·r,;r} 
I) 'i ij IJ ' 

Ef!,y,;r = l ~ {ZY+ R r(h )ZY}~R tJ'Y'(h) 
IJ IHI ~ Ij' 

Ef!·y,;r = l ~ {ZY+ R r(h )ZY}~R tJ,r'(h) 
Ij IHI ~ Ij' 

(11.106) 

(II. 107) 

(II. lOS) 

(11.109) 

(II.1lO) 

(lUll) 

Since the unitary CG matrices M and N are assumed to be 
known, it is suggestive by virtue of the structure of RtJ,y, !H 
to define, by means of 

{Qra't'j,b'i = Daa,Db'l {Mr}ij' a = 1,2, 

{Qra2t'i,b'i = Daa,Db '2 {Nr},j' a = 1,2, 

{Qra't'j,b'i = Daa,Db'l {Mr}ij' a = 1,2, 

{Qfvazt'i,b'i = Daa,Db'2{Nr}ij , a= 1,2, 

a further orthonormal basis of r'Y';Y, namely, 

Qrab, a,b = 1,2, v = 1,2, ... ,m, (b), 

(II,112) 

(IUl3) 

(H. 114) 

(11.115) 

m l (1) = mp,y,;y' m l (2) = mp.r,;y, k = 1,2" .. ,ny , 
(II. 116) 

Qrab, a,b = 1,2, v = 1,2" .. ,m2 (b), 

mz(l) = mp,r,;Y' m 2 (2) = mtJ,Yz;Y' k = 1,2, ... ,ny , 
(11.117) 

where we cannot assume from the outset that the multiplic
ities mj (l) and mj (2) are equal. This fact forces us to proceed 
more carefully than in the foregoing cases. Nevertheless, be
cause of their transformation properties with respect to H, 
i.e., 

RP,Yz(h )Q~vab = L R ik (h )Qivab, (H. lIS) 
I 

Rfi'Y'(h )Qrvab = L {ZY+ R r(h )ZY}/kQfvab, 
I 

for all hEll, (H.119) 

the vectors (H.116) and (H.117) are especially suited to sim
plify the following considerations. 

However, since in general the vectors (IU16) and 
(11.117) do not satisfy Eqs. [H.101) and (H.102), we define 
the following unitary transformations: 
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W rw - ~B Qrvab 
1 k - ~ abv;w k , 

abv 

Qrab = L B :bv;w Wrr, k = 1,2, ... ,ny , 
w 

W yw - ~C Qrvab 
2k - £..J ubv;w k ' 

abv 

Qrvab - ~ C * wrw k 1 2 k - £.. abv;w 2k, =, ,.,.,ny , 
w 
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(H. 120) 

(IU2l) 

(H. 122) 

(II. 123) 

where we have already taken into account Schur's lemma 
with respect to H and that the unirreps R Y and R ~ are ine
quivalent. Thereby, we have to note that the indices (a,b,v) of 
Band C should not be confused, if ml (1)#m 1 (2), 

In order to be able to determine Band C we consider 

RP'Y'(s)QJk';vab* = ~R y (2) ~ F QP,''''h' L lk S L (Jbl,;a'b'c' i , 
I a'h'v' 

where 

Fa'b'u"abv = {CB T}a'b'v"abv , , 

= ICa'b'v';wBabv;w, 
w 

a'b' = 1,2, v' = 1,2,,,.,mz(b '), 

a,b = 1,2, v = 1,2.·.m) (b), 

A simple inspection of 

RP'Y'(s)Wrr* = L {C + FB "'L'wWi~', 
w' 

(11.124) 

(11.125) 

(II,126) 

(II. 127) 

RP'Y'(s)Wi~* = L R i~(S2) L {C + FB '" }~"w Wl't' , (11.12S) 

yields 

C=FB'" , 

I ' 

(11,129) 

representing the defining equation for the MtJ.Yz;y-dimen
sional unitary matrices Band C. 

Since F is a unitary matrix, we can take 

(II,130) 

as a special solution ofEq, (11.129), Equation (II. 130) shows 
that the multiplicity index w can be identified with the tri
plets (a,b,v), i.e., 

w = (a,b,v), a,b = 1,2, and v = 1,2,,,.,m 1 (b). (11,131) 

Thus we arrive at the final formulas 

Wi'tbu) = Qrab , 
a,b = 1,2 and v = 1,2,,,,,m , (b), k = 1,2,,,.,n

J
, , 

(11,132) 
m,(b ') _ 

Wy(abv) - "'''' ~ F Qyu'a'b' 
2k - L..t ~ a'b'v';ahv k , 

a'b' (-,' = I 

a,b = 1,2 and v = 1,2,.",m 1 (b), k = l,2,,,.,n y , 
(II.133) 

where the possibility that the multiplicities m 1 (b) can take 
different values should always be taken into account. 

The last problem is now to compute the matrix ele
ments of F. This can be done by means of 

(Q rv'a'b' RP'Y'(s)Qrvab*) = F, " 
k' k a b v ;abv • (II. 134) 

The matrix identities 

RtJ'Y2(S) + lEtRtJ,Y,(s) = Eij* (II. 135) 

have to be used when verifying that the matrix elements are 
independent of the free index k. The matrix elements 
(II. 134) simplify to 

Fa'bv';abu = 0, b = 1,2, (11.136) 
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F (1).:1 (a')~ FY$,Y,) 
a'lv';a2v = - °o',a + 1 v'v , 

F - ( 1).:1 (a'V; pY$.y,) 
a'2v';alv - - a',a + 1 v'v , 

F ~'Y') = (Mr', Up· ® R Y·(.r)Nr'" ) , 

P Y$,Y,) = (NYu' Up· ® 1 Mrv*) 
v'v k , Yl k , 

(ILl3?) 

(II. 138) 

(II. 139) 

(ILl 40) 

where the scalar product in Eqs. (II. 139) and (II. 140) is ana
loguously defined. The matrix elements (II. 139) and (II. 140) 
are independent of k, which can be proven by means of the 
relations 

{Up· ® R Y2(s2)}tE~'Y2;Y{UP' ® R Y2(S2)} = {E~'Y2;Yl*, 
(II.141) 

(II. 142) 

and the fact that the ~ectors Mr(NM transform according 
to the unirrep R Y(R Y). 

Before summarizing the results, let us assume that the 
corresponding columns of the CG matrices M and N can be 
computed with the aid of the method given in Ref. 4. Their 
components take the following form: 

{Mrv} _ fMP.Y,:r(i,j,,)} 
kij-"tk ij 

= 11~·y,;r(i"j,.)ll- 1 .l ~ R tJ.'(h )R Y'(h )R Y* (h ) 
ao IH I ~ II" 11" kao ' 

v= 1,2, ... ,m 1(1), k= 1,2, ... ,ny , (II. 143) 

{N YU} - {Nfl,y,;Y(i,,j,.l} 
kij- k ij 

= IIBfl,y,;r(i,,j')11- 1 ..i ~ R P'(h) 
ao IHI ~ 11,. 

X {z y, + R Y'(h )Z y, }jj,R r:o (h) , 

v = 1,2, ... ,m 1 (2), k = 1,2, ... ,ny , (ILl 44) 

and 

{MY,'} - {MP.y,;'Y(i,j.l} 
k ij - k ij 

= IIBfl.y,;Y(i,j')II- 1 ..i ~ R !3.' (h) 
a o IHI ~ 11,. 

XRI.'(h){ZrtR Y(h)Zy}tao ' 

v = 1,2, ... ,m2 (I), k = 1,2, ... ,ny , (II. 145) 

{NY"} .. = {NP,y,;'Y(i,j.l} .. 
k Ij k Ij 

= IIBfl,Y,;'Y(i,j'.)11- 1 ..i ~ R /1.'(h) 
a

o IHI ~ II" 

X{zy, + R Y'(h )Zy,} {ZY+ R Y(h )ZY}* 
JjL.' koo ' 

V = 1,2, ... ,m2 (2), k = 1,2, ... ,ny . (II. 146) 

Inserting these special values into Eqs. (II. 139) and (II. 140), 
we obtain after straightforward calculations 

F~'Y') = 1IW,;'~y,;'Y(i,j")II- 1 I/w,:;y,;r(i j ,,) 1/ - 1 

X i ~ {R fl'(h )Up
·} . R Y'. (h.r) 

IHI~ ,,.',. M,. 

X{ZY+ R Y(h )ZYJ:"ao ' (ILl 47) 

F~'Y') = I/~;y,;'Y(i,,j")II- 11/w,:;y,;r(wi/ - 1 

X ..!!..L ~ {R P'(h )Ufl.}. {zy' + R Y'(h )zy'l . IHI ~ 1,,1,. J"J, 

X{ZY+ R Y(h )ZY}:oao ' (II. 148) 

995 J. Math. Phys., Vol. 21. No.5, May 1980 

where the indices (iv,jv) appearing in Eqs. (II. 143)-(II.146) 
originate in general from quite different sets. 

Hence, our final formulas read as 

Wr<:bV) = Qrab, 

a,b = 1,2 and v = 1,2, ... ,m 1 (b), k = I,2, ... ,ny , 

m,(2) _ _ _ 

Wr(a1v) _ ( _ 1).:1 (a + 1) ~ Fr(f3'Y')Qrv·.a + 1.2 
2k - L. v'v k , 

v' = I 

(11.149) 

a = 1,2 and v = 1,2, ... ,m 1 (1), k = I,2, ... ,ny , (ILl 50) 
m,(l) _ _ 

Wr(a2v) _ ( 1).:1 (a + 1) ~ Fr(f3'Y')Qrv'.a + 1.1 
2k - - 4.. v'v k , 

v' = 1 

a = 1,2 and v = 1,2, ... ,m 1 (2), k = 1,2, ... ,ny , (II.151) 

and show that CG coefficients of type III for corepresenta
tions are linked by simple unitary transformations with con
venient CG coefficients for the normal subgroup H. The 
only problem thereby is to compute the submatrices F Y$IY') 

and F Y<fl.y,) which are unitary but whose dimensions are not 
necessarily equal. 

SUMMARY 

This paper deals with the problem of determining CG 
coefficients for Kronecker products which are composed of 
co-unirreps of type II and III. Due to the present method the 
first step must be the computation of convenient CG matri
ces for H. Because of RP'Y'!H = ( EEl 2)(R P.y, EEl R PlY'), it is 
necessary to calculate two CG matrices M and N, which 
yield a decomposition of R P'Y', and R P'Y', respectively, into a 
direct sum of their irreducible constituents. Provided this 
has been carried out, CG coefficients for corepresentations 
have to be calculated as follows. 

The problem of calculating CG coefficients of type I is 
reduced to the task of determining the mp.y,;a -dimensional 
unitary submatrix paW.y,) being contained in the special so
lution (IL47) for D: 

[ 

ilm 

D=~ 0 
Y2 0 iF 

_FT 0 

o o 

-F 
o 

The matrix elements ofF = FaW,l',) have to be computed by 
means ofEq. (l1.35). Thus, using the definitions (11.14) and 
(11.15), the corresponding CG coefficients are given by Eqs. 
(11.49)-(11.52), where the additional symmetry relation 
mp.r,;a = mp,i,;a gives rise to the simple solution for the 
multiplicity problem. 

CG coefficients of type II are readily obtained from 
Eqs. (1I.96)-(II.98), if one takes the definitions (II.61) and 
(11.62) into account. This implies that the mp.y,;p-dimen
sional unitary submatrix pP(f3,l'z) of D, i.e., 

o 

o 
o 

o 
o 
o 
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has to be computed by means ofEq. (11.78). Furthermore, 
due to the additional symmetry relation mp,YdJ = mp'Yl;{:J' 

we arrive at a simple solution for the multiplicity problem. 
Because of the special solution (11.130) ofEq. (11.129), 

i.e., 

B= 1M and 

o 0 
o FYw'Yl) 

_FYw•y,) 0 

o 0 
the corresponding CG coefficients of type III are given by 
Eqs. (11.149)-(11.151), where the definitions (11.112)
(11.115) have to be used. Hence, it suffices to compute the 
unitary submatrices FYw,Y,) and FYw·Yl) by means of Eqs. 
(11.139) and (11.140), respectively, whose dimensions are 
however not necessarily equal. 
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Although the present case is more complicated t~an the 
previous one (due to the inequivalence of R y, and R Yl), we 
were able to solve the multiplicity problem without reference 
to a special magnetic group, where especially for the first two 
cases additional symmetry relations for multiplicities (refer
ring to subductions with respect to the normal subgroup H) 
play an essential role. 
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By means of a general method, Clebsch-Gordan coefficients for corepresentations are traced 
back by simple unitary transformations to convenient Clebsch-Gordan coefficients for the 
normal subgroup. The considered Kronecker products are composed of corepresentations of type 
III only. 

INTRODUCTION 

The present paper concludes a series of papers which 
deal with the computation ofCG coefficients for corepresen
tations. For the last case we are confronted with the most 
complicated situation, since the considered Kronecker pro
ducts are composed of co-unirreps of type III only. We pro
ceed in the same way as in the previous papers by assuming 
that convenient CG coefficients for the normal subgroup H 
of G are known. This assumption leads to the much easier 
task of determining unitary transformations which link CG 
coefficients for corepresentations with those of the normal 
subgroup. 

The material is organized as follows: In Sec. I we state 
the problem and derive useful symmetry relations for the 
required multiplicities. Section II is devided into three parts 
due to the different types of co-unirreps. For each case we 
derive not only simple defining equations for the above men
tioned unitary transformations but also solve them quite 
generally. 

I. MULTIPLICITIES FOR COREPRESENTATIONS 

Within the present paper we consider Kronecker pro
ducts of the kind 

RY'Y, = ! RY'Y'(g) = RYI(g) ® RY'(g):geG J. (1.1) 

RY'Y' forms a 4ny, ny, -dimensional corepresentation which is 
in general reducible. Hence, there must exist a unitary ma

trix Wy,y, = W which engenders the desired decomposition 

ofRY'Y' into a direct sum of its irreducible consituents: 

WtRY'Y'(g)w g 

I EElMYly,;uRU(g)EEI I EElMy,y,;pRP(g) 
uEA, /3EA'1 

The multiplicities occuring in Eq. (1.2) are given by! 

My,y,;u = my,y,;u + my,y,;u + m 9,y,;u + m 9,y,;u' (1.3) 

M a=l!m a+m -a+m- p+m--aj. (14) Y,y,;" 2 y,y,;" y,Y,;" y,y,; y,y,;" . 

My,y,;y = my,y,;y + m y,9,;y + my,y,;y + m 9,y,;y. (1.5) 

which can be simplified by means of the symmetry relations 

my,y,;Jl. = m 9,9,;ii' for all pEAH' 

m y,9,;Jl. = my,Y,;ii' for all pEAH• 

(1.6) 

(1.7) 

to the following expressions: 

My,y,;a = 2{my,y,;a + my,y,;a j, 

My,y,;p = my,y,;p + m y,9,;p· 

My,y,;y = M Y,9,;9 = My,y,;y' 

(1.8) 

(1.9) 

(1.10) 

Thereby. we cannot assume in general that the multiplicities 
occuring in Eqs. (1.8)-(1.10) are equal. 

II. CG COEFFICIENTS FOR COREPRESENTATIONS 

The first step of our procedure is to investigate the sub
duced representation 

(11.1) 

where the different Kronecker products referring to repre
sentations of H are distinguished by 

R Y,Y, = !R YIY,(h) = R YI(h) ®R Y'(h ):hEll j, (11.2) 

R 1',1', = {R YlY'(h) = R YI(h) ® Z y,tR 9'(h )Z Y':hEll J. 
(11.3) 

R 9,1', = !R 9IY'(h) = ZYltR 91(h )ZYI ®R Y'(h ):hEll J, 
(11.4) 

R 9,9, = ! R 9,9'(h) = Z YltR 9'(h)Z Y, ® Z y,tR 9'(h)Z y,: 

heG j. (11.5) 

Since the nYI nY, -dimensional representations (11.2)-(11.5) 
are in general reducible. there must exist four unitary CG 
matricesKYIY' = K, L YI9, = L, M 9,Y, = M, and N 9191 = N 
which provides the desired decompositions 

KtR YIY'(h)K 

I EEl my,y,;u R U(h ) EEl I EEl my,y,;pR p (h) 
au/ /3EA 11 

EEl I EEl! my,y,;yR Y(h ) EEl my,y,;yZ ytR 9(h )Z YJ. 
i"E.A lIl 

(11.6) 

L tR YI9'(h)L 

= I EEl m y,9,;a R U(h ) $ I EEl m y,9,;pR p (h) 
aEAI (3EAII 

$ I EEl !my,9,;yR Y(h)EElm9Iy,;yZrtR 9(h)ZYJ, 
jtEAm 

(11.7) 
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EI1 I EI1 I my,y,;yR Y(h) EI1 mY'Y2;YZ rt R Y(h )Z Y], 
YEA III 

(11.8) 

NtR Y'Y2(h)N 

= I EI1 mm,;a R a(h) EI1 I EI1 mmdJR f3(h) 
uEA 1 BEAll 

EI1 I EI1 I my,y,;yR Y(h) EI1 mY'Y2;YZ rt R Y(h)Z Y], 
reAUI 

for all hElf, (II.9) 

respectively. Due to the present approach the CO matrices 
K,L,M, and N are taken for granted. Concerning Eqs. (1I.6}
(11.9), we have to note that the symmetry relations (I.6) and 
(I. 7) have already been taken into account. 

A. CG coefficients of type I 

The defining equations for CO coefficients of type I 
read as 

R1W'(h )W~W = IR fk (h )WfW, for all hEll, (11.10) 
I 

RY'Y2(S)W~W. = IUfk Wfw, W = 1,2, ... ,MY'Y2;a' 
I 

k = 1,2, ... ,na , (11.11) 

where th vector notation 

,waw] _ 'wy,y,;aw] W Y'Y2 
l k ai,bj - l k ai,b) = ai,bj;awk' 

aEA1,w = 1,2, ... ,MY'Y2;a,k = 1,2, ... ,na,a = 1,2 and 

i = 1,2, ... ,ny" b = 1,2, and j = 1,2, ... ,nY2 (11.12) 

allows one to interpret the columns of the CO matrix Was 
H·adapted vectors of a 4n y, ny, -dimensional Euclidean space 

rrY'Y" which must satisfy additionally Eq. (11.11). Hence, 
the vectors 

W~w, w = 1,2, ... ,MY,Y2;a' k = 1,2, ... ,na , 

define an orthonormal basis of 

'Jrl',y,;a = IlE~ rrY'1'2, 
i 

d· 'YJ/y,Y2;a M 
ImN' = na y,Y2;a' 

where the units lEij can be written as 

lEa = EY,1'2;a EI1E~'''ha EI1E!,y,;a EI1E!'Y2;a 
lj I) IJ I} lj' 

E1,"I',;a = ~ "R 'C·(h)R 1"1'2(h) 
IJ IHI +- Ij , 

III =YIYI' 112 =Y2'Y2' 

(11.13) 

(11.14) 

(11.15) 

(11.16) 

On the other hand, the structure of RY'Y2 ~H suggests that 
one can define, by means of 
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! Qkvll ]ai,bi = Oal Ob I IKkV] iJ' 

IQk v12 lai.bi = OalOb2 ILkV]iJ' 

IQkv21 lai.bi =Oa20bl IMkVjiJ, 

! Qk,,22]ai.bi = Oo2 0h2 !Nk"jiJ' 
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(11.17) 

(11.18) 

(11.19) 

(11.20) 

a further orthonormal basis of 'Jrl"1'2;a, namely, 

Quvab 
k , a,b = 1,2, v = 1,2, ... ,m(a,b), 

m(1,I) = m(2,2) = mY,Yz;a, 

m(1,2) = m(2,1) = m Y'Y2;a' k = 1,2, ... ,na, 
(11.21) 

where the vectors K~v, L~v, M~v, and Nrv are the correspond
ing columns of the CO matrices K, L, M, and N. Hence, these 
vectors transform according to 

RY'Y2(h )Q~vab = IR fk(h )Qfvab, for all hEll, 
I 

(11.22) 

but are in general not a solution of Eq. (11.11). 
Since the transformation laws (11.10) and (11.22) coin

cide, the elements of the bases (11.13) and (11.21) are linked 
by special unitary transformations 

Waw "B Qavab 
k = £.,; abv;w k , 

abv 

Qavab " B • waw 
k = L abv;w k' 

w 

(11.23) 

k = 1,2, ... ,na . (11.24) 

Thereby, we have to note the definition of the row index 
(a,b,v) of the MY,Yz;a-dimensional matrix B. 

In order to be able to determine unitary matrices B, so 
that the corresponding vectors (11.23) satisfy Eq. (11.11), we 
derive 

RY'Y'(s)Qakvab* -_ "ua "F Qav'o'b' 
~ lk L a'b'v';abv I , 

I a'b'v' 
where 

Fa'b'''';abv = [BB T]abv;a'b'"'' 

a,b = 1,2, and v = 1,2, .. "m(a,b), 

a',b I = 1~2, and v' = 1,2, ... ,m(a' ,b '). 

This leads to 

RY'Y2(S)W~W· = IUfk IIBtFB *]w'w Wfw
' 

I w' 

and 

FB*=B, with BBt=BtB=lM' 

(1I.25) 

(11.26) 

(11.27) 

(11.28) 

Hence, if we can find a matrix B satisfying Eq. (11.28), the 
corresponding CO coefficients of type I follow immediately 
from Eq. (11.23). Before attacking this problem, let us men
tion that F must be a symmetric unitary matrix, i.e" 

(11.29) 

The next step is to compute the matrix elements of F. 
This can be done by means of 

( Qav'a'b' RY'Y2(S){ "ua Qavab}·) = F (11.30) 
k' ~ kl I a'b'v';abv' 

I 

whose values must be independent of k, This assertion can be 
proven with the aid of 

Rr.r2(S)tlEijRY'Y2(S) = I Ufk· UfllE~; (11.31) 
kl 

and Eq. (11.22). Inserting Eqs. (II. 17}-(1I.20) into Eq. 
(11.30), we obtain 
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F, = F",(Y,y,) = (KClV'R Y'(S2) ® R Y2(s2){ ""' U a Nau} *) 1 \p ;22u 11 v k , ""- kl I , 
I 

(11,32) 

a(y,i',) / av' 1', 2 { a au} *) F12v';2\t, = F v'v = \ Lk ,R (S) ® IY2 ~ U klMI , 

Fnv'",v = F~,~Y'i'2) = (NkV',{ ~UkIKf"}*)' 
Fa'b'v';abv = 0, otherwise, 

(11,33) 

(IU5) 

(11.36) 

where the scalar product in Eqs. (II.32)-(ll.35) is analo
gously defined, Obviously, the matrix elements (II.32)
(II.35) must also be independent of k. This can be shown by 
means of the identities 

[ R y'(S2) ® R Y2(S2) j t E ~'1'2;a [R YI(S2) ® R Y'(S2) I 

= LU;rUft{E~;Y2;a}", 
kl 

[R 1"(52) ® ly,l tE ~'i',;a[ R 1"(52
) ® ly, 1 

- ,,",ua"ua (E i',y,;a I" - L ik jl kl , 
kl 

Ill', ®R 1"(s2)ltE~'I',;ally, ®R Y'(S2)} 

- ,,",ua"u a [E Y,i'2;aj" - L ik jl kl , 
kl 

E i"Y2;a _ ,,",ua"ua [EY,I',;a}" 
ij - L ik jl kl , 

kl 

(II.37) 

(11.38) 

(II.39) 

(II.40) 

and the transformation properties of the vectors Kk'" Lk'" 
Mkv, and Nk" with respect to H. Consequently, F reads as 

[ 

~ ~ Fa~,y,) Fa;,y,] 
F= (ll.4l) o Fa(i',Y,) 0 O· 

F a(i',i'2) 0 0 0 

Furthermore, since F is symmetric and unitary, it follows 

F a(l'l'h)F a(i',i'2J" - 1 
- m(I,I)' 

Fa(Y,i")Fa(i',Y,)" - 1 
- m(I,2)' 

(II.42) 

(II.43) 

(II. 44) 

EII.45) 

Consequently, it suffices to calculate, for example, Fa(y,y,) 
and F a(I'Ii'2) since the remaining matrices follow from Eqs. 
(IL42) and (IL43). Besides this the submatrices are unitary, 
but their dimensions will in general not be equal. 

Before solving Eq, (II.28), let us assume that the corre
sponding columns of the CO matrices K, L, M, and N are 
calculable by means of the method presented in Ref. 2. Their 
components take the form 

[Kauj _ IKYI1'2;a(i j "lj 
k U - k ij 

= IIBy,y,;a(ij"JII- I ~ ""' R Y.'(h)R y,- R ,," (h) 
ao IH I + 11\, JJu kao ' 
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v = 1,2, .... m(l.1), k = 1,2, ... ,n", 
[Lau } _ ILy,y,;a(i"j,.)} 
I k Ij - k ij 

= IIBY,i',;a(i"j")II- I ~ ""' R 1"(h) 
a o IHI + II, 

X [ Z r, t R i"(h )Z y,} .. R a" (h ) 
t lit' kao ' 

(II.46) 

V = 1,2, .. ,m(1,2), k = 1,2, .... na , (II.47) 

IM aul - {Mi'ly,;a(ij'.)1 
k if - k ij 

X IIB:~y,;a(i,j,jll- I I~ I ~ [ZI',tR i'1(h )Zy, L" 

XR 2(h)R k:o(h). 

V = 1.2, ... ,m(1,2), k = 1,2, ... ,na ,(II.48) 

[Nau} _ [Ni',y,;a(i"j'.)1 
k ij - k ij 

V = 1,2, ... ,m(1,I), k = 1,2, ... ,na , (11.49) 

where however the index sets 10" ,ju) J occuring in Eqs. 
(II.46) and (II.49) or (11.47) and (II.48) are in general differ
ent, Inserting these special values into Eqs. (II.32) and 
(II.33), we obtain 

(11.51 ) 

whereas the remaining matrix elements follow from Eqs. 
(II.42) and (11.43), since these relations are always valid. 

Besides this we are now in the position to determine 
unitary matrices B which satisfy Eq, (II.28). For this pur
pose we make a generalized ansatz for B: 

B = [~ ~ ~* F~*] (11.52) 
o GTB* CO' 

FTA* 0 0 D 

where F = Fa(y,y,) and G = Fa(l'IY'). The symbols A and D, 

and Band C, denote m(l, 1 )-dimensional and m(1 ,2)-dimen
sional matrices, respectively which shall be proportional by 
numerical factors to unitary ones, but otherwise arbitrary. 
Now it is easy to verify that any matrix B of the type (II.52) 
satisfies Eq. (1I.28). Since B is required to be unitary, we 
obtain 

AAt + DDt = lm(l,') and BBt + cct = Im(\,2)' 

FT (AAT)* + (DDT)Ft = 0, 

GT(BBT)* + (CCT)Gt = 0, 

R. Dirl 
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(11.54) 
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as restricting conditions for A and D and Band C respective
ly. Ifwe choose 

i i 
A = v2" l m(I,I) and B = v2"lm(l,2P (11.56) 

we obtain 

D= 4 ~-2FT and c= ~T 
V v'2 ' (11.57) 

respectively, in matrix notation 

[1."" 0 0 

l·~l 1 0 ilm(I.2) Im(I.2) 
B= --= (11.58) 

V2 0 -iGT GT 

-1FT 0 0 FT 

In this connection we remark that Eq. (11.58) satisfies Eq. 
(11.26). Besides this the special solution (11.58) allows one to 
identify the multiplicity index w with the triplet (a,b,v), i.e., 

w = (a,b,v), a,b = 1,2 and v = 1,2, ... ,m(a,b ).(11.59) 

The corresponding CG coefficients of type I are readily ob
tained from Eq. (11.23) by inserting the matrix elements of 
Eq. (11.58): 

Wao Iv) = _i _{QQVII _ ~ Fa(Y'Y2)Qav'22} 
k .. /- k £.. VV' k , 

v 2 v' 

v = 1,2, .. ,m(l,1), (11.60) 

wa0 2v) = _i_{QavI2 _ ~ Fa(y,Y2)Qav'21} 
k ,,/- k L.. vv' k , 

v 2 v' 

v = 1,2, ... ,m(1,2), (11.61) 

Wr(2IV) = .. ~_{QrVI2 + I F~~,Y'Y2)QrV'21}, 
v 2 v' 

v = 1,2, ... ,m(l,2), (11.62) 

Wa(22v) = _l_{Qavll + ~ F a(,Y'Y2)Qav'22} 
k '" /- k .£. Vll k , 

v 2 v' 

v = 1,2, ... ,m(1,1). (11.63) 

These formulas show that CG coefficients of type I can be 
expressed by simple unitary transformations in terms of con
venient CG coefficients for the subgroup H, where it suffices 
to compute the unitary submatrices Fa(y,),,) and Fa(y,y,). 

B. CG coefficients of type 1\ 

The defining equations for CG coefficients of type II 
take for this kind of Kronecker product the form 

lRY'Y'(h )W~~' = IR fk(h )W~r, for all hEH, (11.64) 
I 

RY'Y'(s)W~( = (_1)4(d+l) IUr. W~':;.I.I' 
I 

W = 1,2, ... ,MY,12;/1' d = 1,2, and k = 1,2, ... , n/1' (11.65) 

where the vector notation has to be understood as 

rWfJu'j _ lW1',y,;/1Wj - W Y'Y2 
l dk ui,bj - dk ai,iJ) - ai,bj;{3wdk' 

f3EA ll , W = 1,2 ... ,MY,Y2;/1' d = 1,2, and k = 1,2, .. n/1' 

a = 1,2, and i = 1,2, ... ,ny" b = 1,2, and j = 1,2, ... ,n y2 · 
(11.66) 
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The following vectors: 

W~~v, w = 1,2, ... ,AJy ,y,;{i' d = 1,2, and k = 1,2, ... ,nfl, 
(11.67) 

representing columns of the unitary CG matrix W, form an 
orthonormal basis of 

where the units lEZ can be written as 

lE/1 = E y,y,B 9 E )','1',;/19 E '1',1',;/19 E )','1',;/1 
IJ I) lJ I) 'J' 

. (3 tl(3 E 1',1'" = __ ~ R f3*(h)R 1'·I"(h) 
IJ IH I -f IJ ' 

(I1.69) 

J..lI=YI'YI' J..l2=Y2'Y2· (II. 70) 

Like in the previous case we introduce, by means of 

{~"l1t',1?i = OalOb I {KfVl j , (11.71) 

{Qf,,12}a',bj =OaIObz{Lf"}'J' (11.72) 

{Qf"2I
t,.bJ = OaZDb I {Mf''}.j, (11.73) 

{Qf"22t,.bj = Da2 0b2 {N[;Vl j, (11,74) 

a further orthonormal basis of Y1'·Yz; (3, namely, 

Qtvab
, a,b == 1,2, v == l,2, ... ,m(a,b), 

m(l,l) = m(2,2) = my,y,;!;, 

m(1,2) = m(2,1) = m y ,y,;(3' k = 1,2, ... ,1l(3, 
(11.75) 

which is especially suited to simplifying the following con
siderations, since they transform with respect to H accord
ing to 

W'W'(h )Qtvab = I R rt(h )Qfvab, forallhEH. (11.76) 
/ 

By similar arguments as before we define unitary 
transformations 

W(3w - ~ B Q/1vab 
dk - ~ abv;dw k , 

abv 

Q (3vab _ ~ B * W(3w 
k - £.. abv;dw dk , 

dw 

(U.77) 

k = 1,2, ... ,n(3, (11.78) 

and try to determine them in such a way that the correspond
ing vectors (II.77) satisfy Eq. (II.65), since we cannot expect 
that the vectors (11.75) are already a solution ofEq. (11.65). 

For this reason we derive 

RY·Yz(s)Qfl,ab* = I U rt I Fa'b'v';abv Qf"'a'b " (11.79) 
/ a'b'll' 

where 

Gdw;d'w' = ( - 1)4 (d + l)Dd'.d + I Dww' , 

d,d' = 1,2, w,w' = 1,2, ... ,M1'•Yz;ff' (II. 80) 

Fa'b'v';abv = {BGBT}abv;a'b'v" 

a,b = 1,2, and v = 1,2, ... ,m(a,b), 

a',b' = 1,2, and v' = 1,2, ... ,m(a',b '). (11.81) 

Utilizing these relations, we obtain 

RY,Yz(s)Wft*=Iurt I {BtFB*}d'w';dwWN, 
I d'w' (1I.82) 
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which have as a consequence 
BG T =FB*. (11.83) 

Hence, any unitary 2My,y,;lrdimensional matrix B satisfy
ing Eq. (11.83) solve our problem. Before solving this prob
lem, let us mention that Fis antisymmetric and unitary, i.e., 

FF* = - 12M , (II. 84) 

and which is a useful relation for the following 
considerations. 

As next step we compute the matrix elements of Fby 
means of 

(Q fNa'b' RY'y,( ){" u ffQ{3Vab}*) F (1185) 
k , S..,.. kf f = a'b'v';abv' . 

These matrix elements are independent of k, which follows 
from 

RY,)"(s)tEtRY,y,(s) = I u g*u flEft* (11.86) 
kf 

and Eq. (11.76). Inserting Eqs. (11.71)-(11.74) into Eq. 
(11.85), we obtain 

{3 (y, y.) 
F 11 ,,';22,' = F "',, -

= (Kf'o',R Y'(s2)®R y'(S2){~ UftNf"}*), 

(11.87) 
F F (3(y,y,) 

12v';21v == p'v 

= \L/!"',R Y'(S2) ® 11', {~ u ftMf"}*), (II.88) 

F F 
(3(y,y,) 

21u';12v = V'I' 

= {Mtl",l1" ® R Y'(S2){~ U ftLfv} *), 
F22 1";11" = F :,,(1',1',) = (Ntv',{~ u ftKf"r), 

Fa'h'v';ab,' = 0, otherwise, 

where the relations 

(R r'(s2) ® R Y'(S2)}t E it'; (3{R 1"(S2) ® R Y'(S2)} 

- " u {3*U (3{E 1',1',; {31... 
- ~ ik )f kf )', 

kf 

= '" U {3*U (3tE 1',y,;{3L. 
~ ,k Jf kf J, 
kf 

E 1',1',; B - " U B* U BtE )',y,; B1... 
i) -£.. ik jf kf J, 

kf 

(II.89) 

(II.90) 

(11.91) 

(II.92) 

(11.93) 

(11.94) 

(11.95) 

have to be used together with the transformations properties 
of the vectors Kf", Lfv, Mf", and Ntv in order to show that 
the matrix elements (11.93)-(11.96) are also independent of 
k. Hence, Ftakes the special form 
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o a 
o F (3(r,y,) 

F {3(y,Yz) 0 (11.96) 

o 0 

Therefrom follow for the submatrices F (3( .. ,) the conditions 

F (3(y,)',)' = _ F {3(y,y,\ 

F {3(y,y,l' = - F {3 (I', y,l, 

F (3(y,)"lF (3(Y,Y,)* - I 
- - m(1,I), 

F (3(Y,Y')F fJCy,y,l* = - 1 , 
m(I,._)' 

(11.97) 

(11.98) 

(11.99) 

(11.100) 

which show that it suffices to compute the matrices F (3(y,),,) 

and F {3(y,y,l and that both submatrices are also unitary. 
Before solving Eq. (II.83), we assume that the corre

sponding columns of the unitary CG matrices K, L, M, and 
N can be computed with the method given in Ref. 2, i.e., 

{K {3v} - {KY,y,; (3(i,f)} 
k i) - k i) 

= IIBY,Y2;!1(i,j'.)II··1 ~"R )"(h) 
au IH I f' II,. 

xR J;,(h)R fa-;'(h ), 

V = 1,2, ... ,m(1,1), k = 1,2, ... ,np" (11.101) 

{L{3,'} - {L)" 1',; f3(i, j,.)} 
k ij - k ij 

= IIBr')";/'(',),lll ··1 ~" R i~'.(h) 
ao IH i f' II, 

X {z )"tR Y2(h)Z y,} R f3*(h) 
ll, kao ' 

V = 1,2, ... ,m(l,2), k = 1,2, ... ,nff , (11.102) 

{M {3v} _ {MY,h;f3(i,j,)} 
k ij - k i) 

= II Bf,:r,; {3(i,J')II" 1 I ~ I 

X" {z1',tR Y'(h)Z 1',} R 1', (h)R f3*(h) L il, ll" kat)' 
h 

V = 1,2, ... ,m(1,2), k = 1,2, ... ,n/3' (II. 103) 

{N {3v} _ {NY' 1'2; {3(i,.J,.l} 
k i) - k ij 

= IIB;,y,;{3(i'),)II-l~" {zy,tR Y'(h)ZY'} 
o \H \ f' II,. 

X {z y,tR Y2(h)Z Y2}j),R fa-;'(h), 

V = 1,2, ... ,m(1,I), k = 1,2, ... ,n{3' (11.104) 

Concerning the index sets I (iI")") J which occur in Eqs. 
(11.101) and (11.104) and Eqs. (11.102) and (11.103) we recall 
that they are not in general equal. Because ofEqs. (11.97) and 
(11.98), it suffices to calculate Eqs. (11.87) and (11.88): 

F :"(1'11',) = IIB:~)"; /3(i")')\1- IIIB;~Y2; (3(i,.J')II- 1 

F :V(1'IY2) = II B:;Y,;{3(i,j,l" - IIIBf;Yz;B(i,)"lll-l 

X ~ " R )" (hs2
) \HI f' ',', 
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X {zhtR Y'(h )Zr'}j,j,{R {3(h)U {3}:"", 
(11.106) 

respectively. 
In order to determine unitary matrices B satisfying Eq. 

(11.89), we proceed in the same way as in the foregoing pa
pers. We define 

{Bd,w}abv = Babv'dw' 

d = 1,2, and w = 1,2, ... ,Mr,rz;.B' 

a,b = 1,2, and u = 1,2, ... ,m(a,b), 

which allows one to rewrite Eq. (11.89) as 

FBd,w* = (_1)4(d+I)Bd+ l ,w, 

(11.107) 

d = 1,2, and w = 1,2, ... ,Mr,r,;{3' (11.108) 

By similar arguments we have to fix, for example, the vectors 
Bl,w, w = 1,2, ... ,Mr,rz: {3 in such a way that the correspond
ing matrixB is unitary. This can be achieved, for example, by 
means of 

{B l,w ~ (bv)} £ £ £ 
a'h'v' == Ua'lUb'bUv'v' (11.109) 

which implies 

{B 2.(bV)} F 
(l'b'll' :::= ~ a'h'v';lbv (11.110) 

and shows that we can identify the multiplicity index w with 
the pair (b,u), i.e., 

w = (b,u), b = 1,2, and u = 1,2, ... ,m(1,b), (11.111) 

since the corresponding matrix B is indeed unitary. Equa
tions (11.110) written down in more detail leads to 

{ B 2,(IV)} ,= D D F (3,<r,r,) 
ab(1 02 b 2 vv , 

{ B2 ,(2V)} ,= D D F (3,<YtY,) 
obv 02 b J vv , 

(11.112) 

(11.113) 

so that the corresponding matrix B reads as 

[ 'm~" 0 0 

F+"j 
Im(I,2) 0 

B= (11.114) 
0 0 0 

0 0 
F (3(r,rz)f' 

w here the different definition of row and column indices of B 
should not be confused, if m(l, 1):fm(1,2), Besides this the 
corresponding CG coefficients of type II are given by 

W~(bv) = QfVlb, b = 1,2, and u = 1,2, ... ,m(1,b), 
(11.115) 

WfI(1V) = IF !,<r,r,lQ/!v'22, u = 1,2, ... ,m(1,1), 
v' 

(11.116) 

W {3(2v) - ~ F {3(y,Y')Q {3v'21 
2k - ~ vv' k' u = 1,2, ... ,m(1,2), 

v' 

(11.117) 

To conclude this part we realize that CG coefficients of type 
II can also for this case be linked by simple unitary transfor
mations with convenient ones for the normal subgroup, 
Thereby, the only problem is to compute the submatrices 
F (3(r,Y,) and F (3(y,y,), whose dimensions however are not in 
general equal. 
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C. CG coefficients of type III 

As already known the defining equations for CG coeffi
cients of type III are of the form 

RY'Y'(h )Wr~' = I R fk(h )Wr~, (11.118) 
/ 

RY'Y'(h )W~;:' = I {zrtR Y(h )zr}/k w~~, 
/ 

for all hEll, (11.119) 

(11.120) 

RYtY'(s)W~;:'* = I R fk(s2)Wr;v, 
/ 

w = 1,2, ... ,My,y,:y, k = 1,2, ... ,ny, (11.121) 

where the components of the columns of the unitary CG 
matrix Ware denoted by 

{WYU'} _ {Wy,y,:yw} - WYtY, 
dk ai,bj - dk ai,b} - ai,bj;ywdk , 

yEAm' w = 1,2, .. "My ,yz:Y' d = 1,2, and k = 1,2, ... ,n y , 

a = 1,2, and i = 1,2, ... ,nv.' 

b = 1,2, and j = 1,2, ... ,nl'2' (11.122) 

Obviously, the vectors 

W~r, w = 1,2, ... ,My,y,;1" 

d = 1,2, and k = 1,2, ... ,n1' , 

form an orthonormal basis of 

(11.123) 

yYJl'z;Y = I {lEr + lEnJrY'Y', 
i 

. 'Y'//'1',rz;Y dlm" = 2n 1'M Yty,:y, (11.124) 

where the units lEij and lEi) can be written as 
- -

lEY = E y,y,:y Ell E 1',1',;1' Ell E 1',1',;1' Ell E 1',1',;1' 
lJ Ij IJ I) I)' 

(11.125) 

E /',/1,;1' = ~ ~ R r*(h)R /11/1'(h) 
'i jH j ~ Ii 

Itl = Yl 'Yl' f-L2 = Y2'Y2' (11.126) 

and 

(11.127) 

E /1,/1,:Y = ~ ~ {ZrtR Y(h)ZY}*.R /1,/1'(h) 
IJ jHj ~ IJ' 

f-Ll = Yl 'Yl' f-L2 = Y2'Y2' (11.128) 

respectively. The structure ofRYtr'!H suggests that one can 
introduce, by means of 

and 

{Q1Vll ti.bj = DaIDbl{Kflj' 

{QfI2ti.b) = Da1 Db2 {Lf}i)' 

{Qf2I ti,bj = Da2Dbl{Mflj' 

{Qrnti.b) = Da2 Dbl {Nfl), 

{Qrllti,b) =DalDbl {Krlj , 

{Qrl2ti,bj = Dal Dbl {Lrl), 

{QrJ2\ti.bj = Da2Db I {Mrv}i)' 

R.Oirl 

(11.129) 

(11.130) 

(11.131) 

(11.132) 

(11.133) 

(11.134) 

(11.135) 
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{Qtv22}ai.bj = Oa2 0b2 {Ntvl j , (11.136) 

the following orthonormal basis of frY.y,;y: 

Qrab, a,b = 1,2, v = 1,2, ... ,m l (a,b), 

m l (1,1) = my,y,;y, m l (1,2) = mY,r,;Y' 

m l (2,1) = mr.y,;y' m l (2,2) = mr,rz;Y' 

k = 1,2, ... ,ny, 

Qrvab b - 1 2 k , a, - , , v = 1,2, ... ,m2 (a,b), 

m 2(1,1) = mr,rz;Y' m 2(1,2) = mr.rz;y, 

m 2(2,1) = my.y,;y, m 2(2,2) = my.y,;y, 

k = 1,2, ... ,ny, 

(11.137) 

(11.138) 
- - -

where the vectors Kr, Lr, Mr, and Nr, and Kr, Lr, Mrv
, 

and Nfv
, represent columns ofthe CG matrices K, L, M, and 

N. Because of their definitions, the vectors (11.137) and 
(11.138) transform with respect to H according to 

W',Y'(h )Qrvab = I R rk (h )Qrab, (11.139) 
I 

lRY'Y'(h )Qfvab = I {ZrtR r(h )ZY}lkQTvab, 
I 

for all hER, (11.140) 

and are therefore especially suited to simplifying the follow
ing considerations, although they are not a solution of Eqs. 
(11.120) and (11.121). 

In order to be able to satisfy also these conditions, we 
define the following Mr.y,;y-dimensional unitary 
transformations 

W yw - ~ B Qyvab 
Ik - ~ abv;w k , 

ubr' 

Q yvab _ ~ B* Wyw 
k - ~ abv;w lk' 

w 

W yw - ~ C QYuab 
2k - "-' abv;w k , 

abv 

k = 1,2, ... ,n y ' 

Q r,'ab - ~ C * Wyw k 1 2 k - £.. abv;w 2k, =, , ... ,ny' 
w 

(11.141) 

(11.142) 

(11.143) 

(11.144) 

and determine them in such a way that the corresponding 
vectors (11.141) and (11.143) are a solution of Eqs. (11.120) 
and (11.121), respectively. 

For this purpose we consider 

lRy·y'(s)Qyvab* - ~ F QYu'a'b' 
k - "'-' a'b'v';abv k , (11.145) 

a'b'v' 

Ry,y'(s)Qrvab* = ~ R I' (S2) ~ F "Qyv'a'b' 
k L lk L abv;a'b v I , 

l a'b'v' 

(11.146) 

where 

Fa'b'''';abv = {CB T}a'b',,';abv' 

a',b' = 1,2, v' = 1,2, ... ,m1 (a',b '), 

a,b = 1,2, v = 1,2, ... ,m l (a,b). (11.147) 

These relations allow one to transform Eqs, (11.120) and 
(11.121) as follows: 

lRr.Y'(s)Wyw* = ~ {CtFB *} Wyw' 
Ik £.. w'w 2k' (11.148) 

w' 
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RY·Y,(s)WIT'* = I R rk(s2){ctFB *}~'w WIT". (11.149) 
I 

Hence, if we can find unitary matrices Band C satisfying 

C = FB *, (11.150) 

the corresponding CG coefficients of type III are readily 
obtained from Eqs. (11.153) and (11.155). Otherwise, since F 
is unitary, we can choose 

(11.151) 

which implies that the multiplicity index w can be identified 
with the triplet (a,b,v), i.e., 

w = (a,b,v), a,b = 1,2, and v = 1,2, ... ,m l (a,b). 
(11.152) 

Inserting the special values (11.151) into Eqs. (11.141) and 
(11.143), we obtain 

W\1abv) = Qrab, a,b = 1,2, and v = 1,2, ... ,m l (a,b), 
(11.153) 

m,(a'b') _ 
y(abv) ~ ~ Qrv'a'b' W Zk = £.. £.. Fa'b'v';abv k , 

a'b' v' = 1 

a,b = 1,2, v = 1,2, ... ,m l (a,b), (11.154) 

respectively. 
Therefore, the last step is to compute the matrix ele

ments of F. For this purpose one has to carry out the scalar 
products 

(Q Yu'a'b' Ry·rz(s)Qrvab*) = F 
k' k a'b'v';abv' (11.155) 

whose values are independent of k. This can be shown by 
means of 

Rr.YZ(s)tEtRY'Y'(s) = Ert (11.156) 

and Eq. (11.139) and (11.140). Because of Eqs. (l1129)
(11.136), we obtain for Eq. (11.155) 

F - FY<Y,Y,) - (KYu'R r.(S2) ""R Y'(sZ)Nrv*) Ilv',22v - v'v - k' "" k' 

(11.157) 

F 12v';2Iv = F~:,r,) = (Ltv',R y'(S2) 181 IrzMr*), (11.158) 

F2Iv';12v = F~:'Y') = (Mtv',lr. 181 R Y'(s2)Lr*), (11.159) 

F F Y<r.r,) (NYu' KYv*) 
22v';11v = v'v = k' k , 

Fa'b'v';abv = 0, otherwise, 

(11.160) 

(11.161) 

where the scalar product is analogously defined. In order to 
verify that the matrix elements (11.157)-(11.160) are inde
pendent of k, one has to use 

{R r.(S2) 181 R y'(~)}t E iY,;r{R r.(S2) 181 R Y'(S2)} 

_ {E r.r,;y 1.
- ij F, 

{R y'(s2) 181 ly,!Ei/,;r{R r.(S2) 181 11') 
= {Eft,;y}, 

{lr. ®R Y'(~)!Efr,;r{ly. ®R rz(S2)} 

_ {E r.r,;y 1.-
- ij .J', 

E r~r,;r = {E 1'.1',;1'1.-
IJ IJ r, 

(11.162) 

(11.163) 

(11.164) 

(11.165) 

and the transformation properties of the vectors Kr, Lr', 
Mr, and Nr, and Ktv, Ltv, Mfv, and Ntv with respect to H. 
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Finally, let us assume that it is possible to apply the 
method given in Ref. 2, in order to determine the corre
sponding matrix elements of the CG matrices K, L, M, and 
N: 

{ K YV} _ {KYIy,;Y(I,,j..l} 
k Ij - k Ij 

= IIB~;y,;y(I,,j')II- 1 I ~ I 

X I R ~:(h)R jj,(h)R r:(h), 
h 

v = 1,2, .. ,m] (1,1), k = 1,2, ... ,ny, (II. 166) 

{Lrv} - {LYtr,;Y(i,,j,,)} 
k Ij - k Ij 

= IIBYlr,;Y(I,,j,.)II-1 ~ '" R Y.'(h) 
a

o IHI + 11,. 

X {zy,tR r'(h )ZY'}. R yot< (h), 
}},. ka. 

v = 1,2, ... ,m l (1,2), k = 1,2, ... ,ny, (II. 167) 

{MYv} _ {MrIY,;Y(I,j,.)} 
k Ij - k Ij 

= IIB:~Y,;y(I,J..)II-1 I~ I 

x '" {z YttR rl(h)Z YI} R 1", (h)R yot< (h) 
"'-' lI" lJI' kao' 
h 

V = 1,2, ... ,m l (2,1), k = 1,2, ... ,ny, (II. 168) 

v = 1,2, ... ,m l (2,2), k = 1,2, ... ,ny, (II. 169) 

respectively. The components of the remaining vectors K[", 
Lr, Mfv, and Nfv are obtainable in principle from Eqs. 
(II. 166)-(11. 169) by replacing R r:o (h ) through 
{zrt R f(h )Z 1" }tao' the multiplicities m I (a,b ) through 
m2 (a,b), and the index sets [(iv,jv): v = 1,2, ... ,m 1 (a,b)\ 
through suitable ones. Inserting these special values into 
Eqs. (II. I 57)-(II. 160), we obtain 

1004 

F~:IY') = l\B~~Y';Y<.I,j')II-IIIB~~r';y(I,j')II-1 

n 
X -1"- '" R 1" .. (hs2)R 1"'. (hs2

) 
IHI + 1,1, j,j, 

X {Z rt R r(h)Z Y}:oao' (11.170) 

F~:lr,) = IIB~;r';Y<.I,j')II-]IIB:~Y';y(I'.]'·)II-] 

n 
X -1'- '" R 1' .. (hs2

) 
IHI + 1,1, 

X{zy,tR r'(h )ZY'}j,jJZrtR r(h )ZY}:oao' 
(II.l71) 

X ~ '" {zY1tRrl(h)ZYI} 
IHI + '.1,. 

xR J.\(hs2){ZrtR r(h )ZY}:oao' (11.172) 

p~F.r,) = IIB~~r';Y<.I,j')II- IIlB~;Y2;y(i,j")ll- I 

J. Math. Phys., Vol. 21, No.5, May 1980 

X ~ '" {zYltRrl(h)ZYJ}. 
IHI f' 1,1" 

X{zy,tR r'(h )ZY'}jolj, 

X{ZrtR Y(h )ZY}:oOo = 8vv" (II. 173) 

respectively, whose values are of course independent of k. 
The special result (II. 173) is a consequence of the method 
given in Ref. 2. 

Apart from these special values for the matrix elements 
(II. 157)-(II. 160), the final formulas read as 

W\iabv) = Q["ab, a,b = 1,2, and v = 1,2, ... ,m 1 (a,b), 
(11.174) 

Wy(llv) - '" FY<.rJr,lQYv'22 1 2 (1 I) 2k - £.. v'v k, V = , , ... ,m! , , 
v' 

(II. 175) 

W Y(12v) - '" pY<.iJYl)QYv'21 1 2 (1 2) 2k - £.. v'v k, V = , , ... ,m! , , 
v' 

(II,176) 

Wy(21v) - '" py<'Y,r')QYv'12 I 2 (2 1) 2k - £.. v'v k, V = , , ... ,m! , , 
v' 

(11.177) 

Wy(22v) - '" py<'y,Y')QYv'11 1 2 (22) 2k - £.. v'v k' V = , , ... ,m] , , 
v' 

(II. 178) 

which show that CG coefficients of type III also for the most 
complicated case are connected by simple unitary transfor
mations with convenient CG coefficients for H. Similar to 
the other cases, the only proplem is to compute the subma
trices FY< .... J, but whose dimensions are not in general equal. 

SUMMARY 

Within the last of this series of papers we investigated 
the most complicated situation by considering Kronecker 
products which are composed of co-unirreps of type III only. 
Due to our approach the first task is to determine convenient 
CG matrices which decompose the corresponding terms of 
RYJr, ~H = R 1',1', ~ R Y,r, ~ R r,Yl ~ R r,r, into direct sums of 

unirreps of H. These CG matrices are denoted by K, L, M, 
and N. Provided such matrices have been determined, CG 
coefficients for corepresentations are readily obtained as 
follows. 

In the case of CG coefficients of type I it is only neces
sary to compute the submatrices F a(Y,l'l) and Fa(Y,r,) of B: 

IG~ 10
0

m 1 ' 
_iGT 

o FT [ 

iIm 

~~F' 
o 

o 
d ' d F Fa(Ylr,) d where m = mY ,1'l;a an m = my,r,;a' an = an 

G = Fa(YtY'), since the corresponding CG coefficients follow 
from Eqs. (II.60)-(II.63). Thereby, one has to use the defini
tions (II.17)-(II.20). The matrix elements of these matrices 
should be reasonably calculated with the aid ofEq. (1I.34) 
and (IUS) together with the relations (H.42) and (11.43). 
Besides this the symmetry relations my,y,;a = mr,r,;a and 
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m - = m - give rise to simple solutions for the multi-1',1'l;a 1'lr2;a 

plicity problem, although m1't1'2;a and m1'tr2;a are not neces
sarily equal. 

CG coefficients of type II are given by Eqs. (11.115)
(11.117), where the definitions (11.71 )-(11. 74) have to be tak
en into account. Consequently, it suffices to compute the 
submatrices F /3(1't1'2) and F !J(1'tY,) of B: 

1m 0 0 

0 1m' 0 0 
B= F /3(Ytr,)T 0 0 0 

0 0 F /3(Yt1',)T 0 

where however, the multiplicities m = mYt 1'2; /3 and 
m' = m -. a will not in general be equal. The matrix ele-Y.Yz.1J 

ments of these matrices are defined by Eqs. (11.90) and 
(11.88), where the symmetry relation (11.97) should be uti
lized in any case. Nevertheless, we arrive also for this case at 
a simple solution for the multiplicity problem. 

For the last case we have found the special solution 

B=lM 

and 

o 

c=[ ~ o FY<rtY2) 0 

FY<YtY2) 0 0 

o 
o 

which yields the final formulas (11.174)-(11.178), where the 
definitions (11.129)-(11.136) have to be used. Thus, the only 
problem is to compute the unitary submatrices FY<"') of Fby 
means of Eqs. (11.157)-(11.160). 

Besides this let us summarize the main points of the 
present approach. Considering the results it is reasonable to 
divide the determination of CG coefficients for corepresen
tations into two steps. The first step is to compute convenient 
CG coefficients for the normal subgroup. The second step is 
to use these CG coefficients in order to define special bases, 
whose elements transform according to unirreps of the nor
mal subgroup and are therefore especially suited to deter-
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mine CG coefficients for corepresentations. Their transfor
mation properties with respect to a special representative of 
the anti unitary group elements are utilized to derive simple 
defining equations for those unitary transformations which 
link these special bases with corresponding columns of CG 
matrices for corepresentations. Thereby, we obtain for each 
type of co-unirrep in principle the same type of defining 
equations, namely, 

type I: FB*=B, FF*= +lM' 

typell: FB * = BG T, FF* = - 12M , 

typelll: FB* = C, FFt = 1M , 

but whose structure depends essentially on the considered 
Kronecker product and lead therefore to quite different so
lutions. Apart from the first two cases, which are contained 
in the first paper, we were able to find solutions for these 
equations. These give rise to special solutions for the multi
plicity problem, where the corresponding multiplicity prob
lems referring to subductions with respect to the normal sub
group play an important role. The only problem for the 
present method is to compute unitary submatrices F 1'( ... ) 

whose dimensions are much smaller than that of the consid
ered Kronecker product and which are uniquely fixed 
through the given CG coefficients for the normal subgroup. 

Apart from the general solution for the underlying 
problem, we discussed in each paper the possibility that the 
CG coefficients for the normal subgroup are representable in 
a very special way. This led to special values for the matrix 
elements ofF 1'( ... ). The reason for considering this possibility 
arises therefrom that CG coefficients for space groups can be 
traced back for nearly all cases to this special form, so that 
the present results can be directly transferred to magnetic 
space groups. This transfer to projective corepresentations 
and its application to magnetic space groups should be dis
cussed in a forthcoming paper. 

'C]. Bradley and A.P. Cracknell, The Mathematical Theory a/Symmetry 
in Solids (Clarendon, Oxford, 1972). 

2R. Dirl, 1. Math. Phys. 20, 659 (1979). 
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It is known through the inverse scattering transform that certain nonlinear differential equations 
can be solved via linear integral equations. Here it is demonstrated "directly," i.e., without the 
lost-function formalism that the solution of the linear integral equation actually solves the 
nonli~ear differential equation. In particular, this extends the scope of inverse scattering methods 
to ordtnary d.ifferential equations which are found to be ofPainleve type. Some global properties 
of these nonhnear ODE's are obtained rather easily by this approach. 

1. INTRODUCTION 

The purpose of this paper is to show, following the work 
of Zakharov and Shabat,1 that certain nonlinear differential 
equations can be solved via linear integral equations. This 
method does not require any analytic properties of an assoi
cated scattering problem, which are required to solve nonlin
ear partial differential equations by inverse scattering trans
forms (1ST; cf. Ref. 2). Because of this extra freedom, the 
range of solutions obtained by the present approach is larger 
than that obtained by 1ST. In particular, self-similar solu
tions of these equations, which satisfy nonlinear ordinary 

differential equations, can be obtained. Thus, the method 
provides exact linearization of both nonlinear PDE's and 
ODE's. 

Our interests in these nonlinear ODE's are twofold. 
First, they often have "physical" significance. Indeed, for 
many of the well-known, physically interesting nonlinear 
evolution equations, the solution for large times separates 
into a finite number of solitons plus a remainder which as
ymptotically (as t-+oo) approaches a modulated similarity 
solution (see, for example, Ref. 3). Second, the nonlinear 
ODE's in question turn out to have no movable branch 
points or essential singularities.4

-
6 (Hereafter we shall refer 

to ODE's with this property as being ofP-type; P is for Pain
leve). In Refs. 4 and S, a conjecture is given regarding the 
relationship between nonlinear evolution equations solvable 
by 1ST and nonlinear ODE's of P-type. In fact, for many of 
the well-known nonlinear evolution equations (KdV, 
MKdV, sine-Gordon, etc.), the similarity solution is one of 
the Painleve transcendents (see also Refs. 4--7). 

In Sec. 2, we discuss a procedure for deriving the differ
ential equation directly from an associated linear integral 
equation, which is in Gel'fand-Levitan-Marchenko form. 
The derivation applies to partial as well as ordinary differen-

"Permanent address: L.P.T.H.E. Universite Paris-Sud, 91405 Orsay, 
France. 

tial equations. We require only that the solutions decay rap
idly enough as X-+ + 00 (say) that the integral operators are 
defined. We stress, however, that in general a solution which 
decays as x-+ + 00 may diverge at some finite value of x, 
diverge as x-+ - 00, or have weak decay as x-~ - 00. In any 
of these cases, the classical analysis of inverse scattering us
ing the analytic properties of the Jost functions is not appli
cable, since it requires "nice" properties of the potential on 
the whole line (see Refs. 8 and 9). 

Examples of the method are studied in detail in Sec. 3. 
Various ways of proving that the solution of the associated 
integral equation actually exists and is unique are given in 
Sec. 4. 

2. DERIVATION OF THE DIFFERENTIAL EQUATION 

Consider the linear integral equation 

K (x,y) = F(x,y) + i~ K (x,z)N (x;z,y)dz, y;>x. (2.1) 

Besides the arguments (x,y, z) which explicitly appear in Eq. 
(2.1), F, N, and K may depend on other parameters (t, A.,- .• ). 
Derivatives with respect to these extra variables may appear 
in the differential equations that F and K satisfy, but Eq. 
(2.1) is understood to be solved at fixed given values of these 
parameters. 

In each specific case N is explicitly given in terms of F. 
For instance, 

(A) N(x; z,y) = F(z,y) (KdV, higher order KdV's), 

(B) N (x; z, y) = ± loc F(z,s)F(s,y)ds 

(modified KdV, sine-Gordon, etc.), 

(B')N(x; z,y) = ± life F*(z,s)F(s,y)ds 

(nonlinear Schrodinger, etc.), 

where * refers to complex conjugation 
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f'" [ az + as ] (C) N(Xiz,y) = ± i)x 2 F*(z,s) F(s,y)ds, 

(massive Thirring, derivative nonlinear Schr6dinger, etc.), 

(D) N(Xiz,y) = L'" L'" F(z,s)F(s,v)F(v,y)dsdv. 

Throughout this paper, we consider only those cases in 
which 

F(x,y) =F(x + y). (2.2) 

However, other possibilities certainly exist. 
In the usual approach, F is constructed from the scat

tering data of the "direct problem" and the scattering poten
tial u(x) is reconstructed from K [e.g., u(x) = K (x, x) or 
u(x) = (d /dx)K (x, x)J. Here we do not give to F any inter
pretation, but only demand that it satisfies some linear (par
tial or ordinary) differential equation. 

Define the operator A x by 

AJ(y) = LX> f(z)N(Xiz,y)dz, y;;;>x, 

=0, y<x. (2.3) 

We assume that for each specific choice of N, one can prove 
that (/ - Ax) is invertible. More precisely, there is anx large 
enough and a function space on which (/ - A x) is invertible, 
and (/ - A x yl is continuous. Moreover, we assume that the 
operators obtained by differentiating (2.3) with respect to x 
or y also are defined on this function space. It will be shown 
in Sec. 4 that these assumptions are valid in a large variety of 
problems. 

Subject to these assumptions and the fact that F satisfies 
some linear differential equation, we prove in this section 
that u(x) (defined above) satisfies a nonlinear differential 
equation. We shall say that this equation is of "inverse scat
tering type" even though no reference is made to the direct 
scattering problem. 

The outline of this approach can be stated rather 
simply: 
(i) F satisfies two linear (partial or ordinary) differential 
equations 

!fjF = 0, i = 1,2. (2.4) 

These two operators can be related to thex dependence and t 
dependence of one of the eigenfunctions in the usual 1ST 
approach (e.g., see Ref. 2). Through this paper, 

!fl = (ax -ay ), 

so that !f IF = 0 implies Eq. (2.2), but this choice is not 
essential. (ii) K is related to F through (2.1), which we may 
write in the form 

(/ -Ax)K = F. 

(iii) Applying !f j to this equation yields 

!fief -Ax)K = 0, i = 1,2. 

This can be rewritten as 

(/ - Ax )(!fiK) = R;. 

(2.1a) 

(2.5) 

where Ri contains all the remaining terms after operating 
with !f;. However, (2.1) and (2.4) may be such that 

R; = (/ - Ax)Mi(K), i = 1,2, (2.6) 
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where Mi (K) are nonlinear functionals of K. (iv) Therefore, 

(/ -AxH!fiK - Mi(K)] = O. 

However, (/ - A x) is invertible, so K must satisfy the nonlin
ear differential equation 

!fiK - Mi(K) = 0, i = 1,2. (2.7) 

Therefore, every solution of the linear integral equation (2.1) 
is also a solution of the nonlinear differential equations (2.7). 
Making use of the results for i = 1 allows us to find a differ
ential equation on line y = x for i = 2. 

Thus, the basic ingredients to this approach are a linear 
integral equation (2.1) and two linear differential operators 
!f I! !f 2' However, some more information is required in 
order to make the method effective. First, we must identify a 
class of suitable differential operators !f. Second, we must 
establish that K, defined by Eq. (2.1), is differentiable 
enough that (!fiK) even exists. Third, in order to imple
ment Eq. (2.6), it is convenient to establish a "dictionary" of 
the terms that may appear in R. These last two steps depend 
only on the order of !f, not on !f itself. Then given this 
information, we may show how applying!f to Eq. (2.1) 
generates Eq. (2.7), the nonlinear equation satisfied by K. 

Here are some of the possible types of differential equa
tions for F(i.e., !f 2F = 0): 

(i) There are evolution equations of the type 

ia,F = Q (iax)F, 

where t is an auxiliary argument of F, and Q is a polynomial 
with real constant coefficients which is otherwise arbitrary 
in cases (B') and (C), but must be odd in cases (A), (B), and 
(D). 

(ii) Linear ODE's for F are obtained by reducing one of 
the equations by a suitable ansatz (similarity form).4 For 
instance, the ansatz for traveling waves 

F(x + Yi t) = Y(x + y -2vt), 

K (X,Yi t) = %(x - vt,y - vt) 

is always compatible with the integral equation. 
(iii) IfQ (iax ) = (iax )P, one can also look for a similarity 

solution of scaling type. Compatibility with the integral 
equation fixes the behavior of F: 

1 -F(x,t) = -f(xt -IIP)=t -IIPf(xt -lip), 
x 

in case (A), (B), (B'), (D), 

F (x,t ) = X- 1/2l(xt --lip) = t -1/2p f(xt -lip), 

in case (C). 

Indeed, N scales like X-I, and like Fin case (A). Similar
ly, N scales like F 2x in case (B) and (B'), like F2 in case (C) 
and like F3X 2 in case (D). More complicated ansatzes can 
also be found in some cases. If F satisfies an ODE which is 
obtained by such an ansatz, the correct operator !f is found 
by using the same reduction. For instance, if 

F(x + y;t) = t -lip f«x + y)t -lip), 

K (x,y;t) = t-llp %(xt --lip ,yt -lip), 

the operator ia, leads to the operator 
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- i/p!/ + sea/an + 11(a/a11)] where 

s=xt- t/p , 11=yt-t/P • 

(iv) The equation a x at F = J.F, J. constant, does not lead 
directly to a differential equation for u but to an integrodif
ferential equation. However, by changes of variables it is 
then possible to recover the sine-Gordon and sinh-Gordon 
equations from case (B) and the equations of the massive 
Thirring model from case (C). Here also, ODE's can be 
found from the PDE using either the traveling wave or scal
ing similarity ansatz. 

Consider next the differentiability of K. It is convenient 
to define 11 = Y - x, so that (2.1) becomes 

K (x,x + 7J) = F(2x + 7J) + I" K (x,X + (;) 
XN(x;x + ~;x + 11)d~, 11>0. (2.8) 

Now Fmust be differentiable, by (2.4). We may assume as 
well that for fixed (large enough) x, (/ - A,) is invertible and 
its inverse is bounded and therefore continuous. Then (2.8) 
definesK (x,y) as an element ofa certain function space. We 
also assume that the operators defined by taking x or y de
rivatives of A x are defined on this same function space. Then 
derivatives of K are defined by forming the appropriate dif
ference quotients in Eq. (2.8) and taking limits. In this way, 
the following results can be established: 

(i) a'iK (x, x + 11) exists and may be computed directly 
from Eq. (2.8) in terms of a"F, a"N, and K. 

(ii) For 7J > 0, ax K exists; it is the solution of an equation 
of the form 

(1 - Ax)(axK) = R (x, x + 11). 
(iii) The procedure in (ii) fails at 11 = 0, and Eq. (2.3) 

shows that K is discontinuous there. However, (ax + a'I)K 
exists along 11 = 0, and (axK) exists as a one-sided derivative 
there. 

(iv) Higher derivatives can be established in the same 
way, provided the required derivatives of F are sufficiently 
well behaved. 

After these preliminary steps, it remains to establish a 
"dictionary" for each linear equation, and to apply !£' 2' This 
is the heart ofthe method, which we illustrate with examples 
in the next section. 

3. EXAMPLES 
A. Modified KdV and Painleve II 

Consider the linear integral equation (2.1) for case (B). 
If .2' I = (ax - J v )' then we may write the solution of 
!t' ,F = 0 asF = P«x + y)!2), and put Eq. (2.1) in the form 
(a = ± 1) 

K (x,y) = F( x ~ Y ) 

+ ; f.r K(x,Z)F( ~: u )F( u ~ Y )dZdU. 

For this example, the second operator for F (x, t) is 

(3.1) 

We begin by constructing a dictionary, which we will again 
use in example B. 
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We shift the origin to avoid boundary terms 

K(x,y)=F( X;y)+ ; f 1'" K(x,x+~) 
XF(2x+f+11 )F( x+~+y )d[;d7J' (3.2) 

or 

whereAx is defined a~ in (2.3). Defining 

Kix,z) = 1'0 K(x,x + ~)F( x +; +z )d~, (3.3) 

one easily shows that 

(1 - aA x)K2(x,Z) = i oo 

F( 2x:~ )F( x +; + Z )d~. 
(3.4) 

It is convenient to write the integral equation (3.2) as 

K (x,y) = F( x : y ) 

+ ~ f" K2(x,x + 7J)F( x + ~ + Y )d11. (3,5) 

Applying the operator (ax - ay ) to (3.5) yields 

(ax -ay)K(x,y) 

= ; L~ [(at + a2)Kix,x + 7J)]F( x + ~ + Y )d11' 

(3,6) 

where at and a2 are derivatives with respect to the first and 
second arguments of K 2, respectively. Similarly, applying 
(ax + aJ to Eq. (3.3) yields 

(ax + aJKix,z) 

= 1°C {cal + a2)K(x,x + ~)F( x +; + z ) 

+ K (x,x + (;) r( x + ; + Z ) }d~ 
(~' ( + ~ + ) =)0 [(a t -a2)K(x,x+{;)]F x 2 z d~ 

-2K (x,x) F( x : z ). (3.7) 

Substituting (3,6) into (3.7), we see that 

(J - aAx)(ax + aZ>Kz(x,z) 

= -2K (x,x)F ( x; z ) 

= -2K (x,x)(/ - a Ax)K (x,z). 

Substituting (3.7) into (3.6) leads to 

(/ - aAx)(ax - Jy)K(x,y) 

_ ~ K(X,X).C F(2X;7J)F( x+~+y )d11 

a 
- -K(x,x)(/ - aA x)K2(x,y). 

2 

Note from (2.3) that Ax commutes with multiplication by a 
function of x only. Thus, if (/ - aAx) is invertible, we have 
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proven that 

(ax + az)KzCx,z) = -2K (x,x)K (x,z), 

U 
(a, - ay)K (x,y) = - 2 K (x,x)Kz(x,y). 

(3.8) 

There are the results expected from the inverse scattering 
analysis [Ref. 2, Eq. (4.46)]. However, here we obtained 
them using only invertibility of (1 - oA x )' which is a much 
weaker condition than what is required to apply the usual 
analytic approach. 

Now apply (ax + ay) to (3.2): 

(a, + ay)K(x + y) = F' + ~ f f" [(a l + a2)K(x,x + Z)]F( 2x + f + 17 )F( x + i + Y )d; d17 

+ ~ f f" K(x,x+;)(ax +ay)[F( 2x+f+17 )F( X+i+
Y 

)]d;d17. (3.9) 

However, 

(ax + ay)F( 2x + f + 17 )F( x + i + y ) = F'( 2x + f + 17 )F( x + i + y ) + F( 2x + f + 17 )F'( x + i + Y ) 

=2a'1{F( 2x+f+17 )F( X+i+ Y )}. (3.10) 

Performing the 17 integration in (3.9) leads to 

(I-UAx)(Jx+aJK(X,y)=F'(X;Y)- ~ 1'" K(x,x+;)F(2x+;)d;F(x+y) 

=F'( X;Y)_ ~ Kix,x)(I-uAx)K(x,y), 

i.e., 

(3.11 ) 

This completes the dictionary required for this problem. 
The final step makes use of the fact that F satisfies (3.1), i.e., L2F = O. Apply the operator L2 = {at + (ax + ay)3) to 

(3.2): 

[at + (ax + ay)3)K(x,y) = 0 + ~ [at + (ax + ay?) f 100 

K(x,x + ;)F( 2x + f + 17 )F( x + i + Y )d17 d;' (3.12) 

The terms on the right side of (3.12) proliferate when the differentiation is performed under the integral, but several simplify
ing cancellations occur. For example, using (3.1) leads to 

(a, + (ax + ay?)F( 2x + f + 17 )F( x + ~ + y ) = 6a1} [F'( 2x + f + 17 )F'( x + i + y )]. 

It follows that (3.12) is equivalent to 

(I-uAx){a, + (a, +aynK(x,y) = - 3; [ax 1'" d;{ a l ;a2 K(X,X+;)}F(2x;;)k( X;y) 

_ 3; [axKz{x,X)]F'( x; y). (3.13) 

However from (3.8), 

ax K2(x,x) = - 2K 2(X,X), 

and 

ax (00 d;F( 2x +;) a l + a2 K(x,x +;) = ax [(ax - ay)K2(X,y)Jy~X J[l 2 2 

= [(ax + ay)(ax - ay)K2(x,y)]y=x 
= (ax -ay ){ -2K(x,x)K(x,y)!.v=x 
= -2 [axK (x,x)]K (x,x) + UK2(X,x)KzCx,x). 

Then using (3.2) and (3.11) and the invertibility of (1 - uAx )' (3.13) becomes (for y>x) 

{at + (ax + ay)3JK(x,y) = 3uK (x,x)K(x,y)a,K (x,x) + 3uK 2(x,x)(ax + ay)K(x,y). 

Ifwe define 

q(x, t) = K (x, x;t) 
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and evaluate (3.14) alongy = x, then 

a,q + a!q = 6uq2qx, 

i.e., q satisfies the modified Korteweg-de Vries equation. 
(3.16) 

Thus, every solution of !l:'iF = 0, i = 1,2 [i.e., Eq. (3.1) withF = F «x + y)/2)] that decays fast enough asx--oo defines 
a soluti?n ofEq: (3.16~, via.the linear integral equation (3.2). No global properties (on - 00 <x < 00) are required. A special 
case of mterest IS obtamed If F and K are self-similar: 

K (x,y;t) = (3t t l/3 %( S,1/), F( x ; y ;t) = (3t )-1/3 Y( s; 1/ ). 

where 

S = x/(3t )1 / 3, 1/ = y/(3t )1/3. 

substituting these into Eq. (3.2) shows that K satisfies an equation of the same form: 

%( 5,1/) = Y( s ; 1/ ) + : f L" %( s,OY( ; ; ¢ )Y( ¢; 1/ )d; dtf;, 1/>5' 

Substituting (3.17) into (3.1) yields 

.'7'''(5)- [5T (5)+5Y '(5)] =0, 

which can be integrated once: 

·5'''(s) - sY(5) = CI · 

If C, = 0, the solutions of (3.19) that vanish as S - 00 are multiples of the Airy function: 

.'7 ( 5 ; 1/ ) = r Ai( S ; 1/ )-

Meanwhile, Q( s) = %( S' s) must solve the similarity form ofEq. (3.16): 

Q ", - [Q + sQ'] = 6(JQ 2Q', 

which can also be integrated once: 

Q" = sQ + 2uQ 3 + C2• 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

This nonlinear ODE is the second equation ofPainleve (PH)' What we have shown here is that every solution of the linear 
integral equation (3.18), in which Y is defined by (3.19), is also a solution of(3.21). 

In particular, ifC I = 0 then it follows from (3. 18) that Q (s) is exponentially small ass-oo , so that Cz vanishes in (3.21), 
which becomes 

Q" =sQ+2(JQ3. (3.22) 

Then if (3.20) is used in Eq. (3.18), a One parameter family of solutions of (3.22) is obtained from the solutions of 

[1 - (JrAI; ]%( S,1/;r) = r A{ 5; 1/ ). (3.23) 

where 

As/(1/) = ~ f f' l(s)Ai( ; ; tP )A{ tP; 1/ )d; d¢, 

using Q (s; r) = %( S' s; r). This result was first obtained in Ref. 3. Let us now show how simple it is to obtain some of the 
global properties of these solutions of (3.21) that decay like r Ai( 5) as s-- 00 (see also Ref. 10). 

(i) The only singularities of these solutions in the complex plane are poles. This result was first obtained by Painleve (cf. 
Ref. 11), using his a-method. It follows from (3.23) by using the Fredholm theory of integral equations (see Ref. 6 for details). 
A direct consequence of this theory and the fact that the Airy function is entire is the fact that the solution ofEq. (3.23) can 
have only poles. 

(ii) For (J = -1, the solutions of(3.22) that vanish as s- + 00 are bounded for all reals and for all real r. For reals, AI; 
is a positive operator (as shown in Sec. 4). Hence, for real r, (1 + r As) is always invertible, and the solution of(3.23) exists and 
is bounded (cf. Ref. 12). 

(iii) For (J = + 1, the solutions ofEq. (3.22) that decay as s-oo are bounded for all reals if -1 < r < 1. Ai(1/) is an L2 
function on ls. (0), for every realS' As shown in Appendix B, it then follows that As is bounded on L2 ([ S, (0»: 

a(5)=\\\As iiiL,(\s.oc»= sup 1I~~~2 <:1. 
fEL,([S. oo)} 

(3.24) 

with a( S )-0 as S .... + 00. a( 5 )_1 as S .... - 00, and a( 5) monotonically decreasing for 5 real. Thus. for - 1 < r < 1, 
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Illr~"IL,<r<l, 
(I - r ~ ) is invertible for all real t, and 

111(1 - rAt)-IIIIL, «I - rtl. (3.25) 

(iv) For (7 = + 1, r> I, there is a real to such that III~, I' IL2 = l/r. The solution ofEq. (3.22) that vanishes as t~oo is 
finite for real S> to. The result also follows from (3.25). We suspect, but have not proven, that Q( S) has a singularity (and 
therefore a pole) at So. 

(v) In the general case, C I ¥:O in (3.19) and 

F(n-CI/S, asS~oo. (3.26) 

As shown in Appendix A, this decay rate is enough to establish that (I - (7A,,) is invertible for x large enough. Then (3.18) 
provides a family of solutions of (3.21). 

It may be worth mentioning that it was not necessary to obtain (3.21) via (3.16). The operator 
(I + tat + 1la", - (at + a",)3] when applied to (3.18) leads directly to (3.21). However, the algebra seems slightly simpler by 
the present route. 

B. Sine-Gordon equation and Painfeve '" 

The appropriate integral equation is still (3.2), but now F satisfies 

.!f zF = - axa,F(x,t) + F(x,t) = O. 

The dictionary constructed above still applies, but two additions are needed. First, from (3.4), 

(I - (7A x )a,Kz(x,z) = a, i'" F( 2x: t )F( x + f + Z )dt 
+ : f'" i Kix,x + oa, 

X{F( 2x+f+1l )F( x+~+Z )}dtd1l' 

Second, it foI1ows from (3.27) that 

F( 2x+f+1l )[a,(a" +ay)F( x+~+y)] =F( 2x+f+1l )F( x+~+y) 

= (a,(ax +a",)F( 2x+f+1l )]F( x+~+y). 

(3.27) 

(3.28) 

(3.29) 

Now apply.!f2 = [I - a,(ax + ay)] to (3.2). Suppressing all arguments, the result may be written schematically as 

.!f2K =0+ : f f (.!fzK)FF- : J J (a,K)(ax +ay)(FF)- : J J [(al -az)K]a,(FF) 

- ~ f f (a2K)a,(FF) - : f f Ko, [{(ax + oy)F}F] - : f f Ka,{F(ax + ay)F}. 

Use (3.10) to integrate (once) the second nonzero term on the right. Use (3.8) to simplify the next term. The next two terms 
may be combined and then integrated once. Use (3.29) to simplify the last term, and it may be integrated as welL The results 
may be combined and written as 

(I - (7A x ).!fK(x,y) = ~ F( x ~ y )o,K2(X,x) + ~ K(X,X)[ : f f Kza, (FF) + aJ FF]. 

Then using (3.2) and (3.28) and the invertibility of (I - (7A x), we obtain 

(7 (7 
[I-a,(ax +Oy»)K(x,y) = T [o,Kz{x,x»)K(x,y) + T K (x,x)[a,K2(x,y»). 

Ony =x, set 

q(x, t) = K (x, x; t ), R (x, t) = Klx, x; t ), 

and (3.30) becomes 

q - qx, = (7qR,. 

Also on y = x, (3.8a) becomes 

Rx = _2q2. , 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

These are the same equations generated by the 1ST ap
proach. 2 If desired, they can be combined into a single inte-

groditferential equation for q. They may be related to the 
sine-(sinh-) Gordon equation through a somewhat obscure 
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transformation. Define 

a 
q = - uAx,t). (3.34) 

2 

Ifa= +1, set 

R = a r (1 - cosh u)dr (3.35) 

and note that (3.32) and (3.33) are both satisfied if 

uxr = sinh u. 

Similarly, if a = -1, set 

R = a r (1 - cos u)dr 

and find that 

u" = sin u. 

(3.36) 

(3.37) 

(3.38) 

We emphasize again that the solutions of (3.36) and (3.38) 
obtained via (3.2) need not satisfy any of the global 
( - 00 <x < 00) requirements inherent in 1ST. 

Now let us consider the self-similar form of these re
sults. Let 

F(x, t) = tY(5), 

where S = xl. It follows from (3.27) that 

s.7" +2Y' - Y = o. 
For s>O, if we set 

S = (p/2)2, Y( 5) = p-lg(P), 

then (3.40) becomes Bessel's equation: 

p2g" + pg' _ (p2 + l)g = O. 

(3.39) 

(3.40) 

(3.41) 

For the linear integral equation, we will need the solution of 
(3.41) that decays as p~oo, so that 

.5r(5)~cs-3/4exp(-2sl/2), S~oo. (3.42) 

Corresponding to (3.39), set 

K(x,y, t) = t%(5, 11), (3.43) 

where 11 = yt, and (3.2) becomes 

%(5,1I)=.r( S;lI)+ ~ fi oo 

%(5,5+~) 
XY( 2s + f + J/l ) 

X Y( 5 + ; + 11 )d~ dJ/l, 11>0. (3.44) 

With Y defined by (3.40) and (3.42), % is then defined by 
Eq. (3.44). Let 

Kix,y; l) = l%is, 11), ~(s) = %is, s), 

Q(5) = %(s,s), U(s) = u(x, t). 

Then (3.32) and (3.33) become, respectively, 

sQ" +2Q' - Q+ (}"Q(~s)' = 0, 

R' +2Q2=O. 

(3.45) 

(3.46) 

If desired, these can be combined into a single third-order 
equation for Q. In any case, every solution of the linear inte
gral equation (3.44) also provides a solution of this third-
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order system of nonlinear ODE's. 
To obtain the third equation of Painleve (PIlI)' set 

Q(S) = !!... U'(s) = Va (In W(5))'. (3.47) 
2 2 

Then either (3.36) or (3.38) yields Pm: 

W" = ..!.. (W')2 - ..!.. w' + _1_ (W 2 - 1) (3.48) 
W S 2S ' 

and solutions of this equation also can be obtained via (3.44). 
Two immediate conclusions about these solutions of (3.48) 
are the following: 

(i) The solutions of(3.48) that decay as s~oo may have 
a fixed branch point at S = 0, but have no movable singulari
ties other than poles. The possible branch point at S = 0 is 
evident from (3.48). As shown in Ref. 6 (cf. Sec. 4), the decay 
rate in (3.42) insures that Fredholm theory applies to (3.44), 
and its solution can have only poles, apart from whatever 
fixed singularities Y may have (at S = 0 in this case). Thus, 
Q has only (simple) poles, and from (3.47) this is true of Was 
well. (This result, of course, is consistent with that of Pain le
ve. ll) However, it is not true of U (S), which has movable 
logarithmic branch points. This shows an important aspect 
of the conjecture formulated in Ref. 5. The nonlinear PDE's 
solved by 1ST are (3.32) and (3.33), and their similarity solu
tions (i.e., Q) have the Painleve property. The sine-Gordon 
equation is a consequence of (3.32) and (3.33); its similarity 
solution (i.e., U, which is the integral of Q) has movable 
logarithmic branch points which were introduced by (3.47). 

(ii) There is a So large enough that Eq. (3.44) has a 
convergent Neumann series for 11>5> 50: 

% = ! (aA t )"Y. (3.49) 
n=O 

Naturally, this also dictates the behavior of W ( s) for S > So' 
50 must be large enough that I I lAs I I IL2 < 1 for s>So. The 
rapid decay given by (3.42) makes it fairly easy to find an 
adequate 50' This result was first obtained in Ref. 13; the 
proof given there required 133 numbered equations and 22 
figures! [To put their work in perspective, we should also 
note that they obtained global connection formulas for 
(3.48) by their approach.] 

C. Derivative nonlinear Schr()dinger equation and 
Painleve IV 

Consider a different linear integral equation 14: 

K (X,y) = F*(x + y) 

+ J 100 

K (x,s)F'(s + z)F*(z + y)dz ds. 

(3.50) 

Here we have already assumed that .Y IF = (ax - ay)F 
= O. From this we must develop a new dictionary. Define 

K T(x,z) = IJ'o K (x,s)F '(s + z)ds. 

Then one may show that 

(ax - ay)K (x,y) 
= - 2K (x,x)K2(x,y) + 2ilK (x,xWK (x,y), 
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(Jx + Jy)K ~(x,y) 
= 2ilK (x,xWK ~(x,y) -2iK (x,x) JyK *(x,y). 

Let F (x + y; f) also satisfy 

sP 2F = ia,F +4 a;F = O. (3.53) 

Then one may show, using the present approach, that the 
solution of (3.50) satisfies 

iJ,K (x,y) = (Jx + Jy)2K (x,y) 

-4iK(x,x) [JxK*(x,x)] 

XK(x,y) +8IK(x,xWK(x,y). 

If q(x) = K (x, x), then 

iJ,q = J;q -4iq2q; + 81q14q. 

The similarity form is in this case 

F(x, t) = (2f ylt4y( n, s = x/(2t )1/2. 

Then if we define 

K(x,y; t) = (2tt1!4%(S, 1]), 1] =y/(2t)I/2, 

q(x, t) = (2t )-1/4Q ( S), 

then (3.55) becomes 

(3.54) 

(3.55) 

- isQ' - i Q = Q" -4iQ2(Q*), +81Q 14Q. (3.56) 
2 

This equation can be transformed into the fourth Pain
leve transcendent (PlY) by writing 

Q=pei8
, 

pe" +2p'e' _4p2p' + sp' + i = 0, 

p" + pe ,2 -4p3e ' +8p5 - spe ' = O. 

(3.57) 

The first equation can be integrated once after multipli
cation by p: 

p2e' _ p4 + sp2/2 + C = 0, 

which gives e' in terms ofp2. Then defining u = pi and sub
stituting for its expression in terms of u, 

u" - (u'? +6u3 + 4U2S+ (12C+ L)u _ 2C
2 

=0. 
2u 2 u 

(3.58) 

This equation defines the fourth Painleve transcendent, after 
scaling u and S. Thus, one more inverse scattering problem 
has been shown to be connected with an equation ofP-type. 

4. INVERTIBILITY 

The method presented here relies fundamentally on our 
being able to invert (1 - Ax)' In this section we discuss some 
methods to prove invertibility. 

There are cases where the power of Fredholm theory 
can be used to explicitly invert the operator (/ - Ax) any
where in the complex plane except for fixed cuts and mov
able isolated points X i •

6 Moreover, one can prove that the 
movable singularities at the Xi'S are poles. 

The conditions for applicability of Fredholm theory are 
the existence of a region along the positive real axis, say a 
strip of finite width, such that for any path C with x as one 
end point and going to infinity in this region, the following 
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hold: 

IN(x;y, z)1 <M(x;y) for allz 

for some M such that i M (x~) dy < + 00, 

f F(x + y)M(x~)dy< + 00. 

This is satisfied in many cases where the decay of F(and thus 
N) is exponential provided its argument goes to + 00 in a 
strip. For example, this was the case in Sec. 3 in example (A) 
if C1 = 0 in (3.19), and in example (B). 

There are cases, however, where these conditions are 
not satisfied, but where it is still possible to prove that 
(I - A x) is invertible in some L p space to which F belongs. 
For instance, (1 - Ax) is certainly invertible, (1 - Ax)-l 
bounded, if ( - A x) is a positive operator. In case (B) of Sec. 
2, if only real functions are considered, and in case (B') for 
complex functions, provided the minus sign is taken in the 
definition of N, it is enough to assume that xF(x) remains 
bounded as x~ + 00 in order to prove that ( - A x) exists 
and is positive on L2 (Appendix A). Then (1 - A x) is inverti
bieinL2, and since the boundedness ofxF(x) implies thatFis 
in L2 as well, it follows that the solution of Eq. (2.1) in these 
cases exists for all x. 

If one can find an upper bound to A x in some L p space 
to which Fbelongs, one can again prove something about the 
invertibility of (1 - A x), We must remember here that F sat
isfies some linear differential equation and that it is always 
possible to multiply F by some number A. Of course, the 
solution of (2.1) is not just multiplied by A since it is not 
linear in F. 

Let us choose one solution F of the relevant linear equa
tion. If there exists some Lp space that contains F and on 
which Ax is bounded, then the function a(x), defined by 
(3.24), is certainly a monotonic nonincreasing function of x 
and limx~oo a(x) = O. This will be true in cases (A), (B), (B'), 
and (D) for p = 2 provided xF(x) remains bounded as 
x~ + 00, and in case (C) for p = 4 provided x 1!2F (x) and 
X

3
/
2 F' (x) remain bounded as x- + 00 (Appendix A). There 

are cases where 

lim a(x) = C < + 00 (Appendix B). 
X-+- 00 

Then, for all A such that IA I < C -I the operator (1 - AA x) is 
invertible in the appropriate Lp space, for all x, and 
(1 - AAxt l is bounded by(1 - IA ICt t

• The solution of(2. I) 
whereFis replaced by A I(rP[r = I in case (A); 2 in cases (B), 
(B'), and (C); 3 in case (D)] exists for all values of the argu
ment. Thus, we are again in a case where we find global 
existence of the solution with a restriction on F. If ( - A x) is 
positive, the solution of (2.1) exists for all decaying F's. 

Iflimx~ _ 00 a(x) = + 00, however small A is, we can
not prove global existence by this approach. However, define 

Xo = sup{xla(x»1!IAII· 

Then for all x > xo' (/ - AAx) is invertible. Thus, for alIA one 
can find some interval (xo, (0) on which (1 - AAxt l exists 
and is bounded, and therefore continuous. 
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APPENDIX A 

We will prove that provided xF (x) remains bounded as 
x_ + 00, the operator B x defined on Ll by 

(Bxg)(y) = L'" g(u)F(u + y)du, y>x, 

= 0, y<x, 

exists and is bounded. 
This result on B x will give us information on cases (A), 

(B), (B'), and (D) since the relevant operators Ax as defined 
in Sec. 2 are, respectively, Bx, aB~, aB!Bx' andB~, where 
B: is the adjoint of B x . This is enough to prove that ( - A x) 
is positive in cases (B) and (B') if only real functions are 
considered. It also gives an upper bound to 

a(x) = IIIAxIIILl' 
The idea is to prove that B xg is in L2 by bounding it and 

using Fubini's theorem to show that the integral 

J = f+"x dy(Bxg)*(y)(Bxg)(y) 

exists and is bounded. 
We assume that xF (x) remains bounded as x- + 00. 

More precisely, this means that there exists some Xo and M 
such that 

IF(z)l< M , for z> 2xo. 
z- 2xo 

(AI) 

Note that in (2.1) the argument of Fis never smaller than 2x. 
From now on, we take x>xo' 

Consider the integral 

1 = L" 100 

1~ Ig(y)llg(z)IIF(y + u)IIF(z + u)1 du dy dz. 

(A2) 

The convergence of this integral implies that the integral J is 
absolutely convergent and J<I. However, the integrand of 1 
is positive and by Fubini's theorem it is enough to prove 
integrability for some choice of the orders of integration. In 
Eq. (A2) integrate in u first, using relation (AI): 

I< M2i oo i'" dz dylg(y)llg(z)1 

i oo du 

X x (z + u - 2xo)( y + u - 2xo) 
The last integral in (A3) is explicitly calculated: 

In(z + x - 2xo) - In(y + x - 2xo) 

z-y 

Changing variables by 

er = z + x - 2xo' eS = y + x - 2xo, 
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(A3) 

gives 

1
00 

1'" I<M2 e'dr eSds 
Jn2(.~ - Xo) In2(x -- Xo) 

X Ig(er +2xo - x)llg( eS +2xo - x)1 
r-s 

Define 

y(r) = e'/2g(e' +2xo - x), r> In2(x - xo), 

= 0, r < In2(x - xo). 

Then 

(A4) 

Ilyll~ = f+ 00

00 

ly(rWdr = L:<x- xu) dr erlg(e
r 
+ 2xo - xW 

= LYe Ig(z)lldz<llgll~. (AS) 

Thus, yELl and IlyIl2<llgllz' Then 

1<Ml (00 dr rYe ds 
Jln2(X - Xn) Jln2(X - Xo) 

r-s 
X I y(r) I I y(s) I e(r-sl/2_

e
(s-r)ll' 

Observe that the function 

t 

~ (t) = 2 sinh(t 12) 

is in LI and 

II~ /II = rloc'" ~ (t )dt = -rr. 
Since sEL I and yELz' 

by Young's inequality. 
Thus, 1 exists. Since J <I, J is absolutely convergent. 

Hence, 

(Bxg)ELz' /lBx gIi2<M7Tllg/l2' 

and IllBx II ILl <M7T for x>xo' 

however, M depends on Xo and it is not generally possible to 
find a finite upper bound to IllBx III for all x. 

Nevertheless, this proves that in cases (A), (B), (B'), 
and (D), whenever xF(x) remains bounded asx_ + 00, the 
operator (1 - AAx) is invertible on (xo, (0) for some A. The 
same can be proven in case (C) but the condition is now that 
Xi/1F(x) and X3

/
2F'(x) remain bounded. To show this, sup

pose that 

M N 
IF(z)l< , 1F'(z)l< (z -2x

o
?/2 ' 

y' z -2xo 
for z> 2xo. (A6) 

We will prove that the operator Ax exists and is bounded on 
L 4. For this we consider gEL4 and hEL4/3 • We will again show 
by using Fubini's theorem that 

(h,Axg) = r+ 0000 h *(y)Axg(y)dy 

is absolutely convergent by bounding the integral 
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1= i+ 00 i+ 00 i+ 00 Ih (y)1 Ig(z) I 1F'(z + u)1 

IF(y + w)ldu dy dz, 

I<H=MNi'" LX> Ih(y)llg(z)1 

(00 du 
X Jx (z + u _ 2x

O
)3/2( Y + u - 2xO)I/2 

The idea is again to perform the u integration first, and 
to define new independent and dependent variables 

x+y-2xo=e', x+z- 2xo=es
, 

T/(l) = e31/4h (e' + 2xo - x), r(t) = e'/4g(e' + 2xo - x), 

t>ln2(x - x o), 

T/«( ) = 0, r(t) = 0, 

( < In2(x - xo). 

We now have 

T/EL4/}, 1lT/1/4/3<lIh 114/3' rEL4 and IIrIl4<llgI14' 
H can be rewritten as 

H = MN L:(x _ x,,) dr L:(x _ Xo) dslT/(r)llr(s)1 

1 (r-s) X T sech -4- . 

The function 

fJ (z) = ~sech(zi 4) is in L I and IlfJ III = 41T. 

Then by Young's inequality 

or 

H <MN II T/1I4/3 II rll4/1fJ III, 
J<I<H<41TMNllh 114f3I1gI14' 

(h,Axg)<41TMN Ilgll4' 

IiAxgli4 = s~p IIh 114/3 = 1, 
lIE·:/" 4 

APPENDIX B 

Let 

AJ(y) = ~ i~fg)A{ ~; Tf )A{ Tf ~ Y )dT/ d~. 
(Bl) 

We want to show that a(x)< 1 for all real x, where a(x) is 
defined by (3.24). If x <z, then L 2 [x, (0) ::::>L2[z, (0). There
fore, a(x) is a nonincreasing function of x, and a(x)--.-O as 
x~ 00. Therefore, it is suficient to show that a(x)< 1 as 
x-- - 00. 

Consider 

Bx fey) = ~ roo f(Z)Ai( z + y )dZ, 
2 j, 2 

(B2) 

Bx f(2q) = L:f(2P)Ai(P + q)dp. 
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We will show that B _ '" exists on L 2( - 00, (0) and that 
I I !Be, IIIL, < I liB - '" IIIL, = 1. For fELz, define 

I (f) = (f,B - ",f) 

= ~ Joo f*(Z)f(Y)Ai( z + y )dZdY . (B3) 
2 - '" 2 

Because B __ '" is symmetric and real, 

IIIB III = sup I(!) 
L, /EL, 111112 . (B4) 

In the sense of distributions, the Fourier transform of 
the Airy Function is (l/v21T)exp(ik 3/3). This means that 
we can formally replace Ai(z + y 12) in I by 

I 1+oodk 1 eik'l3eik(z+y)/2 

V21T - '" V21T 

and interchange the order of integration. Thus, 

I = ~ I + '" dk eik '/31 + '" I dz 
2 - 00 - '" V 21T 

xJ+ 00 1 dyf*(y}f(y)eik(z+Y)!2, 

- '" V 21T 

I = ~ I + 00 dk eik '/3lc - k !2)/*(k 12) 
2 -00 

<~1+oo dkli(-k/2)111Ck/2)1, 
2 -00 

where lis the Fourier transform off By Young's inequality 

I<J_+",'" ~k l](k/2W = 1I1W = 11111;, 
the last equality being Parseval's identity. Equality is at
tained, for instance, for 

l(k) = e +4ik '/3¢ (k), 

with ¢ (k) real even, and EL2• 

It follows from this last remark that 

IIIB __ 00 JilL, = 1. 

Now A x = B ;; therefore 
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This paper further develops the connection between partial differential equations solvable by 
inverse scattering methods and ordinary differential equations of Painleve type. The main result 
given here is that Painleve equations have a concise algebraic formulation [L,B] = L when written 
in the Lax representation. 

1. INTRODUCTION 

This note is a supplement to the preceding work 1 of 
Ablowitz, Ramani, and Segur (ARS). That paper deals with 
classes of Painleve-type equations solvable by linear integral 
equations; the nonlinear o.d.e.'s are there derived by a "di
rect method" related to the Zakharov-Shabat technique for 
identifying integrable evolution equations. 2 Some time ago, 
while trying to understand the original paper of Ablowitz 
and Segur3 on Painleve equations and inverse scattering, I 
had observed that by scaling the time tout of the Marchenko 
equations of the general inverse problems treated by Zak
harov and Shabat, one could generate and "solve" (in the 
sense of reduction to a Volterra equations) a whole series of 
nonlinear o.d.e.'s. The resulting method is a straightforward 
adaptation of the Zakharov-Shabat technique, and the Pain
leve equations are simultaneously derived and linearized. 
This variant of the ARS ideas is perhaps of methodological 
interest in that it provides a different perspective on the ma
terial in earlier papers. 1,3-5 The real point, however, lies in 
the final algebraic formulation of the Painleve-type equa
tions; they appear as a condition on the commutator of two 
differential operators, namely, 

[L,B] = L. (1) 

As example, take L = D 2 + feD = d /dx) and 
B = D 3 + Gf + !x) D + U'. Then Eq. (1) becomes 

fm +6jJ' -4f +2x!, = 0, 

which is the equation governing the self-similar solution 
q(5,t) = (3t)-2!3j(5(3tt I/3)ofKdV,q, + 3qqs + 1qm = O. 

It is well known that the general Zakharov-Shabat 
equation in one space variable can be written in the Lax 
representation 

[L,A ] + L, = O. (2) 

The stationary solutions of Eq. (2), which include the n
soliton and n-phase quasiperiodic solutions ofEq. (2), satisfy 
the commutator equation of the form 

[L,B] = o. (3) 

Equation (3) is essentially an algebraic equation (which 
makes sense even in the setting of differential operators over 
commutative rings). With some constraints on the orders of 
Land B, Eq. (3) implies the existence of a polynomial Q (/,b) 
such that 

Q(L,B) = 0, 

and the explicit solution ofEq. (3) reduces to function theory 
on the algebraic curve Q (l,b ) = O. The case of arbitrary L,B 
leads to vector bundles of rank ;;. lover compact Riemann 
surfaces.6 It is intriguing that another algebraic condition 
[L,B] = L appears to be intimately related to the Painleve 
equations which, together with equations for elliptic func
tions [included among Eq. (3)] and certain elementary 
o.d.e.'s, essentially exhaust all known "well-behaved" non
linear o.d.e.'s. 

A hint of the function-theoretic significance of the 
equation [L,B] = L can be gotten from the following consid
erations: On the one hand, differentiation of the eigenvalue 
equation Lv = ;v with respect to ; leads to 

(L - b)vs = v. (4) 

On the other hand, application of[L,B] - L = 0 to an eigen
vector v gives 

LBv - bBv - bV = 0, 

or 

It follows from Eqs. (4) and (5) that (l!;)Bv = Vi; - ii, 
where v is an appropriate solution of Lv = bV. So bV; 

(5) 

= Bv + bV. Typically, Bv can be re-expressed in terms of;, 
if one replace x derivatives of v by multiples of b according to 
Lv = bv. The result is an equation governing the dependence 
of von the eigenvalue parameter;, e.g., 

(6) 

where B ( b) is some matrix depending polynomially on ;. A 
forthcoming paper by Alan Newell and me7 will discuss the 
relevance of certain systems of the form (6) to Painleve equa
tions. The structures which emerge are again very algebraic, 
and in fact reminiscent of the vector-bundle theory associat
ed with [L,B] = O. [The analysis in Ref. 7 centers on the 
behavior of solutions of Eq. (6) near irregular singular 
points.] 

The only object of the present note, however, is to get as 
far as [L,B] = L. To shorten the discussion, which in any 
case is formal and straightforward, I will assume familiarity 
with ARS 1,4,5 and with the paper of Zakharov-Shabat. 2 It 
should be noted that some of the equations below in abstract 
form might reduce to "0 = 0". The Zakharov-Shabat meth
od can impose too many interrelated conditions on the trans
formation kernels K ± (x,y), the kernels F(x,y) of the Vol-
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terra equations, and on the unknowns themselves. Even if 
everything else is consistent, the analysis of the resulting 
Volterra equations may be highly nontrivial. 1.3,4,8 It is best to 
think of my variant of the ARS method as providing prob
able Painleve-type equations, with more detailed investiga
tions being required in specific examples. 

Finally, it should be kept in mind that (as with inverse 
scattering in general) there will be various ways of deriving 
and linearizing Painleve equations-some more efficient 
than others, depending on the example considered. For ex
ample, the technique of Newe1l9

,lO (modelled explicitly on 
inverse scattering) leads very quickly to families of nonlinear 
o.d.e.'s equivalent to the ones discussed here. 

2. RESULTS 

Following Ref. 2, consider an integral operator F: 

(Ft/l)(x) = f~ 00 F(x,y)t/l(y) dy, 

which admits a triangular factorization 
r.. -" -" 

1+ F = (I + K + )-1(1 + K _ ). (7) 
/>. 

K ± are upper and lower triangular Volterra operators. (In 
what fol~ws, I will not distinguish notationally between op
erators F and their kernels F). Zakharov-Shabat introduce 
(matrix) constant-coefficient linear operators L o, Do of the 
form Lo = lD n, Do = bD m and require that 

[Lo,Bo] = 0, (8) 

~Ld=~ ~ 

[ F,Do + :t] = 0. 

Time dependence is not relevant for the self-similar solutions 
of interest here, and the last condition is replaced by 

[F,Bo + To] = 0, (10) 

with To denoting an operator whose coefficients will general
ly depend on x in a simple fashion. 

Example 1; Lo = D 2, Do = D 3, To = !xD. Equation (8) 
is trivial, and Eqs. (9) and (10) impose conditions on the 
kernel F(x,y): 

(9)=;F" - Fyy = 0, (11) 

(10) =;Fxxx + Fyyy + !xFx + !yJFy + W= 0. (12) 

If, as is customary, we take the solution of Eq. (II) in the 
formF= F(x + y), then with x + y = S,' = d Ids, Eq. (12) 
becomes 4F'" + SF' + F = 0. 

It fonows from Eqs. (8)-(10) by a formal application of 
the Jacobi identity for commutators, that 

[F,[Lo,Tr)]] = 0, (13) 

This is a necessary condition on To, inasmuch as Fis pretty 
much fixed by Eqs. (9) and (10). One can ensure Eq. (13) 
without imposing further requirements on Fby choosing To 
so that 

(14) 

Then Eq. (13) is an automatic consequence ofEq. (9). We 
assume Eq. (14) to hold for the rest of the paper. 

Example I (continued); [D 2,!xD J = D 2. 
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There are now two additional steps in the Zakharov
Shabat method. 

Step 1; Obtain perturbations L,D, T of the free operators 
Lo,Do, To. Remembering that F, and hence K ± ' are fixed 
once and for all [subject to Eqs. (8)-(10)], we introduce 
L,D,Tby the conditions 

X (I + K.) - (I + K.)Xo = integral operator, 

where X = L, D, or T, andXo = L o, Bo, or To. This condition 
simply defines X in terms of K •. 

Example 1 (continued): From "L (/ + K.) 
- (I + K.)Lo = integral operator" follows L = D 2 + q, 

where q(x) = 2(d Idx)K.(x,x). For B one finds 

D = D 3 + WD + ~' + r, 
where 

q(x) = 2 ~o(x), rex) = ~ ~(Sl(X) + SO(X)2), 
dx 2 dx 

(15) 

with 

Sj(x) = (aa
x 

- ~)jK.(X,Y)1 (see Ref. 2). ay x=y 

Finally, T= To = !xD. 
The map Xo~X is linear; in particular, it will be impor

tant that 

(B + T)(/ + K.) - (J + K.)(Do + To) = integral operator, 

with precisely the Band T defined above. Just as in Ref. 2, 
one now has the following; 

Theorem 1; If Eqs. (8)-( 1 0) hold, then 

L (/ + K ± ) - (/ + K ± )Lo = 0, (16) 

(D + T)(/ + K ± ) - (/ + K ± )(Bo + To) = 0. (17) 

This imposes conditions on K ± (x,y); 
Example 1 (continued); Equation (16) implies the 

familiar 

a2 a2 

-K+ = -K± +q(x)K± =0, x5y. ax2 
- ayl 

This forces r = 0 in Eq. (15).2 
Step 2: integrability condition. 
Theorem 2; Suppose that Eqs. (8)-(10) and (14) hold. 

Define L,D + T as in Eq. (15). Then 

[L,B + T] = L. (18) 

As explained in the Introduction, this is the main formula of 
this paper. The proof of Theorem 2 differs a little from the 
proof of the corresponding Theorem 2 in Ref. 2, but it is still 
tedious and so is relegated to an Appendix. We now turn to 
further examples. 

3. EXAMPLES 

Example 2: Lo = !D, with I = (0 I i), Bo = -4D J, 

To = xD (times the 2 X 2 identity, of course). Then 
L =!D + C Z). The requirement r = q turns out to be con
sistent. Then D = -4D 3 +6 (q~ q; JD + (~q1' 3q", ] and 

q q .'q bqq 

T = xD. Finally, [L,D + T] = L reduces to 

'" 6 2, ()' "2 ' q = q q = xq , or q = q' + xq + c. (19) 

Equation (10) is the second Painleve equation, 1.4 which gov
erns the self-similar solution of modified KdV. The Mar-
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chenko kernel F(x,y), by Eqs. (9) and (10) satisfies 

IF, +Fyl=O, 

-4( Fxxx + Fyyy) + xFx + yFy + F = O. 

For the entries Fijof the 2 X 2 matrix F one finds 

Fll • + Fll .• = 0 from Eq. (20), 

so that Fll = FII(X - y), which turns Eq. (21) into 

SF;I+Fll=O 

(20) 

(21) 

(5 = x - y, ' = d Ids)· Fll=O is the nonsingular solution. 
Next, 

~ F'2. + F12 , = 0, 

so F'2 = F,z(x + y). With x + y = sand' = dlds, 

-SF ;'~ + SF;2 + FI2 = O. 

The solution decaying at x = + 00 is the Airy function 
Ai(5 12). Atthis point, thestudyofEq. (19)can be continued 
along the lines of Refs. 3-5 and 8. 

Example 3: Lo = D 3, Bo = D 2, To = jxD. Then 
L = D3 + ~uD + ~u' + w,B = D2 + U, T= jxD (compare 
Example 1). The resulting equation [L,B + TJ = L is some
what peculiar: 

u"" +3(u2)" + ~u + jxu' + tx2u" = O. 

As far as I know, this is not related to any self-similar behav
ior of the Boussinesq equation. (The Boussinesq equation is 
obtained from this L o, Bo in Ref. 2. 

APPENDIX: HOW TO PROVE THEOREM 2 

By definition and by Theorem 1, 

(B + T)(I + K) = (/ + K)(Bo + To), (AI) 

L (/ + K) = (/ + K )Lo, (A2) 

where K = K, or K. Multiply Eq. (A2) first on the left by To. 
then again on the right by To, and subtract: 

[To,L ](/ + K) + L [To,K] = (/ + K)[To,Lo] 

+ [To,K]Lo. (A3) 

Rewrite Eg. (AI) as 

[To,K] + (T - To)(/ + K) + B (/ + K) = (/ + K)Bo. (A4) 

Multiply Eg. (A4) on the left by L, and again on the right by 
Lo. Solve these expressions for L [To,K] and [To,K ]Lo and 
substitute into Eg. (A3). To the resulting identity add 

BL (/ + K) = B(/ + K)Lo, 
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subtract 

L (/ + K)Bo = (/ + K)LoBo, 

and use [Lo,BoJ = 0, to get 

[[To,L] + L (To - T) + [B,L ]j(/ + K) 

= (/ + K)[To,LoJ + (To - T)(/ + K)Lo· 

Now from Eq. (A2), 

(To - T)(/ + K)Lo = (To - T)L (/ + K), 

so 

([To,L] + [L,To - T] + [B,L ])(/ + K) 

= (/ + K)[To,LoJ 

=(/ +K)Lo 

= -L(/ +K). 

Multiply on the right by the operator (/ + K t 1, to get 

[To,L] + [L,To - T] + [B,L] + L = O. 

This simplifies to [L,B + T] = L, as required. 
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On the remarkable nonlinear diffusion equation 
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We study the invariance properties (in the sense of Lie-Backlund groups) of the nonlinear 
diffusion equation (a/ax)[C (u)(au/ax)] - (au/at) = O. We show that an infinite number of one
parameter Lie-Backlund groups are admitted if and only if the con ductivityC (u) = a(u + b >-2. In 
this special case a one-to-one transformation maps such an equation into the linear diffusion 
equation with constant conductivity, (a 2u/axz) - (au/ai) = o. We show some interesting 
properties of this mapping for the solution of boundary value problems. 

1. INTRODUCTION 

In recent years nonlinear diffusion processes described 
by the partial differential equation (p.d.e) 

a [ au] au - C(u)- - - =0, 
ax ax at 

(1) 

with a variable conductivity C (u), have appeared in prob
lems related to plasma and solid state physics. 1,2 Interest in 
such processes has long occurred in other fields such as met
allurgy and polymer science. 3-5 

Some exact solutions are well known for such equa
tions,6 These can be shown to be included in the class of all 
similarity solutions to such equations obtained from invari
ance under a Lie group of point transformations. 7

,8 

Recently, it has been shown that differential equations 
can be invariant under continuous group transformations 
beyond point or contact transformation Lie groups which 
act on a finite dimensional space.9 These new continuous 
group transformations act on an infinite dimensional space. 
Such infinite dimensional contact transformations have been 
called Noether transformations lO or Lie-Backlund (LB) 
transformations II (Noether mentioned the possibility of 
such transformations in her celebrated paper on conserva
tion laws 12). Well known nonlinear partial differential equa
tions admitting LB transformations include the Korteweg
deVries, 13,14 sine-Gordon,IO,15 cubic Schrodinger, 14 and 
Burgers' equations. 16 All of these known examples admit an 
infinite number of one-parameter LB transformations. 
Moreover, many of their important properties (existence of 
an infinite number of conservation laws, 13,14 existence of so
litons, 14 and existence l7 of Backlund transformations 18) are 
related to their in variance under LB transformations. 

Any linear differential equation which admits a nontri
vial one-parameter point Lie group is invariant under an 
infinite number of one-parameter LB transformations 
through superposition. Moreover, every known nonlinear 
p,d,e., invariant under LB transformations, can be associat
ed with some corresponding linear p.d.e. 

With the above views in mind we study the invariance 
properties ofEq. (1). Previously,7,8,19 it had been shown that 
Eq, (1) is invariant under 

a) a three-parameter point Lie group for arbitrary C (u), 
b) a four-parameter point Lie group if 

C (u) = a.(u + b) v, 
c) a five-parameter point Lie group if v = -~. 

[It is well known that a six-parameter point Lie group leaves 
invariant Eq. (1) in the case C (u) = const.20] 

In the present work, we show that Eq. (1) is invariant 
under LB transformations if and only if the conductivity is of 
the form 

C(u)=a.(u+bt2
, (2) 

i.e., if Eq. (I) is of the form 

~ [a-(u + b )-2 ~.] - ~ = o. 
ax ax at 

(3) 

Furthermore, this equation admits an infinite number of LB 
transformations. 

In this special case, there exists a one-to-one transforma
tion which maps Eq. (3) into the linear diffusion equation with 
constant conductiVity, namely, the heat equation 

a2ii au 
-- --= =0. (4) ax2 at 
In the course of this paper, we find an operator connect

ing two infinitesimal LB transformations leaving Eq. (3) in
variant. We prove that this operator is a recursion operator 
which generates an infinite sequence of one-parameter in
finitesimal LB transformations leaving Eq. (3) invariant. 
Moreover, we show that no other LB transformation leaves 
Eq. (3) invariant. 

By examining the linearization of Eq. (3), we are led to 
construct the transformation mapping Eq. (3) into Eq. (4). It 
is shown that this transformation maps the recursion opera
tor ofEq. (3) into the spatial translation operator ofEq. (4), 
giving a simple interpretation of the transformation relating 
Eq. (3) to Eq. (4). We use this transformation to connect 
boundary value problems ofEq. (3) to those ofEq. (4). 

We construct a new similarity solution ofEq. (3) corre
sponding to in variance under LB transformations. 
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2. DERIVATION OF THE CLASS OF NONLINEAR 
DIFFUSION EQUATIONS INVARIANT UNDER LB 
TRANSFORMATIONS 

LB transformations include Lie groups of point trans
formations and finite dimensional contact transforma
tions. II The algorithm for calculating infinitesimal LB trans
formations leaving differential equations invariant is 
essentially the same as Lie's method8 for calculating infini
tesimal point groups. 

Consider the most general one-parameter infinitesimal 
LB transfonnation that can leave invariant a time-evolution 
equation,21 namely; 

u* = U + EU(X,t,u,up ... ,un) + O(~), 
X* =X, 

t* = t, 

where U j = a;ulaxi
, i = 1,2,. ... Let aulat = u,' au;lat 

= U;t' au lau = uo' au lau; = Ui> a2u lau;auj = u;J' 
C' = dC Idu, and C" = d 2C Idu2. 

In the above notation Eq. (1) becomes 

u, = C'(UI)2 + Cu2. 

(5) 

(6) 

Under Eqs. (S) the derivatives of u appearing in Eq. (6) trans
form as follows: 

(u,)* = u, + EU' + o (e), 

(u l )* = U I + EUx + O(~), 
(u 2)* = U2 + EUxX + o (E2), 

where 

U'=D,U= au + Uou, + i U;U;" 
at i= I 

UX=DxU= au + i UjU j+ l , 

ax ;=0 

n n 

+ L Ui,jUi+IUj+1 + 2: UiUi+2· 
i.)=O i=O 

(7) 

D, and D x are total derivative operators with respect to t and 
x, respectively. 

The transformation (S) is said to leave Eq. (6) invariant 
if and only if for every solution U = e (x,t ) of Eq. (6) 

U' = C" U(U I)2 +2C' UXu I + C'Uu2 + CUXX. (8) 

The fact that U must satisfy Eq. (8) for any solution ofEq. (6) 
imposes severe restrictions on U. Using Eq. (6) the deriva
tives of U j with respect to t, i.e., U j " can be eliminated in Eq. 
(8). Since the invariance condition (8) must hold for every 
solution ofEq. (6), Eq. (8) becomes a polynomial form in 
Un + I and Un + 2 . As a result the coefficients of each term in 
this form must vanish. This leads us to the determining equa
tions for the infinitesimal LB transformations (S). 

Ifin Eq. (5), n<2, we obtain the Lie group of point 
transformations leaving Eq. (6) invariant. Without loss of 
generality we assume n>3 in Eq. (S). It turns out that for 
n > 3, U is independent of x and t. 

In our polynomial form, the coefficient of U n +2 vanish
es and the coefficients of (un +1 )2 and Un +1 , respectively, 
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lead to determining equations 

CUn,n =0, 
n-I 

nC'Unu\ = 2C L Un.jU j+l • 

;=0 

Solving Eqs. (9) and (to) we find that 

(9) 

(10) 

U=a(C)(I/2)nun +E(u,ul>""un_ I ), (II) 

where E is undetermined, and a = arbitrary constant. 
The substitution of Eq. (11) into the remaining terms of 

Eq. (8) leads to a polynomial form in Un whose coefficients of 
(U n)2 and Un, respectively, lead to determining equations 

+ (1- n)C'En _1 UI - ~n(n +3)C' (C)(\/2)nU2 
4 

(12) 

+ a [!n 2(C')2(C)(II2)n -I - ~n(n +2)C" (C)(1121n](u l)2 = 0. 

(13) 

Solving Eqs. (12) and (13) we find that 

U = a [(CYl/2)nun + !n(n +3)C' (C)(iIZ)n -I U1U n _1 ] 

+F(u)un _1 +G(u,u l , ... ,Un_2 ), (14) 

where F and G are undetermined and, more importantly, for 
a#O it is necessary that the conductivity C(u) satisfy the 
differential equation 

2CC"=3(C,)2. (IS) 

Hence, it is necessary that 

C(u) = a·(u + bt2
, (16) 

where a and b are arbitrary constants for the invariance of 
Eq. (1) under LB transformations. Without loss of generality 
we can set a = 1, b = 0, i.e., from now on we consider the 
equivalent p.d.e. 

~~ = ~ (U-2 ~:) =B. (17) 

This particular equation has been considered as a model 
equation of diffusion in high-polymeric systems.4

,5 

3. CONSTRUCTION OF A RECURSION OPERATOR; AN 
INFINITE SEQUENCE OF INVARIANT LB 
TRANSFORMATIONS OF EQ. (17) 

For n = 3 it is easy to solve the rest of the determining 
equations and show that the only LB transformation leaving 
Eq. (17) invariant is 

U = U' I) = U-3U3 -9U-4UIU2 + 12u-\u 1)3. (18) 

For n = 4 we obtain two linearly independent LB trans
formations U' 1 ) and 

U(2) = U-4U
4 

-14u-5u 1u3 -1Ou-\U2)2 

+95u-6(u J)2UZ -90u-7 (u 1)4. (19) 

The existence of U' I , and U (2" combined with the work 
of Olver, 16 motivates us to seek a linear recursion operator 
g) leading to infinitesimal LB transformations U (k) defined 
as follows: 
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(20) 

The character of I B, U ( I), U (z) jleads one to consider for fiJ 
the form 

(21) 

where Dx is a total derivative operator, (DxHDx)-1 is the 
identity operator, and f p,q,r j are functions of f u,u I ,uzj· 
Then one can show that fiJ B = U ( 1 ) if and only if 

and 

q[u-Zuz _2U-3(U I)2] + ru-2u1 

= -3U-4U IU2 +6U-5(U I)3. 

Furthermore, (fiJfB = U(z) ifand only if 

q = -2u-zul' 

and 

A more concise expression for the operator is 

(22) 

(23) 

(24) 

(25) 

fiJ = (Dx )2.(u-1).(Dx >-l. (26) 

We now show that the constructed operator fiJ is in
deed a recursion operator. Let the operator 

Z 

A = L B;(DxY 
i=O 

= u-Z(Dx)2 -4u-3UI Dx +6U-\U I)2 -2U-3U2 

= (Dx)2·U-Z
, (27) 

where B; = (a/au,)B. Olver's work 16 shows that fiJ is a re
cursion operator for Eq. (17) if and only if the commutator 

(28) 

for any solution u = () (x,t ) of Eq. (17). Moreover, if fiJ is a 
recursion operator, then the sequence f U( t ),U(z)""j given by 
Eq. (20) is an infinite sequence of LB transformations leav
ing Eq. (17) invariant. It is straightforward to show that A 
and fj) satisfy Eq. (28). 

The nature of U ( I) and the form of a general U given by 
Eq. (11) show that for n = I +2, there are at most k<:;J lin
early independent LB transformations leaving Eq. (17) in
variant since U must depend uniquely on u/ +z . 

The proof that fj) is a recursion operator demonstrates 
that k = I and hence we have found all possible LB transfor
mations leaving Eq. (17) invariant, namely, f U(k»), 
k = 1,2,·.·. 

4. A MAPPING TO THE LINEAR DIFFUSION EQUATION 

As far as we know all p.d.e.'s invariant under LB trans
formations have a recursion operator and, moreover, can be 
related to linear p.d.e. 'so This suggests the possibility of seek
ing a transformation relating Eq. (17) to a linear equation. 
This leads us to consider the linearization of Eq. (17), 
namely, 

(A -a/at)!=o, (29) 

whereA is given by Eq. (27)foranysolutionu = () (x,t )ofEq. 
(17). Introducing a new variable u by 
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!= ~(uu), 
ax 

we obtain from Eq. (29) the equation 

[(u- t ~)Z + u-3u 1 ~ _ i.] u = 0 
ax ax at 

and if we set 

a _I a 
-=U -, 
ax ax 

a a -3 a 
at = at - u u 1 ax' 

Eq. (31) becomes 

(30) 

(31) 

(32) 

azu au 
-- -= =0. (33) 
ax2 at 

Since! = 0 is always a solution ofEq. (29), the relation (30) 
suggests that we set uu = constant. This and Eqs. (32) lead 
us to the transformation 

dx = u dx + U-
2
U 1 dt, 

dt=dt, (34) 
- -I U =U , 

relating solutions u = () (x,t ) of Eq. (17) to solutions 
u = if (x,t) ofEq. (33). Choosing a fixed point (xo,to)' we have 
the following integrated form of Eqs. (34): 

- LX , i' (a _I) , X = u dx - - u dt , 
Xo to ax x = Xo 

-
t = t - to, (35) 

u = u- I
• 

It is easy to check that Eqs. (35) indeed transform Eq. 
(17) to Eq. (33), and define a map relating the solutions of 
Eqs. (17) and (33). Moreover, if u > 0 (u > 0), Eqs. (35) define 
a one-to-one map since ax/ax> 0 for each fixed t. 22 

We now show that under the transformation (34) the 
recursion operator fj) of Eq. (17) is transformed into the 
recursion operator 

9; =Dx ' (36) 

leading to an infinite sequence of LB transformations of the 
heat equation (33). The proof is as follows: 

An LB transformation of the form (5) induces an LB 
transformation on the variables f x,t,u) through Eqs. (34), 
namely, 

x* =x + Et + O(~), 

u* = u + Eij + O(~), 
where t and ij are defined by 

dt = .'/I dx + fjJ dt, 
.'/I = uU, fjJ = uxU + (uf(UX -2U), 

ij = - (u )2u. 

(37) 

(38) 

It turns out that for any solution u = if (x,t) of Eq. (33), .'/I 
and fjJ satisfy the integrability condition D,.'/I = Dx fjJ, so 
that dt is an exact differential. The integrated form of t is 
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(39) 

where c is an arbitrary constant. Since U U + I ) = g; U('\ 
where g) is given by Eq. (26), for c = 0 we get a correspond
ing infinite sequence of invariant infinitesimal LB transfor
mations I U(')) for Eq. (33), namely, 

U-(l) -i - £:i = 7J - uTS , 

where 

if= _(ii)2U(/), 

[i= -(D,)-I[ir(iitl], 

(40) 

and ii, = (al ax yu. From Eqs. (40) it is simple to show that 

fj(i + I) = D" fj(i), (41) 

leading to Eq. (36). Moreover, 

U(I) = Dx(ii[i) = (Dx)'ii"2' i = 1,2, .. ·. (42) 

D" corrsponds to the obvious in variance ofEq. (33) 
under translations in X. 

It is interesting to note that the recursion operator for 
the invariant LB transformations of Burgers' equation is also 
mapped into the space translation operator under the Hopf
Cole transformation relating Burgers' equation to the heat 
equation. Moreover, we can obtain the Hopf-·Cole transfor
mation by examining the linearization equation (29) corre
sponding to Burgers' equation. 

5. PROPERTIES OF SOLUTIONS OF Ea. (17) fROM THE 
MAPPING 

We now consider the use of Eqs. (34) in constructing 
solutions to Eq. (17). It is easy to show that Eqs. (34) are 
equivalent to 

dx = ii dx + iiT dt, 

dt = dt, (43) 

u=(iit l
, 

with an integrated form 

- -
t = I - to, (44) 

U=(ii)-l, 

for some fixed point (xo,to). In the following, we assume u > 0 
(ii> 0). Without loss of generality, we set Xo = to = o. 

A. Explicit formula connecting solutions; examples 

First we consider the problem of giving a more explicit 
formula for relating solutions ofEq. (33) to those ofEq. (17). 
Let ii = B (x,!) be a solution of Eq. (33) on the domain t> 0, 
XE(X p X2). By Eqs. (43), 

x = X (x.t) = r e(xl,i) dx' + (' (ae(x'!'») dt'.(45) 
Jo Jo ax x~o 

This uniquely determines the function X-I, X = X-I(x,t), 
where t= t. Now Eqs. (44) lead to the following solution of 
Eq. (17): 
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u = e (x,t) = -:----
o (X-I(x,t ),t) , 

on the domain XE(X l(t), x2(t », t> 0, where (46) 

xl(t) =X(XI,t),X2(t) =X(x2,t). 

In a similar manner, Eqs. (35) map a solution u = e (x,t) of 
Eq. (17) to 

ii = e (x,!) = -=-:-=--:=
o (X -1(X,t ),t ) 

on the domain XE(XI(t),xit», t> 0 where 

xl(t) = X (x J), x 2(t) = X (x 2i), 

x = X(x,t) = r O(x',t) dx' Jo 
- ('[~(O(X,t'»)_I] dt', Jo ax x - () 

with the corresponding definition of the function 
--I --X (X,I) = x. 

Example 1: The source solution of Eq. (33), i.e., 
ii = e (xi) = a(41Tt)-1/2e . (.<'/41) on the domain 

(47) 

(48) 

- 00 < x < oo.t> 0, is mapped by Eqs. (45) and (46) into the 
following separable solution of Eq. (17): 

u = e (x,t) = a-I (41Tt )1/2e,,', 

on the domain - ~a < x < ~a, t> 0, where vex) is defined 
by (49) 

x = ..; 1T f e- Y
' dy. 

Note that limx_~ ± laO (X,t) = + 00. 

Example 2. The dipole solution ofEq. (33), i.e., 

- - a - ~ -,-
ii = e (x,t) = - ax [a(41Tt tl/~e (x'/4t)], 

on the domain 0 < x < 00, t> 0, is mapped by Eqs. (45) and 
(46) into the following self-similar solution of Eq. (17): 

[ ( 
a2 )] - 1/2 

U = e (x,t) = x- I(2t )1/2 In 41Ttx2 

(50) 
on the shrinking domain 0 <x < a (41Tt t I/2

, t> O. 

B. Connection between initial conditions; connection 
between boundary conditions 

The mapping formulas (34) and (43) demonstrate a 
one-to-one correspondence (within translation of x,t) be
tween initial conditions for Eq. (17) and those for Eq. (33). 
As for the connection between boundary conditions, from 
the same formula it is easy to see that x = set ) is an insulating 
boundary of Eq. (17), i.e., [ao (x,t )lax 1 x •• s(t) = 0, if and 
only if the corresponding boundary x = sCi) is an insulating 
boundary of Eq. (33), i.e., the corresponding solution 
ii = Ii (xi) satisfies [ali (x,t)lax]X S(I) = O. Moreover, 
s(t) = const if and only ifS(t) = const, i.e., there is a one-to
one correspondence between fixed insulating boundaries of 
Eqs. (17) and (33). 

In general, a noninsulating boundary condition for Eq. 
(17), on a fixed boundary x = const = c, is mapped into a 
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noninsulating boundary condition of Eq. (33) with a corre
sponding moving boundary x = S(i}~const with speed 

d~ = [[O(X,t)]-Z ao(x,t)] _ , (51) 
dt ax x-~ 

t=t 

where, as previously mentioned, U = 0 (x,!) > O. 

6. CONCLUDING REMARKS 

(a) From in variance under the LB transformations 
! U (i)), i = 1,2,..·, there exist similarity solutions ofEq. (17), 
i.e., U = 0 (x,l;n), whose similarity forms satisfy 

n -I 
u(n) + I C

k 
U(k) = 0, (52) 

k=l 

where! C 1,C2""'Cn -I I are arbitrary constants, n = 1,2,. ... 
For example, for n = 1, Eq. (52) leads to the similarity form 

U = 0 (x,l; 1) = [a(1 ).(x + b (I W + c(t )J-1/2, (53) 

where I a(t). b (t), e(l) I are arbitrary. Substituting Eq. (53) 
into Eq. (17) we find that Eq. (53) solves Eq. (17) if and only 
if a = a, b =/3, and C = ye 2at

, where {a"B,yl are arbitrary 
constants. This solution is not contained in the class of simi
larity solutions ofEq. (17) obtained from invariance under a 
four-parameter point Lie group.7.S 

(b) The infinitesimal transformations (5) of the four
parameter point group of Eq. (17) are given by 

ua = u + xu" U b = xu, + 2tu" 

UC=Ul' Ud=B. (54) 

Under the mapping (34), these are transformed, respective
ly, to corresponding infinitesimals of invariant point group 
transformations of Eq. (33): 

U a = ii, fJb = xiiI + 2fii" 

fJc = 0, fJd = if = iiz. (55) 

Conversely, the mapping (34) transforms the six-parameter 
point Lie group of Eq. (33) as follows: The three-parameter 
subgroup of infinite sima Is given by Eq. (55) transforms to 
{Ua,Ub,U d I given by Eqs. (54) and fJ = iiI transforms to 
U = 0; the remaining infinitesimal point group transforma
tions fJe = xii +2 fii, and fJf = QX2 + ~f)ii + Xfiil + f 2ii, 
are mapped, respectively, into infinitesimals which depend 
on I x,l,u,u I I and integrals of u. 

(c) Generally speaking, the action ofa recursion opera
tor 9 on any infinitesimal in variance transformation U of 
the form (5) (whether of point group or LB type) yields a new 
infinitesimal transformation U' = iP U if 9 U #0. For Eq. 
(17), we can show that 9 ua = iP U b = iP UC = O. 

(d) The heat equation is a special limiting case ofEq. (3) 
obtained by setting a = b 2 and then observing 
limb -00 b 2(U + b >-2 = 1. As one might expect if a = b 2, for 
the corresponding recursion operator iP, lim/J.-.oo iP 
= a/ax, and the mapping formulas reduce to identity 

mappings. 
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(e) Since Eq. (I) admits an infinite sequence ofLB 
transformations if and only if C (u) satisfies Eq. (IS) with 
associated mapping (34) whereas Eq. (4) admits an infinite 
sequence of LB transformations, there is no point transfor
mation of the form 

x = K (x,t,u), 

f= L (X,I,U), 

ii = M(x,t,u), 

relating solutions of Eq. (l) and those of Eq, (4). 
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I t may be desirable to eliminate M4 as the underlying manifold in which some physical theories are 
cast, and recast these theories in the space "y M 4 ." We investigate some of the properties of one 
su~h space, which we denote by SR' S8 can be coordinatized by real eight-component spinors. The 
spInor algebra on this space is developed in this paper. It is shown that a (nondegenerate) spin or in 
SR determines an orthogonal tetrad on M4 (the set of these spinors determines the space of 
orthogonal frames over i'l14 ), and that this spinor corresponds to a "particle." A simple 
geometrical interpretation of the Dirac equation arises in arriving at this correspondence. 

1. INTRODUCTION 

When the gravitational interaction is neglected the 
physical world is usually modeled by M 4 • For example, rela
tivistic quantum mechanics as presently formulated depends 
crucially on the fact that the background space in which it is 
cast is M 4 , regarded as either the flat spacetime manifold or 
the momentum dual vector space. Implicit in such models is 
a presumably physically meaningful isomorphism between 
the "points" of the universe and the points of the mathemat
ical continuum of M 4 • However, when one speaks of the uni
verse itself as being "continuous" or a "continuum," then 
one is usually referring to an (apparent) ability to continu
ously vary the relative distances between an arbitrary num
ber of macroscopic bodies situated in our universe. This idea 
does not generalize to a satisfactory operational microscopic 
definition of spacetime continuity. Einstein warned of "re
moving certain fundamental concepts from the domain of 
empiricism, where they are under our control, to the intangi
ble heights of the a priori." I One such concept may be the 
notion of spacetime continuity. Accordingly, it is of great 
importance to construct a theory of interacting particles 
which is not cast in a mathematical space that is "isomor
phic" to our universe. Instead, the theory is to be formulated 
in a space from which the concepts of spacetime and space
time continuity can be derived, being operationally defined 
by properties of interacting particles evolving in this space. 
This idea is not new; to mention the most important exam
ple, significant progress has been made by Penrose and his 
co-workers in eliminating the spacetime continuum concept 
from physics using the twistor formalism, and in deriving 
space from interacting spin-networks. 2 

Taking a somewhat different approach, one might at
tempt to genealize some physical theories by eliminating M4 
as their underlying manifold and replacing it by, crudely 
speaking, y M 4. More precisely, byV M4 we mean a triple 
(X, 0, G) such that (i) X is a real even-dimensional C oc mani
fold, (ii) 0 is a real non degenerate closed 2-form on X (0 is a 
symplectic form on X and (X, 0) is a symplectic manifold), 
(iii) (o/21T represents an integral de Rham cohomology class 
(X, w) is a quantizable symplectic manifold], and (iv) G is a 
Lie group which acts on X as a group of diffeomorphisms, 

"'This paper is dedicated to my Mother and Father. 

and G contains .Y ~ X JR*, where ,'/" ~ is the universal cov
ering group of the proper orthochronous Lorentz group, and 
JR* = JR - [0 l is the group of nonzero real numbers under 
multiplication (JR* corresponds to dilations). Qualitatively, 
a classical theory cast on Y M4 gives rise to a quantum the
ory as follows: On account of (iv) there exists a set B (X) of 
bilinear mappings from X into (the components of elements 
in) the tensor algebra of M 4 . B (X) is contained in the ring of 
smooth real-valued functions on X. Classically, the observa
bles of a theory are to be found among those functions in this 
ring that take values as the components of elements in the 
tensor algebra of M 4 ; the space offunctionsB (X) is the gener
ator of this set of (classical) observables. We denote the ring 
of observables by 0 (X). The symplectic form 0 defines a 
Poisson bracket onX which gives 0 (X) the structure of a Lie 
algebra over JR. Since (X, 0) is a quantizable symplectic 
manifold, there exists a representation of the Lie algebra of 
classical observables by Hermitian operators on an appro
priate Hilbert space, such that the mapping is a Lie algebra 
isomorphism (i.e., the Poisson bracket of two classical obser
vables is mapped into the commutator of the corresponding 
two Hermitian operators.). J 

This paper is devoted to a study of a particular choice 
for Y M 4 , and to the construction of the space of functions 
B (X). For the space X we consider an eight-dimensional dif
ferentiable manifold that admits a global canonical atlas, 
and whose coordinate functions in this atlas are real eight
component spins. Henceforth we denote X by SR' For G we 

take SO(3, 3) X JR*)(SO(3, 3) is the universal covering group 
of the special Lorentz group on a flat spacetime with three 
space and three time dimensions). The emphasis in the first 
portion of this paper is on developing the algebra of these 
spinors and in constructing geometrical objects on M4 from 
spinors in SH' In order to forge a simple and direct link be
tween M4 and SR we begin our work with the construction of 
an orthonormal tetrad of vectors from spinors. We show that 
except in certain degenerate cases, every spin or in SH deter
mines an orthogonal tetrad of vectors eZn; moreover, the 
(future-pointing) timelike member of the tetrad e;~) is the 
sum of two linearly independent (future-pointing) null vec
tors, while e;x,) is the difference of these null vectors. In the 
degenerate case a spinor determines a unique null vector, 
and we unimaginatively call this spinor a null spinor, 
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In Sec. 8 (equivalence classes ot) nondegenerate spinors 
are identified with linear combinations of two types of mas
sive spin-~ fermions (the two types can possibly be character
ized according to whether they carry an intrinsic electric 
charge or an intrinsic magnetic charge). The correspondence 
between these spinors and particles is established by a com
parison with the usual Dirac theory. which also provides 
some insight into the Dirac equation itself. However the ex
istence of this correspondence relies on an imbedding in M 4 • 

and is therefore only of heuristic value. 

2. CONSTRUCTION OF THE TETRAD 

The real-valued spinor t/J with components t/Ja a. 
b,.·· = 1 •...• 8 coordinatizes an eight-dimensional space Ss. 
The tetrad is to be constructed from quadratic products of 
the components of this spin or. It happens that this construc
tion proceeds most clearly by temporarily leaving M4 and 
going to a larger space M6 with "signature" (1. I. I. -I. 
-1. -1). This is because there exists a natural homomor-

phism between Lorentz transformations on Ss and M 6• The 
matrix generators of the special Lorentz transformations 
SO(3. 3) (for brevity we shall henceforth omit the character
ization "universal covering group") on Sg provide us with a 
representation of the SO(3. 3) Lie algebra. By saturating the 
Ss indices of these matrices with t/J at/J b we generate a realiza
tion of the SO(3. 3) Lie algebra. Two of the spacelike mem
bers of the tetrad, e(l) and e(2) • can be identified with eight of 
the members of this realization. The remaining members of 
the algebra also have physical interpretations. Therefore we 
shall proceed rather formally beginning with a discussion of 
the above mentioned homomorphism. 

3. CONNECTION BETWEEN LORENTZ 
TRANSFORMATIONS ON Me and S8 4 

The homomorphism between Lorentz transformations 
on M6 and Ss may be established as follows. 5 Let r A be six 
real matrices which generate an irreducible representation of 
the Clifford algebra C6 : 

rArB + rBr A = 2gAB. (1) 

wheregAB =diag(l.I, 1, -1. -1. -1) is the metric 
tensor on Mfj' Suppose that A A B EO (3, 3) is an arbitrary Lo
rentz transformation on M 6 • ~ _X'A = A A BXB. The A A B 
satisfy the conditionsgRs =gABA ARA BS' Since 
A ARrRA BsrS + A BsrsA ARr R = 2gAB and since the 
r A are irreducible. there exists a nonsingular matrix M (A ) 
such that A A8rB = M-'rAM. or 

(2) 

M may be assumed to be real and unimodular and so is deter
mined up to a factor of ± 1. The set of all such matrices gives 
a faithful 2-1 representation of a (3. 3). For every such ma
trix M there exists a unique A given by 

A AB = ktrace(M-lrAMrB)' (3) 

A Lorentz transformation x-x' = Ax on M6 coincides with 
the transformation t/J-t/J' = Mt/J in Ss. up to the above-men
tioned factor of ± 1. 
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For the special Lorentz tranformations on Ss, M is gen
erated by the antisymmetrized products of the rA. denoted 
by MAB. Let 

M A8 = _!(rArB_rBr A)= -HrA.r8]. (4) 

using Eq. (1) we find that 

[MAB.rR] = bARr B -bBRrA. 

and 

(5) 

[MAB.MRS] =gARM BS _gASMBR _~RMAS +~SMAR. 
(6) 

Therefore by Eq. (6) the M AB are the infinitesimal gener
ators of an eight-dimensional representation of SO(3. 3). If 
AAB =b A

B -0).18 +· .. =(e-'~)AB.whereO)AB = -O)B.1 
are parameters. then 

M = 1 + ~O)ABMAB + ... = exp(~O)ABMAB). (7) 

which follows from Eqs. (1 and 5). 
This representation of the SO (3.3) Lie algebra is com

pletely reducible5 so that the M AB are of the form 

(8) 

Therefore a matrix representing a rotation of SO (3. 3) in Ss 
is of the form (S T)' where S is generated by SAD and Tby 
TAB. The spinor t/J lives in the eight-dimensional space that 
carries this representation of SO (3.3). Because the represen
tation is reducible this eight-component spinor may be de
composed into a direct sum 

(9) 

of two distinct four-component spinors. Special Lorentz 
transformations such that t/J-t/J' carry A-A' andS-S' with 
no mixing of the components A and s; the decomposition 
into distinct four-component objects is preserved under 
SO (3. 3). Moreover it is possible to pick an irreducible repre
sentation of the r A to that fA <t denotes the transpose of S ) is 
an invariant under SO (3, 3). However. improper Lorentz 
transformations do not preserve this decomposition; never
th~less it is often convenient to write t/J as t/J = (~). keeping in 
mmd when this has an invariant meaning. 

4 METRIC BISPINOR AND A REALIZATION OF THE 
SO (3, 3) LIE ALGEBRA 

TheM AB defined in Eq. (4) give a (reducible) represen
tation of the SO (3, 3) Lie algebra, with the Lie Bracket being 
the usual commutator bracket. We may also construct a re
alization of this Lie algebra from homogeneous quadratic 
polynomials in t/J a. The Lie bracket in this case will be a sort 
of Poisson bracket. We shall see that the elements of the Lie 
algebra in this realization have simple geometrical interpre
tations once the 0 (3, 3) symmetry is broken down to 
a (3, 1). The first step in the construction of this realization 
is to define an appropriate metric bispinor on Ss [which will 
be used in forming the bilinear products in t/J a to ensure that 
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they transform covariantly under SO (3,3)]. There exist es
sentially two distinct choices for the metric bispinor. The 
first, denoted by fl, is defined by 

flr A = rAfl (10) 

and is consequently skew-symmetric (r A denotes the trans
pose of rA). The second, D, is defined by 

Dr A = -rAD (11) 

and hence is symmetric. D may be obtained from fl by right 
translation with r 7, i.e., D = flr7, where r 7 is defined by 

r 7 = r Ir2r3r4r5r6 

= (1!6!)EAOCDEFrArllrCrDrEr". 

r 7 has the properties that 

r 7r A + r Ar 7 = 0, 

(r7)2 = 1, 

(12) 

(13) 

(14) 

(15) 

We shall employ fl as the metric bispinor. In addition, due to 
its skew symmetry, fl is a symplectic structure on S8.6 We 
shall use this fact when defining a Lie bracket for this 
algebra. 

At this point it is convenient to introduce some simple 
index notation to compliment the matrix notation which has 
been used. Let if; denote the column matrix of the if; a and If 
the transpose of if;. Associate indices as follows: if;~if; a; 
fl~flab = -flba;lffl~if;b =if;aflab ; _fl-I~flab 

= - fl ba, and so the convention is fl abfl bC = - Da
c; 

rA~rAab' In this notation Eq. (10) reads flacrACb 

= rA'"flch ' Introducing the convention that spinor indices 
are to be raised according as 

xa =flabXb, 

and lowered as 

Xb =Xaflab , 

(note position of indices), this equation becomes 

- rAab = rAba' 

Similarly Eq. (15) becomes 

(16) 

(17) 

(18) 

(19) 

From the definition of MAO given in Eq. (4) and using Eq. 
(10) we have that 

(20) 

i.e., 

MAlIab = M AB
ba · (21) 

Consider now a matrix M representing a rotation of 
SO (3, 3). By Eqs. (7) and (20) fl is invariant under this 
transformation: 

fl-+fl'=MflM 

= fl. 

In index notation this reads 
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(22) 

(23) 

The final step before giving a realization of the SO (3,3) 
Lie algebra is to define a Lie bracket. For any functions F and 
G only of if;, their Lie bracket is defined to be 

!F,G J = aF {lab aG . (24) 
a¢" at//> 

We now define the realization ofthe SO (3,3) Lie alge
bra, denoted by mAO, as 

m AB = _ !If{l MABif; 

= lzMABabif;aif;/>. (25) 

To reveal the transformation properties of mAO under SO (3, 
3) we first consider M AB. By Eqs. (2) and (4) M AB is invar
iant under the combined SO (3, 3) transformations on M6 
and S8' We write this as 

(26) 

Let if; and if;' be related by a SO (3, 3) rotation, if;' = Mif;; we 
find by mUltiplying Eq. (26) from the left with Iffl and from 
the right with if; that 

(27) 

where m' AB = - !1f'{lM A Bif;'. Thus m AB transforms as a 
type (2, 0) skew-symmetric tensor under SO (3, 3). Under an 
improper Lorentz transformation contained in a (3, 3), say a 
reflection about the x A axis in M 6 , a corresponding transfor
mation matrix on S8 is given by rAr 7, which follows from 
Eq. (2). Equ~ (10) and (15) then imply that 
- gAAfl = r Ar 7{lr Ar 7 (no summation onA) under this 

reflection. In particular under a spatial reflection in M6 this 
means that 

(28) 

We pick up a minus sign under such spatial reflections. How
ever, under an inversion of one of the time axes the factor 
- g AA is one and no such minus sign appears. 

The mAli may be grouped into sets transforming as ten
sors under SO (3, 1) once the a (3, 3) symmetry is broken. To 
achieve this we shall henceforth restrict our attention to the 
affine subspace of M6 given by 

x 5 = constant, 

x6 = constant, (29) 

thus breaking the a (3, 3) symmetry. The only physically 
admissible a (3, 3) transformations are those which leave 
these constraint equations invariant. For SO (3, 3) transfor
mations this is equivalent to uls = 0 = (lJA 6' Under these 
restrictions the mAO may be decomposed into a type (2, 0) 
skew-symmetric tensor, two vectors, and a scalar [under 
SO (3, I)] as follows: 

mU(3 = ~a(3, (30) 

m a5 = e(I)' (31) 

m
cz6 == e(~), (32) 

and 

m 56 =N. (33) 

We shall see thate(ll and e(2) arespacelike vectors and mutu-
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ally orthogonal, e0)e(2)a = 0, except in the degenerate cases. 
The Lie bracket relations among the m AB are invariant 

under a (3, 3). They may be evaluated using Eqs. (24), (25), 
and (6); we find that 

! mAB,mRS I = gARmBS _ gASmBR _ gBRmAS + ~SmAR. (34) 

For (A, B, R, S) = (a, p, p, v) these relationships show that 
the I up by themselves possess a closed algebra and generate 
a realization of the special Lorentz group SO (3, 1). In fact 
fU ap turns out to be the spin tensor of a classical spinning 
point electron if one writes down a Lagrangian for the elec
tron constructed from {r/J, Ip, Xa, Aa = vector potential J . 
This assertion should be plausible in light of these "commu
tation" relations. 

5. The y MATRICES 4 

The matrices defined below will be used in the next sec
tion in the construction of an irreducible representation of 
the Clifford algebra C6 • Dirac7 devised the labeling scheme 
and multiplication rules upon which this process relies. 

Consider a set of 15 real 4 X 4 matrices y AB = - Y BA, 
whereA, B,··· = 1, ... ,6. The row and column indices are sup
pressed; A, B,.·. label the individual matrices. Let Yo be the 
4 X 4 unit matrix. The y AB are defined to be skew-symmetric 
when A and B are both from the set { 1, 2, 3 J or from the set 
{ 4, 5, 6 J, and symmetric otherwise. For example yl4 is sym
metric and f3 is skew-symmetric. There are six skew-sym
metric matrices and nine symmetric. 

We quote from Dirac's work7 the following multiplica
tion rule for the yAB: 

"We use the notation yAByCD = yABCD, and so on for 
products of more than two factors. Thus any product ap
pears as a y with an even number of suffixes. There are two 
general rules: (i) any two different suffixes may be inter
changed, if one brings in the factor -1. (ii) A suffix A occur
ring in two consecutive positions may be suppressed but one 
must then bring in the factor -1 for A = 4, 5, 6." 

For example, yl2y l3 = yl213 = _ yl123 = _ f3; 
f4 y'4 = f434 = _ f344 = f3. As a consequence of these 
rules, (yABf = - YoifyAB is skew, (yAB)2 = Yo ifyAB is sym
metric. Also since (y123456)2 = Yo and yl23456 commutes with 
all yAB, we may choose yl23456 = ± Yo' Therefore in this six
dimensional Minkowski spacetime M 6 , using a right-handed 
Cartesian coordinate system in which the metric tensor gAB 
has components gAB = diag (1,1,1, -1, -1, -1), let us 
define 

yl23456 = + Yo' (35) 

Because of the multiplication rules we find that 

yAByCD + yCDyAB 

= 2Yo(gADgBC _ gAC~D) _ ~BCDEFgEGgFHyGH, (36) 

and 

proper orthochronous Lorentz group on M 6 • Upon contract
ing Eq. (36) with EABCDRS we find that 

(38) 

where YRS = gAR gBS yAB. This identity is used to reduce a y 
matrix with four distinct indices to a y matrix with two dis
tinct indices. For example 

Y36 = - (l/4!)EABCD36 yAByCE 
= _ E124536y1245 = _ y1245 = _ yl6. 

In [7J Dirac proved a simple but extremely useful pair of 
identities: 

Lemma. For any symmetrical 4 X 4 matrix S, 

y 12Sy12 + f 3Sf3 + yllSyll = S - yotrS, (39) 

and similarly, 

y45Sy45 + r6Sr6 + yMSy64 = S - YotrS. (40) 

A very useful identity can be obtained from Eq. (39). 
Since yl4(y14Sy14 + f 4Sf4)yl4 = _ yllSyll - f 3sf3 
= y 12Syl2 _ S + yotrS, we have yl4Syl4 + f 4sf4 
= yl4 {y12SyI2 _ S + YotrS J y 34 = r 6Sr 6 _ yl4Syl4 
+ yotrS, so that yJ4SyJ4 = r6Sy'6 + YotrS. Because S is an 

arbitrary symmetric matrix this equation implies that 
4 '4 '4 '4 56 56 ,,56 56 Yt,q r'rs + Yt,r r'qs = ypq Yr, + r pr yqs + 2DpsDqr· (41) 

Holding s fixed one may obtain two similar equations by 
cyclically permuting (p, q, r). Upon adding two of these 
equations and subtracting the third one finds that 

y;'q4r':,4 = - DpqDrs + OprDqs + DpsDqr + y~~y~~ + ~~y~~. 
(42) 

This identity is also valid for any cyclic permutation of(4, 5, 
6), and under the replacement (4,5,6)-+(1,2,3), h-+h. Oth
er similar identities may be obtained in this fashion, one of 
which is 
leihk.,hk,J4 _ D .~6 D 56 I) .~6 ~ 56 ~ 56 
:1 r pq r rs - rs r pq + pr Y qs - qs r pr + Ups Y qr - U qr yps . 

(43) 

6. A PARTICULAR REPRESENTATION OF C6 : SOME 
IDENTITIES 

Let E = y4s, ~ = ~6, and y' = r6; the yAB are as in the 
previous section. All quantities are real. 

We choose an irreducible Weyl representation for the 
rA: 

ra-C 
-E~ 

~E) 
o ' (44) 

r5 =C -Er 
rE) 
o ' (45) 

r6 =C -E 
O-E} (46) 

then 

r7 
= (~ O_J yAByCD _ yCDyAB (47) 

= _ 2(gACyBD _ gADyBC _ gBCyAD + gBDyAC). (37) 

It follows from Eq. (36) that the ~B are trace-free, and Eq. 
(37) shows that - !yAB generate a representation of the 
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and we take 

n=(~ 0-
1 

). (48) 
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The M AB are in this representation 

MAR = - ~Cr4B _ ~B). (49) 

The MaP may also be expressed as 

Map = (sap) (50\ 
_saP' I 

where saP = - Ht',y> l. 
In this representation of the r A the mAR are given by 

mAB = ~tyABA. (51) 

Let us briefly consider the form of the matrices M de
fined by Eq. (2). Under SO (3, 1), x-x' = e - Wx (passive 
viewpoint) and 1/;-1// = M1/;; we see from Eqs. (7) and (50) 
that 

(52) 

where W~a p and S = exp(~wapS UP). 1/;_1/;' = M1/; reads 

A-+A'=SA, 

or 

or 

S-+S'=S-IS, 
t' = ts-t, 

We now state a basic identity, 

mAEmB E = _ gAR qtA )2. 

(53) 

(57) 

We omit the proof since it is not particularly instructive and 
somewhat tedious. 

In covariant notation 

(58) 

Since! m AB, ~nr 7 1/;} = 0, one might expect to obtain some 
additional information upon taking the Lie bracket of m RS 

with Eq. (57). However the identity arising from the calcula
tion of this bracket vanishes trivially due to Eq. (57). 

7. THE TETRAD 

Define 

e(l) = mA 
5 = mABr55 

B 

and 

(59) 

_A A 6 AB~6 (60) 
~(2) = m = m U R' 

which are, respectively, the inner products of mAB with the 
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timelike unit vectors 6A 
5 and 6A 

6' In this frame eZl) 
= 0 = etZ)' By Eq. (57), etl)e(l)A = e(l)e(l)a 
- N 2 = etA /2)2 = e(Z)e(Z)A = e(Z)e(Z)a - N 2, so that 

e(l)e(l)a = e(Z)e(z)a = N 2 + etA 12)2 
= et"sA 12? + etA /2)2.8 (61) 

Further 

etl)e(Z)A = e(l)e(2)a = 0, (62) 

which also follows from Eq. (57). Therefore whenever tA 
and tr A are not both zero e(l) and e(2) are linearly indepen
dent orthogonal spacelike SO (3, 1) vectors. 

Let 

e(4) = - !t~r4ra1/; (63) 

and 

e(3) = _ !~r4rar71/;. (64) 

Since 

r 4r a = _ rar 4, (65) 

r 4=Mr4M (66) 

under SO (3, 1). Thus e(3) and e(4) transform as vectors under 
SO (3, I). Under a reflection about the x a axis, ---g"ar4 = r"r7r 4r"r 7 (no sum on a), (67) 

so that they transform as vectors under spatial reflections, 
but pick up a minus sign under time reversal. 

Using Eqs. (44) and (47) we find that 

e(4) = !t(n" + I a) (68) 

and 

e(J) = lena _ I a), (69) 

where 

n"= -;[~t'A (70) 

and 

la = -tt'~s· (71) 

na and la transform as vectors under SO (3, 1) since y4y' 
= - t''I=>'I = S'ls under the SO (3, 1) transformation 

matrix S ofEqs. (52)-(54). Moreover, n" and I a are both null 
vectors, independent of the values of A and S. Consider for 
example na

; we have that rinj = ;['I1"'A;[~YjA 
= Ap ~~AqA,r,.~As. Substituting Eq. (42) for 1"'p~ 1"',; yields 
rinj = (;[A )2 + 2(A" r A )2 = (A"A )2, since A" r A = 0 due to 
}? = - r. We also have n4 = _;[y4'1A =;[A,sothatn"n" 
= (;[,1 f - (,,{A ? = O. 

The evaluation of la(, is similar. Thus 

nan" =0=1"1". (72) 

Further, using Eq' (42) once again, one finds that 

n"la = -2!(tA)2+<tr'A)2). (73) 

Therefore when nOI" :;f0, e(4) is the sum of two linearly inde
pendent null vectors, and is timelike (because n4 > 0 and 
14> o for A :l0:;f0; moreover, e(;) is spacelike and orthogo
nal to e(4): 

(74) 
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e(3) and e~) are orthogonal to both e0) and ea.) because 

n"e(l) = ° = nae(2) = l"e(l) = l"e(2)" (75) 

One may verify nae(l) = 0, for instance, by contracting Eq. 
(42) with r.: and using the resulting identity along with Eqs. 
(51), (59), and (70) to evaluate na e(t). 

Summarizing: we have constructed four vectors e( 1') 
from the spinor tP, which when tP is nondegenerate (to be 
discussed below) are mutually orthogonal: e(l')e(V)" 
= - knal" 1/(I')(V) , where 1/<I')(v) = diagonal (I, 1, I, -1) 
= 1/(I')(V\; the e0) are spacelike while e(4) is timelike. 

tJ. and tr J. are simultaneously zero whenever tP is re
stricted to one of the subspaces of Sg by the SO (3, 1) invar
iant equations 

ES = - (constant)J. (76) 

or 

Ys = - (constant)J. (77) 

(because then tJ. and tr A = one of {iEA, iYA j·constant 
and each of these expressions vanishes identically due to the 
skew-symmetry of E and Y). When the constant is one, Eq. 
(76) implies that n° = I a = 2eel ) and e(2) = 0, while Eq. (77) 
implies that net = l a = 2e(;) and e(l) = O. In both of these 
cases tP no longer determines the four linearly independent 
vectors of a tetrad but instead defines a unique null vector. tP 
is referred to as degenerate or null when its components are 
related by any combination of Eq. (76) and Eq. (77). 

8. SPINORS AND PARTICLES; A GEOMETRICAL 
INTERPRETATION OF THE DIRAC EQUATION 

At any point P in Minkowski spacetime M4 we can con
struct an (in general unnormalized) orthogonal tetrad, de
noted by eel'l' from a nondegenerate spin or tP€S8(P), This 
tetrad comprises a basis of the tangent space at P, Tp(M4)' 
Through the point Pin M4 we consider a timelike curve 
XU = xa(s) (which can represent the world line of an elec
tron) and defineXet = (dxa/ds)ETp(M4) (evaluation atPis 
implicit). Here s is the arc length (proper time) along the 
curve, where ds2 = - ga(3dX"dXf3. We are especially inter
ested in those tetrads for which e(4) and xa are parallel. We 
can pick out a family of spinors tP€S8(P) for which e~) and 
xa are parallel as follows. xa ex: e(4)~(l)Xa = ° = e(Z)Xa, 
ande(.4)Xa #:0. Consider a rest frame in whichxa = c5~)' We 
require that etl) = ° = etZ) in this frame and not both of tJ. 

- 5 --
and ~sr J. = N be zero. But etl) = !SEJ. and etZ) = g-YJ., 
and if both of these expressions are to vanish while also en
suring that either tJ. or N is nonzero, then we must have 
either 

(78) 

or 

(79) 

in this rest frame, up to a scaling factor. 
The question of whether Eq. (78) or (79) should be uti

lized in our construction is answered on purely physical 
grounds. If one is modeling a particle possessing an intrinsic 
magnetic moment, whose electric moment vanishes in the 

, 
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rest frame, Eq. (78) should be chosen. On the other hand, a 
model of a particle possessing only an electric moment in its 
rest frame should incorporate Eq. (79) as the spin or con
straint. This can be seen as follows. The electromagnetic mo
ments J.laf3 = - J.lf3a of an "arbitrary particle" are linear 
combinations of the components of a spin tensor 
.I af3 = - .I f3a , namelY,J.laf3 = !(Ia 1'.Il'f3 - If3l'.I I'a)' For 
an electron, and we assume also for an elementary "electric 
moment particle," Ia I' assume the simple form Iu I' ex: c5a ". 
For an electron the intrinsic electric moment should vanish 
in the rest frame, thus l:a f3X i3 = O. (This is the well-known 
Frenkel condition.) For the "electric moment particle" the 
intrinsic magnetic moment should vanish in the rest frame, 
~f3l'v I 131' Xv = O. Now by Eqs. (30) and (51), I af3 = ~sY'(3 J.. 
Ifwe evaluate I a(3 using Eq. (78), supposing that we are in a 
rest frame, we find that Ij4 = 0, Ijk #:0; alternatively, if we 
use Eq. (79) we find that .I j4 #: 0, I jk = O. We shall restrict 
our attention in this section to the electron and shall work 
with Eq. (78) as the spin or constraint. As shown above this 
implies the Frenkel condition 

.I a (3X (3 = O. (80) 

Expressed covariantly Eq. (78) is (Faxa - F7)tP = 0; 
however, this equation is invariant under rotations in thex5-

x6 plane (such a rotation is generated by M 56 and [M 56
, 

Faxa - F7] = 0) whereas e(l) and e(2) are not [eel) - ie(2) 
-exp(iW56)(e(l) - ie(2» when tP-tP' = exp(w5~56)tP]. Ac
tually Eq. (78) also possesses in variance under these rota
tions [given in this case by the chiral transformation 
exp( - !W56r)] and so is invariant under an operation which 
is not a symmetry transformation of the tetrad. This undesir
able feature of the constraint equation may be eliminated by 
recasting Eq. (78) in a more symmetrical form. Equation 
(78) implies that €s = - YaXaJ. andJ. = Yaxa€S, so that 
we may reformulate Eq. (78) in terms of J. + i€s as 

(iYaxa + 1)¢ = 0, 

where 

(81) 

(82) 

Equation (81) does not possess the unwanted symmetry and 
so is adopted as the spin or constraint equation. It should be 
emphasized that Eq. (82) is not manifestly covariant under 
o (3, 1) because the decomposition of tP into tP = (~) is pre
served only under SO (3, 1), not 0 (3, 1). However, this 
equation is invariant under SO (3, 1) transformations since 
the matrix € transforms as 

€-E' =S€S 

=€, 

under SO (3, 1), where S is given by Eq. (52). 

In terms of ¢ and j, where 

¢=¢ty , 

e~) and N = m 56 can be simply expressed as 

e(4) = - ¢Y'¢, 
and 
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where we have used Eqs. (68), (70), and (71) in arriving at 
Eq. (85). 

Let us suppose that Eq. (81) holds and evaluate e(4)' 

Equation (81) implies that 5 = EY"xc'A and A = YaX"E5; 
upon substitution of these expressions into Eqs. (70) and (71) 
and then using Eq. (68) one finds that 

a X'aX' _8 e(4) = - {3e"(4) , (87) 

as desired. Therefore when Eq. (81) holds e(4) is parallel to 
Xa. 

Equation (81) implies that tA = 0, but N #0 for t/J#O. 
Therefore by Eq. (73) 

(88) 

and by Eq. (61), 

(89) 

when </J satisfies Eq. (81). Also by Eq. (88), 

(90) 

and 

(91) 

Hence - N-'e(Jl) is an orthonormal tetrad when </J satisfies 
Eq. (91). We note that - N- 'e\J.4) [- det(gJlJ] 1/2 and 
- N- 1

e;'1,2) transform as vectors under all 0 (3, 1) transfor
mations. Equations (57) and (81) imply that 

(92) 

Therefore when Eq. (81) holds e(3) is normal to the two
plane determined by the spin tensor. Thus e\.l) may be identi
fied with the Pauli-Lubanski spin vector. 

If one considers the Dirac equation for a free electron, 
(iy"p" + m)</J = 0, then one would also arrive at Eq. (81) 
when the electron is in an eigenstate of momentum whose 
value isp" = mX". Therefore the Dirac equation not only 
puts the momentum of the electron on mass shell but also 
ensures that t/J (constructed from </J ) is nondegenerate and 
aligns the tetrad constructed from t/J so that e(4) is parallel to 
the momentum vector p". 

The current vector density j" in the Dirac theory is 

(93) 

which by Eq. (68) is seen to be proportional to the sum of n" 
and la. Thus the electron current naturally decomposes into 
the sum of two null currents. Further Eq. (82) may be inter
preted as the statement that a physical electron state </J is the 
superposition of the amplitudes for the electron to be in the 
massless states A and 5. [Of course the particle that we have 
been calling an "electron" could actually be any spin-~ mas
sive fermion satisfying Eq. (80), since the interactions that 
would allow us to further classify particles have not yet been 
introduced.] 

A result analogous to Eq. (81) and (93) is true for wave
functions 2¥ = A + i~5 which describe particles satisfying 
E"{1I"'2(JI'X" = O. (It is an open question whether these parti
cles are magnetic monopoles.) This suggests that nondegen
erate spinors correspond to particles. However, not all of 
these particles are necessarily realized in nature, since an 
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arbitrary spinor contains, in general, uoth "electron" and 
"magnetic monopole" parts. 

The two Lorentz scalars tA and ty'iA partially classify 
particles: tA vanishes when one describes "electrons" using 
Eq. (78), while tYA vanishes when one describes "magnetic 
monopoles" using Eq. (79). 

Equation (80) actually follows from the following two 
identities, which are valid for any t/J, 

(94) 

and 

(95) 

and may be derived with the help of Eq. (42). Since Eq. (81) 
ensures that tA = 0 and N #0, Eq. (80) follows. 

Similarly one can show that, for any t/J, 
ty'S,,(3An(3 = Nn", 

and 

tyS a (3AI{1 = - NI". 

Since 

s _ (1/41) "a (3 If ,-Y - - . Ea (3I"'[ Y r y, 
and 

(96) 

(97) 

(98) 

(99) 

the analog of the Frenkel condition for elementary "electric 
dipole" particles follows when N = 0 and tA #0. 

We shall not address the question of electromagnetic 
duality, but clearly the formalism does not prefer "elec
trons" over "magnetic monopoles," or even "electrons" 
over, say, particles described by 0 + iCE coso + ~ sinO)5 
= 0 + ~(cose + y sinO )ES. A complete discussion of this 

symmetry is probably best deferred until it can be discussed 
within a theory of interacting particles. 

9. CONCLUSION 

We may partition S8 into rays (or "fibers") and writeSg 

as SN = lP'7(R) X R* + ! O}, where lP'7 is a fibering of S8 (a 
seven-dimensional projective space) by the equivalence rela
tion t/J~ t/J' iff if' = Ot/J', OER*. By scalar multiplication in the 

fibers we realize R*. Therefore (S8' w, SO (3, 3) X R*) satis
fies requirements (i)-(iv) for II M4 • Furthermore the appar
ent correspondence between (at least some) spinors and par
ticles leads one to hope that a physical theory cast on II M4 
will give rise to an operational definition of spacetime (i.e., 
M 4 ) via particles interacting with particles, thereby fulfilling 
the objective stated in the introduction. 

A non degenerate spin or defines an orthogonal tetrad; 
thus the set of non degenerate spinors determines the space of 
orthogonal frames over M 4 • This space is isomorphic to SO 

(3, 1)XR*. From our initial ansatz ofG = SO (3,3) XR* 
we have arrived at SO (3,1) X R* by breaking the SO (3, 3) 
symmetry down to SO (3, 1). An interesting question is 
whether there is any physical significance to this symmetry 
breaking, and if the symmetry can be approximately re
stored in some (perhaps, high-temperature) limit. 
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A product-integration rule for the integral S: k (t) f(t) dt is a rule of the form 1.7= 1 Wi f(t i ), with 
the weights W l'''''W" chosen so that the rule is exact if/is any linear combination of a chosen set of 
functions 411' ... ,41"· For some choices of [41j I, including the polynomial case, the points [t i I need 
to be carefully chosen if reliable results are to be obtained. In this paper known convergence 
results for the polynomial case with well-chosen points are summarized and illustrated, and 
extended to some nonpolynomial cases, including one proposed by Y.E. Kim for use in solving the 
three-body Faddeev equations. The convergence theorems yield practical prescriptions for 
choosing the points \ t, I. 

1. INTRODUCTION 

Product integration 1,2 is a simple technique for han
dling integrals of the form 

I (f) = fk(t)f(t)dt, (1.1) 

where k is a singular function andfis smooth, The method 
has proved usefuf,-8 in the integral equation formulation of 
the three-body problem and is likely to find many other ap
plications in the future. 

The aim of this paper is to make the method more useful 
in practice, by providing theoretically well-based prescrip
tions for choosing the quadrature points. 

A product-integration rule for I (I) is an expression of 
the form 

" I,,(f) = I WJ(t;) , (1.2) 
;=:--1 

where t I,. .. ,t" are a set of distinct points in [a,b ], and WI""'W" 

are suitable weights. Note that the singular function k does 
not appear explicitly but rather has been incorporated into 
the weights. The weights are determined by requiring that 
the rule be exact if/is any linear combination of a chosen 
linearly independent set 41l,,,.,41n' Thus the weights satisfy a 
system of n linear equations, 

(1.3) 

We shall assume that the n X n matrix {£/Ij (t i ) I is nonsingu
lar, so that the weights exist and are unique. (Note that t j , Wi' 

and £/Ii may all depend on n, but the dependence on n has 
been suppressed to simplify the notation.) 

In the early formulations, 1,2 the interval [a,b] was usu
ally restricted to be finite, the points were usually taken to be 
equally spaced, and the functions ¢} were taken to be polyno
mials of degree} -1 [in which case the matrix I 41j (t i ) I is 
automatically nonsingular]. However, many other choices 

"Work supported by the U,S. Department of Energy and the University of 
Maryland Computer Science Center, 

hlPermanent address: Department of Applied Mathematics, University of 
New South Wales. Sydney, N,S.W, 2033. Australia. 

are possible. Intuitively, the main requirement for the func
tions ¢j is that a suitable linear combination should be capa
ble of accurately representing the function! Much less obvi
ous-and this is the central concern of this paper-is the 
corresponding requirement for the points ti , 

Many particular examples of polynomial product-inte
gration methods have appeared in the literature,9-ls often 
with special choices for the function k. 

The application of product-integration to the numerical 
solution of integral equations of the second kind appears to 
have been first suggested by Young,]n In that application, 
the function k in (1.1) is the kernel of the integral equation 
(with one of its variables suppressed), or perhaps just a sin
gular factor of the kernel, andfis the solution of the integral 
equation, mUltiplied by any remaining factor of the kernel. 
In the applications to the three-body problem the functions 
¢j have been variously taken to be polynomials,6 piecewise 
polynomials,S,? or other functions",4 

A convergence theorem for the numerical solution of 
integral equations of the second kind by product integration 
with piecewise polynomials has been obtained by Atkin
son, 17 and one for the polynomial case by Sloan. 1 H In the 
present work convergence questions are only considered for 
integrals, not integral equations (though the two questions 
are, of course. closely related). 

How should the points ti in the product-integration rule 
(1.2) be chosen'! First, we may dispose of the case in which 
the functions dJ i are piecewise polynomials-to simplify the 
discussion, let ~s consider specifically the piecewise-linear 
case. Such rules arise in a natural way if the interval [a,b ] is 
divided into subintervals [f; _ 1 • Ii J, withf approximated on 
each subinterval by linear interpolation, Here the choice of 
the points ti is not at all a delicate matter-the points may, if 
desired, be taken equally spaced, or may be concentrated 
more densely in regions wherefvaries most rapidly, It is 
easily proved (see the following section) that the approxi
mate integral converges to the exact result as n---'" 00 , pro
vided the length of the longest subinterval converges to zero. 

If, on the other hand, the function d>J is taken to be a 
single polynomial of degree} -lover the whole interval, 
then a proper choice of the quadrature points becomes very 
important. Most strikingly, if the points are taken to be 
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equally spaced, then the results can be disastrously bad, even 
if/is a smooth function. (An example is given in Sec. 3.) 
Nevertheless, known convergence theorems for the polyno
mial caselO-12.14.19 tell us that there are some very good 
choices of points for this case. The theorems are summarized 
in Sec. 4. One good choice of points for the polynomial case, 
if the interval is taken as [ -1,1], is the set of Gauss quadra
ture points; another is 

(
2i -1 ) t, = - cos ~ 1T , i = 1, ... , n, 

and another is 

( 
i-I ) t, = - cos -- 1T , 
n --1 

i = 1, ... , n. 

Numerical examples for these sets ofpoints are given in Sec. 
5. 

If the choice of points is important for the polynomial 
case, then there are surely many nonpolynomial cases in 
which the choice of points is just as important. For some 
cases of this kind it is possible to obtain useful results by 
adapting the polynomial results. 

An interesting example of this kind is a product-inte
gration rule proposed by Kim3 and used4 in the numerical 
solution of the two-dimensional Faddeev20 integral equa
tions for the case of local two-nucleon interactions. In this 
application the integrals are from 0 to 00, so that (1.1) 
becomes 

I(f) = i"'k(t)f(t)dl. 

The functions tPj in the product-integration method were 
taken by Kim to be 

tPj (I) = _1_ (_I _y -I , j) 1 , 
I+a t+aJ 

where a is a suitable parameter. (The equations of Ref. 3 may 
be recovered by setting I = p2.) How should the points I, be 
chosen? In Sec. 6 we show that one choice with excellent 
convergence properties, in both theory and practice, is 

(=atan2(2i4~11T)' i=I, ... ,n. 

Finally, in Sec. 7 we consider a generalization of the 
previous paragraplt: for an arbitrary [a,b] (finite or infinite), 
we consider product integration, with the function r/Jj taken 
to be 

tPj(I)=g(t)Pjl (h(t», j)l, 

where g and h are suitable real-valued functions which are 
supposed given, and Pj _I is a given polynomial of degree 
j -1. A convergence result for this case is established by 
transforming the problem into one of polynomial product 
integration. 

2. PRODUCT INTEGRATION AS AN INTERPOLATORY 
METHOD 

An alternative approach to the product-integration rule 
(1.2) is to derive it by replacing/in (1.1) by a suitable inter
polating function, and then performing the integration ex-
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actly. Here we establish the equivalence of the two ap
proaches and use the second approach to prove convergence 
in a simple case. 

For a given n, let us suppose that the functions tPI, ... ,tPn 
and the points tl, ... ,tn are given, and that the n Xn matrix 
I tP/tJ) is nonsingular. Then iffis a continuous function on 
[a,b ], let L ~ denote the unique linear combination of 
rPI, ... ,rPn that interpolatesf at t u ... ,tn, i.e., that satisfies 

L~(tJ = f(t;), i= 1, ... , n. (2.1) 

Then 

L~(t) = iajr/J/t), (2.2) 
j~ 1 

where the coefficients aj satisfy the linear equations 
n 

"ItPj(tJaj = f(t,), i = 1, ... , n, 
j ~- I 

the matrix of which, by assumption, is nonsingular. 
Using (2.1), we may write the product-integration rule 

(1.2) as 

In (f) i w,L~(t,) 
i-",-1 

= (hk(t)L~,(t)dt, 
J" 

(2.3) 

with the last step following from the fact that the rule is exact 
for every linear combination of tP" ... ,w" , and therefore in 
particular for the linear combination L;,. Equation (2.3) 
tells us that the product-integration rule In (f) may be ob
tained by replacing/in (1.1) by the interpolating function 
L{, and then integrating exactly. 

In some cases (2.3) may be used to obtain a simple con
vergence proof, for if L ~ converges uniformly to/, and if k is 
absolutely integrable, then the convergence of In (f) to I (f) 
follows immediately from (2.3) and (1.1). This method of 
proof is particularly convenient for piecewise-polynomial 
cases. For example, in the piecewise-linear case (in which 
each tPj is continuous on the finite interval [a,b] and linear on 
[1,_1' t,], for i= 2, ... ,n, with a = tl <t2· .. <tn = b), it is 
very clear the L {, converges uniformly to/for all continuous 
functions/, provided only that 

lim max I ti - ti _ 1 I = 0 . 
n- -+ 00 2,>, i"-.:." n 

For the polynomial case, on the other hand, it is not true that 
L{, converges uniformly to/for all continuous functions! 

TABLE I. Approximate integrals 1,,(/) for f(t) = (1 +251 2
)-', k (t)~I, 

and equally spaced points. 

n 1.,(/) ~;1 ,iw,i 

6 0.46 2 
II 0.93 6.13 
16 0.83 1.67 X 10' 
21 -5.37 1.09 X 10' 
26 -5.40 3.54 X 10' 
31 153.8 4.24x 10' 

exact 0.55 
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for it is known2! that no matter how the points tp ... ,tn are 
chosen, there always exists a continuous functionf such that 
L ~ does not converge uniformly to f Thus the polynomial 
case requires different techniques!0-12.19 if we are to prove 
the convergence of In (f) to1 (f) for all continuous functions 

f 

3. THE POLYNOMIAL CASE WITH A BAD SET OF 
POINTS 

We assume for the present that the interval is [ -1,1] 
and that the function l{lj is a polynomial of degree j -1. In 
principle l{lj can be any polynomial of degreej -1, but in 
practice it is usually wise to avoid the obvious choice 

l{lj(t)=t i - I , j;;;.l, 

because it can lead to a badly conditioned matrix 
{l{lj(t;) 12i = I . A better choice for l{lj is the Legendre 
polynomial, 

l{lj(t) = Pj __ 1 (t), j;;;.l, 

or the Chebyshev polynomial of the first kind, 

l{lj(t)=1)-I(t), j;;;.I, (3.1) 

defined by 1j _ I (cosO) = cos(j -1)0. The Chebyshev poly
nomial basis has the advantage that for this case a technol
ogy already exists,22 at least for many of the most common 
singular functions k, for evaluating recursively the integrals 
that are required on the right-hand side of (1.3). The latter 
basis has been used for the numerical calculations of this 
paper. 

In this section we assume that the points ti are equally 
spaced over the interval [ -1,1], i.e., 

ti = -1 +2(i -I)/(n -I), i = 1, ... , n . (3.2) 

To show how bad this choice can be, it is sufficient to take k 
to be simply k (t )= 1, so that the integral we are evaluating is 
merely 

I (f) = fl f(t)dt. 

The results obtained by applying the equally-spaced 
quadrature rule to the function 

f(t) = (1 +25t 2tl (3.3) 

are shown for a number of values of n in Table I. Clearly, the 
approximate integrals In (f) are spectacularly bad: they 
show no sign of convergence as n increases and sometimes 
even have the wrong sign. 

A related problem, for all but the smallest values of n, is 
that some of the weights are negative. In the last column of 
Table I we show the sum of the absolute values of the weights 
and see that it grows without bound as n increases; yet the 
algebraic sum of the weights is just 

itlwi = J~ldt=2' 
since the rule (1.2) is exact ifJis the polynomialf(t )= 1. Thus 
for the larger values ofn we see that the weights have mixed 
signs and large absolute values, properties that lead to a seri
ous loss of significance in In <f) through cancellation. [How-
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FIG. I. The function/(t) = {J +25t ')"1 (solid curve), and its interpolating 
polynomial (dashed curve) for equally spaced points with n = 16. 

ever, the negative signs found for some values of In(f) in 
Table I are considered to be genuine, and not to be caused by 
cancellation errors.] 

One way of understanding the poor behavior of the inte
gration rule in this case is to recall the interpretation of the 
previous section, that In (f) results from integrating exactly 
the interpolating polynomial L ~. In Fig. 1 we show, for 
n = 16, the interpolating polynomial L~ for the function 
defined by (3.3). After seeing the wild oscillations of the in
terpolating polynomial near the ends of the interval, we are 
perhaps less surprised at the poor results in Table I. The 
functionf(t) = (l +25t 2>-1 is in fact a famous example for 
demonstrating the hazards of equally-spaced polynomial in
terpolation, apparently first introduced by Runge. 

The integration rules discussed above are in fact well 
known in numerical analysis: they are the so-called Newton
Cotes rules. 23 It is known that the Newton-Cotes rules can 
diverge even for functionsfthat are infinitely differentiable 
on [ -1,1]; even if they converge (as they do in fact iffis 
analytic in a sufficiently large region containing [ -1,1 D, 
they are beset, when n is large, with numerical instability 
problems arising from the occurrence of negative weights. 
For those reasons, the use of high-order Newton-Cotes rules 
is generally not recommended.23 Equally, in product inte
gration with polynomials (of which, after all, the Newton
Cotes rules are special cases), the use of equally spaced 
points should be avoided. 

4. THE POLYNOMIAL CASE: GOOD CHOICES OF 
POINTS 

If the points in the polynomial case should not be taken 
to be equally spaced, how then should they be chosen? If k is 
a classical non-negative weight function, then one answer21 
is to take the points to be the Gaussian points appropriate to 
the weight function k, since the product-integration rule is 
then simply a Gaussian rule. However, here we suppose that 
the Gaussian points are not known or are not suitable and we 
seek a set of points that does not depend on k. It is not obvi-
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ous, perhaps, that a good set of points can exist independent
ly of k. 

Yet there do indeed exist some good choices of points 
for the polynomial case. The simplest, perhaps, is 

t, = - cos (2i2~ 1 1T), i = 1, ... , n, (4.1) 

or the closely related set that includes the end points, 

(
i-l ) . ti = - cos --1T , 1= 1, ... , n. 
n-l 

(4.2) 

For both of these choices it is known 10.11 that the quadrature 
rule I" (f) converges to the exact result for every continuous 
function/, jf k satisfies the condition 

f~ Ilk (t W dt < 00 (4.3) 

for some p > 1. This condition is marginally stronger than 
the requirement that k be absolutely integrable, but in prac
tice most integrable functions k also satisfy (4.3) for some 
p> 1. [For example, the barely integrable function 
k (t) = It I ~O.99 satisfies (4.3) for allp in 1 <p < 110.99.] 

Another good set of points is the set of quadrature 
points for ordinary Gauss-Legendre quadrature, i.e., 

ti = t"i' i = 1, ... , n , (4.4) 

where P,,( t"i) = O. For this set it is known 12,19 that In (f) 
converges to the exact result for every continuous functionf 
if k satisfies r 11k (t )(1 - t 2yl(41P dt < 00, (4.5) 

for some p > l. The only difference from the condition (4.3) 
is that (4.5) is slightly more restrictive in the singularities of 
k (t) that it allows at the ends of the interval. 

Similar results are also known 12,19 for the more general 
case of product-integration rules based on the points 

t f:" (n.{3 I • - I n 
j == ~ tti , 1 - , •• " , (4.6) 

where the numbers S ~(:,/3) are the zeros of the Jacobi polyno
mial P ~;,,(J), a, fJ> -1. The previous choices of points (4.1) 
and (4.4) may be obtained by setting a = fJ = -! and 
a = fJ = 0, respectively, and probably represent the most 
important special cases. In the general case the condition on 
k becomes 12 r I Ik (t )(1 - t)- maxl(2a +1)14,0 1(1 + t) ~ max 1(2/3 + 1)/4,0 liP dt 

< 00 , (4.7) 

for some p > 1. 
For all of the above choices of points it is also 

known, 10-12 provided k satisfies the appropriate condition 
above, that the sum of the absolute values of the weights has 
a limit, 

(4.8) 

whereas it is easily seen that the algebraic sum of the weights 
is just 
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" II '~IWi = _I k(t)dt. (4.9) 

Thus the phenomenon seen in Table I, of a sum 1:lw; I that 
grows without bound, cannot now occur. Moreover, in the 
important special case in which k (t ) is non-negative, we de
duce from (4.8) and (4.9) that 

lim I IWil = Iw i ; 
n--"COi=l i=1 

thus the weights in this case have the property of "asympto
tic positivity." 

A rigorous bound on the error in the quadrature rule 
I,,(f) islo 

11,,(f)-I(f)I< CtllWil + I~llk(t)1 dt )E"_1 (f), 

(4.10) 

where 

E,,_I(f)= min maxlf(t)-p(t)l, 
fJE'>'" I 1'1<1 

&' ,,-1 being the set of polynomials of degree <n -1. The 
rate at which E" ~I (f) converges to zero depends on the 
smoothness off; one useful resu1t24 for a functionfwith s 
continuous derivatives is 

( 
1T )5 max I f(S)(t ) I 

En I (f)< - = O(n -'). 
- 2 n(n-l)···(n-s+l) 

So far in this section we have assumed the function k to 
be at least integrable, and have thereby excluded the impor
tant case of the Cauchy principal-value integral, 

k(t)=P(t-Ayl, -1<A<1. (4.11) 

Nevertheless, even in this case the convergence of In (f) to 
I (I) can be assured, provided we impose slightly stronger 
restrictions onf In fact, if the points are given by (4.6) [or by 
the special cases (4.1) or (4.4)], then it is known 14

,25 that 
I" (f) converges to I (f) iffis Holder continuous of order Ii 
for some Ii> 0, i.e., if there exist numbers M> ° and Ii > 0 
such that 

If(t) - f(s)I<M It -si'L. 

I t appears that the corresponding result for the case of the 
points (4.2) has not yet been proved, though its validity can 
hardly be doubted. The Holder continuity condition is in 
practice satisfied by most of the continuous functions that 
arise naturally. 

Also of some interest for the applications to scattering 
theory is the case of the delta function 

k(t)=8(t-A), -1<A<I. 

In thecaseI (f) = f(A )andI" (f) = L ~ (A ), sothattheques
tion ofthe convergence of In (f) toI (f) reduces merely to the 
question of the pointwise convergence of the interpolating 
polynomial L ~ at t = A.. For all of the choices of points dis
cussed in this section, a sufficient condition for convergence 
is that discussed in the previous paragraph, namely thatfbe 
Holder continuous of order Ii for someli > 0. If the points are 
zeros of Jacobi polynomials, then the result follows directly 
from Theorem 14.4 of Ref. 26. An almost identical argument 
to that in Ref. 26 holds also for the points (4.2). 

Ian H, Sloan 1035 



                                                                                                                                    

TABLE II. Quadrature errors for f(l) = (l +251 2)-', k (I)~ 1. 

n Ci I ) I, = - cos z;;- 1T 

4 0.21(0) 
8 -O.SO( -I) 

16 -0.21( -2) 
24 -0.8S( -4) 
32 -0.35( -5) 

5. NUMERICAL RESULTS FOR THE POLYNOMIAL CASE 

How good is the convergence for the polynomial case in 
practice? If the points are well chosen, and if/is reasonably 
smooth, then the following examples show that the conver
gence can be quite satisfactory. 

First, in Table II we give results for the case already 
considered in Table I, ofk (t )=I'/(t) = (1 +25t 2yl. There
sults are given for the three sets of points (4.1), (4.2), and 
(4.4). Because k (t )== 1, the product-integration rule for each 
of these sets of points reduces to a known quadrature rule23

: 

they are, respectively, a quadrature rule of Fejer, the Clen
shaw-Curtis rule, and the ordinary Gauss-Legendre rule. 
The weights in each rule are known to be positive.23 The 
observed convergence rate in all three cases is satisfactory, 
and quite similar. The Gauss rule is the most accurate, as one 
might expect with k (x)== 1, but the Fejer rule is a close sec
ond, with errors larger by less than 20%. 

The vastly improved behavior compared with that seen 
in Table I can be understood through Fig. 2, where we again 
show the n = 16 interpolating polynomial for the function 
J(t) = (1 +251 2yl, this time with the points given by (4.1). 
Note that the interpolating polynomial no longer has the 
wild oscillations seen in Fig. 1 near the ends of the interval. 

Next, in Table III we consider an example with a very 
singular function k, namely k (t) = It _0.81-314

, and 
J(t) = (1.2 - t)-I ,forwhich the exact value is 15.695 .... The 

1.0 

0.0 

0.0 1.0 

FIG. 2. The functionf(l) = (l +251 2r' (solid curve), and its interpolating 
polynomial (dashed curve) for the points Ii = - cos[(2i -l)1T/2nl with 
n = 16. 
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C-I ) I, = - cos -- IT 
n -I 

I, = $n, 

-0.30(0) -0.18(0) 
-0.73( -I) -0.41( -1) 
-0.32( -2) -0.18( -2) 
-0.14( -3) -0.74( -4) 
-0.56( -5) -0.31( -5) 

integrals on the right-hand side of (1.3), with f/Jj = ~ -1 , 

were evaluated by the recursive technique of Ref. 22. The 
three choices of points in the table are the same as in Table II. 
Evidently, the rate of convergence is very satisfactory in all 
three cases. The Fejer and Gauss-Legendre points (i.e., the 
first and third cases) here give comparable accuracy; again 
they give slightly better accuracy than the choice that in
cludes the end points. 

In Table IV we show the ratio ~Iwi II slk (t)1 dt for the 
function k of the preceding paragraph, namely k (t ) 
= It _0.81-3/4

• The three choices of points are as in Table 
III. Because k satisfies the conditions (4.3) and (4.5) (for 
1 <p < 4/3) we recall from (4.8) that the ratio for each choice 
of points necessarily converges to 1 as n-'HfJ. Obviously the 
behavior in the table is consistent with that, though the con
vergence is far from monotonic. What is more important in 
practice is that the ratio never departs very far from the 
limiting value 1, so that the loss of significance due to nega
tive weights is entirely negligible for all values of n-a situa
tion in marked contrast to that seen for the equally-spaced 
case in Table 1. 

Other numerical examples for the polynomial case are 
given in Refs. 10 and 11. 

6. KIM'S PRODUCT-INTEGRATION RULE 

Kim,3 in an interesting application of product integra
tion to the three-body problem, proposed that infinite inte
grals of the form 

1= i"'k(t)J(t)dt, (6.1) 

whereJis smooth, be evaluated by product integration, with 
the functions f/Jj ofEq. (1.3) taken to be 

1 ( t Y-I ¢lj(t) = -- -- ,/>1, 
t+a t+a 

(6.2) 

where a > 0 is a suitable scaling parameter. [Obviously that 
procedure is sensible only ifJ(t) = 0 (t -I) as t __ 00 and if 
S;k(t)(t + at l dt< 00; both properties hold in Kim's 
application. ] 

How should the product-integration points t; be chosen 
in this case? We may obtain rigorous convergence results for 
at least some special choices of points by transforming the 
problem into one of polynomial product integration. The 
first step is to rewrite the integral (6.1) as 

1= f'K(t)F(t)dt, (6.3) 
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TABLE III. Quadrature errors for f(t) = (1.2 - t)-I, k(t) = It _0.81-3/4
• 

n Ci-I ) ti = -cos ~1T 

4 0.15(1) 
8 -0.44( -I) 

16 0.46( -3) 
24 0.42( -5) 
32 0.47( -8) 

where 

K (t) = k (t )(t + at! , 

F(t)=f(t)(t +a). 

Kim's product-integration rule can be transformed in a simi
lar way: it can be expressed as 

In = i WiF(t;) , 
i=1 

with the weights W, determined by requiring the rule to 
equal the integral in (6.3) if Fis any linear combination of 
C/J), ... ,C/Jn , where 

<l>j(t) = tPj(t )(t + a) 

= [tl(t+a»)j-I, j~l. 

Now we observe that C/Jj is a polynomial of degreej -1 
in the variable 

x = t I(t + a), O<x < 1 , 

or equivalently, in the variable 

z = 2x -1 = (t - a)/(t + a), -1<z< 1. (6.4) 

Written in terms of z, the integral (6.3) becomes 

I = f~) K (z)F(z) dz , (6.5) 

where 

K (z) = 2a(1 - zt2K [a(1 + z)/(1 - z)] , 

F(z) = F[a(1 + z)/(l - z)] . 

The above product-integration rule can also be trans
formed in a similar way: regarded as a product-integration 
rule for (6.5) it can be written as 

In = i W;F'(Zi) , 
;=1 

where the weights W, are determined by requiring the rule to 
be exact if Fis any linear combination of cP), ... ,cPn , where 

TABLE IV. ~Iw, I/Slk I for k(t) = It _0.81-3/4
• 

n 

4 
8 

16 
24 
32 

1037 

(
2i -I ) t, = -cos ~1T 

1.02 
I 
I 
1.09 
I 
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(i-I ) ti = - cos --1T 
n-I 

t/ =Sm 

0.30(1) 0.46(0) 
-0.21(0) 0.74( -2) 
-0.29( -3) 0.49( -3) 

0.58( -5) 0.24( -5) 
0.42( -7) -0.64( -8) 

cP(z)=C/J(a I+Z) = (1+ZY-1
• 

) } l-z 2 ) 

Since cPj is a polynomial of degreej -1, we may simply say 
that the weights Wi are determined by the requirement that 
the rule be exact if F is any polynomial of degree <n -1. 

Since the problem is now reduced to one of polynomial 
product-integration, we may use the theoretical results of 
Sec. 4. To avoid uninteresting complications, we consider 
only a single choice of product-integration points for (6.5), 
namely the classical Chebyshev set (4.1), i.e., 

(
2i-l ) . Zi = - cos ----z;;-- 1T , 1 = 1, ... , n . (6.6) 

In terms of the original variable t, related to z by (6.4), the 
expression for the points becomes 

ti = a tan2 (2i ;;/ 1T)' i = 1, ... , n . (6.7) 

With the points given by (6.6), the condition to be satis
fied by K is [see (4.3)] 

fIIK(z)JPdZ< 00, 

for some p > 1, or, equivalently, 

("'I k(t) IP(t + a)2(P-I) dt< 00, 

Jo t+a 
(6.8) 

for some p > 1. A sufficient condition for (6.8) to be satisfied 
is that 

lT1k(t)IPdt< 00, 

for some finite upper limit T and some p > 1, together with 

Ik(t)I<Bt-< 

for B, E> 0 and all r;;oT. 
Under the condition (6.8), we are assured by the theo

rems summarized in Sec. 4 that Kim's product-integration 

(
i -I ) t, = -cos --1T 
n -I 

I 
1.21 
1.02 
1.13 
1.16 

I 
1 
1.10 
1.02 
1 
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TABLE V. Kim's method for the integral (6.9), using the quadrature points (6.7). 

n Error 

2 -0.2S( -2) 
4 -O.SO( -3) 
6 0.74(-7) 
8 -0.68( -6) 

10 O.SS( -8) 
12 -0.17( -8) 

rule with the points (6.7) converges to the exact result (6.1) if 
the functionFis continuous, or, equivalently, iff(t )(t + a) is 
a continuous function on [0,(0) and has a finite limit as 
t--+ 00. (Of course the convergence is much faster if that func
tion is not merely continuous but also smooth.) 

1 t also follows from the results in Sec. 4 that the conver
gence property is valid even if k contains a principal-value or 
delta function singularity, providedf(t )(t + a) is not merely 
continuous but also Holder continuous of order f.-t for some 
f.-t>0. 

For a numerical test of Kim's product-integration rule 
with the points (6.7), we consider 

I = It -111/2(t +1)-5,2 -- dt, 1
w 

. t 

o 3t +1 

the exact value of which is 0.145 .. · . We choose 

k(t)= It-111/2(t +lt312
, 

f(t)=t/(t +1)(3t +1), 

(6.9) 

so that the conditions on k andf are satisfied, and take a = 1. 
Note thatf(t )(t + 1) is a smooth function, so that we would 
expect the convergence to be rapid. 

The results obtained for this example are shown in Ta
ble V. Note that the convergence is indeed rapid, and also 
that the weights all turn out to be positive for the values of n 

considered in the table. 
A final comment about Kim's product-integration 

method concerns numerical stability: whether used with the 
points (6.7) or any other set, the basis (6.2) can lead to a very 
poorly conditioned matrix l rp/t i ) J. A mathematically 
equivalent basis set with much better stability properties is 

1 (t - a) dJ/t) = --~ I -- , />1. 
. t+a t+a 

7. A GENERALIZATION 

The argument of the previous section is here general
ized to integrals of the form 

1= fk (t)f(t)dt , (7.1) 

where a and b may be finite or infinite, and the basis func
tions rpj are of the form 

rpj(t)=g(t)Pj _\ (h(t»), (7.2) 

with g being a given positive function on (a,b )'Pj _\ a poly
nomial of degreej -1, and h a differentiable, monotonically 
increasing function that maps (a,b) onto ( -1,1). 
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Liw, I/Slk I 

By analogy with the argument of the previous section, 
the prOduct-integration points are taken to be 

h -I [ (2i-l)]. t, = - cos ~ 1T , I = I, ... , n , (7.3) 

where h -I denotes the inverse function of h. The condition to 
be satisfied by k is 

flk(t)g(tW[hl(t)]-IPI) dt< 00, (7.4) 

for some P > 1. 
If (7.4) is satisfied, then it follows, as in the previous 

section, that the product-integration rule (1.2) converges to 
the exact result as n--+oo ifJ(t )/g(t) is continuous on (a,b) 
and ifit also has finite limits at a and b. On the other hand, if 
(7.4) is not satisfied because of principal-value or delta-func
tion singularities in k, then the convergence still holds if 
J(t )/g(t) is not merely continuous but also Holder continu
ous of order f.-t for some f.-t > O. 

As a simple example, let us take the interval [a,b] to be 
[O,17"J and the functions dJj to be 

1>/t) = cos(j -1)t, j> I . 

Then rpj (t ) is of the form (7.2), with get ) = 1 and 
h (t) = - cost. The above results then tell us that if the 
points are given by 

ti = [(2i -1)/2n ]1T, i = 1, ... , n, 

and if k satisfies 

r:r l k (t W(sint) - (p - I) df< 00, 

Jo 
(7.5) 

for some P > I, then the product-integration rule (1.2) con
verges to the exact result for all functionsJthat are continu
ous on [0,1T]; or, if(7.5) is not satisfied because of the occur
rence of principal-value or delta-function singularities, then 
the product-integration rule converges for all functionsJ 
that are Holder continuous of order f.l for some f.l > O. 

The condition (7.5) is in fact equivalent to an apparent
ly simpler condition, 

for some p' > 1. The equivalence may be proved by changing 
the integration variable in (7.5) tax = cost, and then using a 
result proved in the appendix of Ref. lO. 
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Decaying states in the rigged Hilbert space formulation of quantum mechanics 
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Within the rigged Hi1~ert space form~latio~ of quantum mechanics idealized resonances (without 
b~ckground) ar~ descnbed by generahzed eIgenvectors of an essentially self-adjoint Hamiltonian 
wIth complex eIgenvalue and a Breit-Wigner energy distribution, This establishes the link 
between the S matrix desc~iption of resonances by a pole and the usual description of states by 
vectors, overcomes theoretIcal problems connected with the deviation from exponential law and 
simplifies the calculation of the decay rate formula, 

I. INTRODUCTION 

The rigged Hilbert space (RHS) tP C Y c tP x, intro
duced into physics around 1965,1 has already displayed so 
many features which make it ideally suited for the descrip
tion of quantum mechanics2 that one wonders why it has not 
yet been more generally accepted by physicists. More recent
ly, around 1975, a new attribute of the RHS was uncovered3

: 

It occurred that decay phenomena are most naturally de
scribed3 using generalized eigenvectors of the self-adjoint en
ergy operator with complex eigenvalue.4 Such a description 
would establish the link between the S-matrix description of 
a resonance state as a pole and the usual description of states 
as vectors in a linear space; this is probably the reason why 
the complex energy eigenvectors have immediately caught 
the fancy of physicists working on decaying systems. 5.6 

However, there are two points which were the actual motiva
tion for the introduction of these generalized eigenvectors7 

and which have not been adequately mentioned in Ref. 5: (1) 
Their justification from the physical production process of 
decaying states, and (2) their application in the derivation of 
the decay rate formula. 

In distinction to von Neumann's formulation of quan
tum mechanics, which is based on the postulated one-to-one 
correspondence between (pure) physical states and rays of 
the Hilbert space, we will use the RHS formulation of quan
tum mechanics, 2,7 according to which the physical states are 
elements of the dense nuclear subspace tPCc'F. Though this 
change makes mathematically an enormous difference, 
physically one can not really discriminate between these two 
formulations. Both are idealizations, though the RHS for
mulation gives a description of physical states which is closer 
to the experimental situation. The use of the RHS in von 
Neumann's formulation may lead to a deeper insight, but the 
full advantage of the RHS can only be realized in the RHS 
formulation which eliminates many mathematical compli
cations of von Neumann's formulation, as it uses only RHS
continuous operators for the observables. The RHS has in 
tP x (space of continuous antilinear functionals) elements 
that describe idealized scattering states and idealized decay
ing states. These are generalized eigenvectors2 leu> of the es
sentially self-adjoint (e.s.) Hamiltonian H: 

(1) 

They occur in the nuclear spectral theorem' for the operator 
H: 

(2) 

where A is the spectrum of H (which for simplicity is as
sumed to be absolutely continuous and J1- is taken to be one). 

If tP is such that (¢ IE) and (E i ¢) are restrictions of 
analytic functions (¢iw), (w* i¢) in a domain that includes 
A one can deform the path of integration from the real axis A 
to a curve (f} in the complex energy plane 

(l/',f/J) = f dw (¢iw) (w*lei). 
~ (, 

If the function (w*\iP) = (tP\w) has a pole at (* and 
denote complex conjugation) ZR = ER - fT, i.e., the func
tion (tP\w) has a pole at z~ between the old path A and the 
new path Y; one has to add to the above integral along the 
path 'If the term 

{ dz4 (z*iei), 
Jrt> z - ZR 

where 0"is the circle around z~ and 1(; ~l is the residuum of 

(¢Iz) = 4+ ¢O+1(;l(Z-Z~)+"" 
Z-ZR 

With suitably assumed properties of the function (z* lei) at 
the infinite semi-circle the path for this integral can be taken 
along the real line from - 00 to + 00. So one can write for 
the physical state vector ¢EtP (considered as a functional on 
<Prv'JiP., where cW'+ is the space of Hardy class functions with 
respect to the upper half~plane) 

(1(;1= f dW<l,blw><w*j+ f+x dE ¢-l* <Ei· 
( - d- E - Zn 

(3) 

It has been proposed 3,7 to use the second term in (3) for the 
description of decaying states. 

Before we define these idealized decaying state vectors 
from the physical motivation and show their usefulness for 
the calculation of decay rates we want to make some remarks 
regarding our notation. Physical observables and transfor
mations are represented by bounded and continuous opera
tors, A, in f/J. Let A x denote its conjugate operator A x [de
fined as in (1)] in tP x (which is also continuous), A its closure 
in elY' (which is in general not bounded), and A t its adjoint 
(restriction of the Hilbert space adjoint to ~ ), then to each 
physical quantity corresponds the triplet of operators A cX 
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CA tx in the Gelfand triplet of space <PCPrC<p x . To sim
plify the notation and to exhibit the correlate to formal scat
tering theory we will denote this triplet just by A, the precise 
meaning follows from the space in which it acts. 

II. PHYSICAL MOTIVATION FOR THE MATHEMATICAL 
FORM OF THE DECAYING STATE VECTOR 

Unstable systems are prepared by scattering experi
ments in which the delay time is large. The intermediate 
quasistationary system, when it is considered as an isolated 
decaying system ignoring the mode of formation, must 
therefore have the properties of a resonance which means 
that the state vector </> R, which is to represent it, must have a 
Breit-Wigner energy distribution, i.e, if we write 

(4) 

where IE) are the generalized eigenvectors of the essentially 
self-adjoint H with E belonging to the spectrum of H, then 

I/(E E )1 2 _ 1 r/2 (5) 
- R - -; (E R _ E)2 + (r /2)2 ' 

with (E R ,r) the resonance parameters. Consequently 

( r )In 
!(E-ER )= - --- ZR =ER -if· 

21T ZR-E 
(6) 

We take the "scalar product" of (4) with a rpE<PC7r'C <P x, 

which has the property that <E Irp) is the limit of a function 
<zlrp) analytic in the upper half-plane (precisely, the value of 
the functional <</> R I at rpE~W' + ). Then 

<</> R irp) = (£)1/2 f dE <E Irp) • 1 
21T ZR-E 

= (~ y12 ( _ 2m)(z~ Irp). (7) 

In the last equality we have used Titchmarsh theoremS after 
extending the integration over -- 00 < E < + 00. 

In the same way one calculates 

(</> R iH Irp) = z~ (z~ Irp)( - /V 21Tr ), (8) 

and 

(</> R le ifl ' Irp) = eiE"c - (1'12), (</> R Irp). (9) 

Omitting again the arbitrary rp E<Pr\--Jl"+, we have in 

(</> R I = - tV 21Tr (z~ I 

- tV 21Ti _1_. f dE (E I (10) 
2m E -- z~ , 

a vector which is (a) normalized (element of 7r'+), (b) not in 
the domain of ii, (c) a generalized eigenvector of H with 
eigenvalueszR = ER - i(r /2), and (d) a decaying state vec
tor. 9 Properties (c) and (d) are given by (8) and (9), respec
tively. Properties (a) and (b) can be seen as follows: 

(</>RI</>R) = £fdEdE'(EIE') 1 , 
21T (E - ER? + (r /2)2 

= ~fdx_l- = 1, 
1T x 2 + 1 
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( A. R IH 21A. R > - r f dE E 2 
'I' 'I' - 21T (E _ ER)2 + (r /2)2 -00. 

</> R is certainly not in the space of physical states <P. This 
we should have expected, as in all experimental situations a 
resonance is accompanied by a background and the Breit
Wigner amplitude without background is just an idealiza
tion. Thus, even for the simplest possiblity an element of <P 
will always contain a background term represented by the 
first integral in (3). Nevertheless, it is often useful and suffi
ciently accurate to employ a description in which one iso
lates the intermediate quasistationary system, ignores its 
mode of formation, describes it by a Breit-Wigner ampli
tude, and represents it by an idealized decaying state vector 
</> R. 

III. APPLICATION OF THE COMPLEX ENERGY 
EIGENVECTORS 

To demonstrate the usefulness of describing decaying 
states by (10) we will calculate the decay rate. To do this we 
will have to make use of some results of scattering theory. 
Digressing from the subject of this paper we briefly comment 
on the possibilities of their justification and introduce the 
notation. The subject of this paper will then continue with 
the application of the decaying states in the general formula 
(11) below. 

It is usually assumed thatH = Ho + Vwhere.iio andH 
are the self-adjoint free and interaction Hamiltonians, re
spectively. For simplicity we assume that the spectra of Ho 
and H are absolutely continuous and identical (no bound 
states) and ignore degeneracy. As it is not known how to 
construct the topology in <P we will have to assume that also 
H = Ho + V with H, Ho, Ve.s. continuous operators in <P. 
We will further assume that Vis such that the wave opera
tors fl ± exist and that the Tmatrix (A I V IE> exists, where 
1..1 ) are the generalized eigenvectors of the spectrum of H o. 
Then the Lippmann-Schwinger equation is given in the 
form 

n t; = ( dA (1..1 ) (A I - R ~t: i< VXfl1~ 1..1) (A I), 
JAo 

where R ~ = (Ho - z) - I and Ao is the spectrum of Ho. n t; 
relates the generalized eigenvector 1..1 ) of Ho to the general
ized eigenvector IE) of H: IE) = n t: 1..1). The transition 
rate from a state </> (t) = e - iHt</> into a subspace fl<P is given 
by (omitting all other quantum numbers but the energy) 

9(t)= !!...(Trfll</>(t» (¢'(t)!) 
dt 

= - if dEb f dEdE' e-i(E-E'), 

X (b /VIE) (E'/vlb) (E I¢' )(</> IE') 

X(E'-~b-ie - E-;b+ ie } (11) 

where (b I V IE) is the Tmatrix, Ib ) isa basis of eigenvectors 
of Ho for the subspace fl<P, and the integration SdEb runs 
over this subspace. 

To specify this general expression for the transition rate 
to the decay rate we choose for the state </> the decaying state 
</> R. </> R is, of course, not exactly a physically preparable state 
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t/J, but ¢J R is the resonance ingredient with the exponential 
time development of such a physically preparable state. Of 
the generalized eigenvector expansion (3) of t/J only the ¢J R 

component is significant in (8). Then, inserting (10) into (11) 
one obtains for the decay rate 

9(t)= -i J dEb J dEdE' (bIVIE) (E'lVlb) 

X ~ e-- iEt eiE't 

211' E - [ER + i(F 12)] E' - [ER - i(F 12)] 

X( 1 _ 1 ) 
E' - (Eb + i€) E - (Eb - i€) 

= 9 1 + 9 2 , (12) 

The integration can now be carried out for € > 0 using 
again the Titchmarsh theorems and assuming that (E I V Ib ) 
is such that its conditions are fulfilled. For the first term 9 1 

of (12) one integrates first over E ' then takes the complex 
conjugate, integrates over E and takes again the complex 
conjugate. The result is 

9 1 (t) = 211'Fi J dEb (b IV IER - iF /2) (Eb + i€1V Ib) 
e - iERte - n12/E•t

e - Et 

X , (13) 
Eb -ER +ik+F/2) 

where we have used (b I V IE + iF 12) = - (b I V IE 
- iF 12) for the Tmatrix, which is an immediate conse

quence of the well-known symmetry relation for the S ma
trix.8 For the initial decay rate 9 (0) one obtains from this 
for €-~r /2--+0 

9 1 (0) = 21TFi f dEb (b I VIER - iF /2) 

X (Eb + iF /2 IV Ib ) 1 . (14) 
Eb - ER + iO 

A similar expression is obtained for 9 2(0) with + iO re
placed by - z'0. If one then uses the well-known relation 
between distributions 

- 21Ti8(Eb - ER), 

(15) 

and re-inserts (10) one obtains the well-known expression 
for the initial decay rate 

:30(0) = 21T f dEb (b IV I(V)(¢J R IV Ib )8(Eb - ER)· 

(16) 

If the Tmatrix is a slowly varying function of the com
plex energy z, (Eb + i€1 V Ib );:::; (E R + if-I V Ib ) for 
Eb ;:::;ER, then one can use (13) also for F which are larger 
than the energy resolution of the detector, £lEb «F, and ob
tains (6-+ + 0): 

" 'f d (b I VIER - iF /2)(Eb + i€1 Vlb) 
:-7(0) = 21TFI Eb 

Eb -ER + i(€ +FI2) 
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Eb - ER - i(€ + F /2) 

= 211'Fi f dEb (b IV I ER - iF /2 > 
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X ( ER + i ~ I V I b )(Eb _ ER~2i: (F /2)2) 

= 21T f dEb (b IVI¢JR )(¢J R IVlb) 

XCEb _ E~:: (F 12? ). (17) 

where the last factor is the well-known natural line width. If 
one compares these simple straightforward calculations 
with the conventional procedure!O one will appreciate the 
usefulness of our new vectors (10). 

IV. CONCLUDING REMARKS 

The questions we have addressed ourselves to is the de
scription of a decaying state with the resonance parameter 
(ER ,F); our suggestion is (10). We have not discussed the 
question how one calculates the position of the resonance. 
That is a completely different problem whose answer de
pends upon the particular property of the energy operator H, 
and may be connected with the choice of the topology in lP, II 
problem which is so far completely unresolved. For discus
sions in mathematics connected with the spectral analysis of 
self-adjoint operators ii one likes to choose the topology of lP 
such that lP x contains only those generalized eigenvectors 
whose eigenvalues correspond to the spectrum of ii.11 For 
physical systems whose algebra of observables is given by the 
enveloping algebra of a semisimple group, it was suggested 12 

to define the topology (which is then nuclear!2) by the count
able number of scalar products (¢J,t/J)n = (¢J,(£l + 1) nt/J). 
Here £l is the Nelson operator of the group, which is often 
related to the Hamiltonian of that system. These two re
marks suggest to construct the topology in lP for a physical 
system with energy operator H such that lP x contains only 
those generalized eigenvectors with complex eigenvalues 
E<;) - i[r<n)/2] that correspond to the parameters 
(E <;),F (n» for resonances of that particular physical system 
and does not contain (¢J RI 's given by (10) for any other value 
of z R • How this can be done and how this is connected with 
the construction using the Nelson operator is a problem that 
has not yet been treated. 
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Exi~tence o~ resonances is prov~d for ~he time-independent Klein-Gordon equation describing 
the InteractIOn of a charged partIcle WIth an external uniform field of small strength F in addition 
to the Coulomb attraction. It is further shown that the resonances reduce to the exactly known 
bound states of the problem as F--+O, and to the resonances of the nonrelativistic Stark effect as 
C-+oo. 

I. INTRODUCTION 

This paper represents a further contribution to the cur
rent rapidly developing rigorous theory of resonances in 
Schrodinger operators under the action of a constant electric 
field. 1-11 

As a first step towards the understanding of the reso
nance phenomena in the relativistic Stark effect, at least for 
two-body systems, and of the corresponding nonrelativistic 
limit, we consider here a spinless case, i.e., the Klein-Gor
don theory for a particle in an electrostatic potential due to 
the Coulomb attraction by a fixed charge Z and to an exter
nal uniform electric field of strength F. Furthermore, this 
model is also of some direct physical interest, since it is be
lieved to describe the scalar mesic atoms (see, for example, 
Ref. 12). 

The time-independent Klein-Gordon equation de
scribing the interaction of a relativistic particle of rest mass 
m and charge e with an electromagnetic field of potential 
(A,<P) is given by (see, for example, Ref. 22). 

(E - e<P )21(; = ( - icV - eA)21(; + m2c41(;, (1.1) 

where E is the energy of the particle, and fz = 1. In the pre
sent case A = 0, <P = - e(Z Ir) + eFx; furthermore, defin
ing as usual W = E - mc2

, Eq. (1.1) can be rewritten as 

Hl/J=Wl/J, (1.2) 

where 

1 e2 eW W 2 

H = - - L1 - --2 <P 2 + e<P + -- <P --
2m 2mc mc2 2mc2 . 

(1.3) 

These formulas clearly exhibit a major difficulty of the prob
lem when written in this form, i.e., the constrained nature of 
its spectral problem, namely, one has to find those values of 
Wfor which the point Witselfbelongs to the spectrum of H. 
In other words, Eqs. (1.2) and (1.3) give rise to an implicit 
spectral problem. This difficulty does not occur if one con
siders the Hamiltonian theory of the problem, instead of the 
Klein-Gordon one, as done by Weder14 and Herbst9 for the 
pure Coulomb case (F = 0). However, the pure Coulomb 

"Permanent address: Istituto Matematico, Universita di Modena, 41100 
Modena, Italy. 

h'Partially suported by I.N.F.N., Sezione di Bologna. 

case is the only one in which, as is well known, the implicit 
spectral problem can be exactly solved, and in the nonrelati
vistic case a similar difficulty, arising when the appropriate 
Schrodinger operator is realized in squared parabolic co
ordinates, has been overcome to yield a first proof of the 
existence of the resonances.4 It is therefore conceivable that 
at least for small values of the field strength F, the argument~ 
of Ref. 4 can be generalized to provide, through the dilation 
analyticity techniques, an existence proof of resonances also 
in this context. 

The purpose of this paper is to present such a general
ization, to be given in the following way: In Sec. II we discuss 
the realization of the partial differential expression H, for 
real values of W, as an essentially self-adjoint operator in 
L 2(R3

); in addition, the nonself-adjoint operator H (e )associ
ated with H through the dilation analyticity technique is 
realized, and a generalized strong convergence as Ime-+O is 
proved. In Sec. III, the spectral properties of Hand H (e) are 
examined, both in the standard sense as well as in the implic
it one. In particular, the essential spectrum of H (e) is deter
mined, In Sec. IV the realization of H (e) in squared parabol
ic coordinates is introduced, which is such that H (e) is 
represented, in any invariant subspace of magnetic quantum 
number m = 0,1, ... , by a slightly generalized two-dimen
sional anharmonic oscillator to which the Simon key re
sults 15 are easy to extend. In this way, we show for F small, 
through an implicit function argument, the existence of 
complex implicit eigenvalues, independent of e, which re
duce to the pure Coulomb bound states as F--+O and to the 
nonrelativistic Stark effect resonances as c-+ 00. In Sec. V 
these eigenvalues are shown to be second sheet poles of the 
scalar products of the appropriate resolvent operator on 
some suitable dense set of states, so that they represent re
sonances according to the standard notion of this concept. J6 

Finally, the adaptment of Simon's results needed in Sec. 
IV and V is presented in the Appendix. 

II. ESSENTIAL SELF-ADJOINTNESS AND COMPLEX 
SCALING 

Our first aim in this section is to realize, when WER and 
<P = e[ - (Z Ir) + Fx], the partial differential expression 
(1)-(3) as an essentially self-adjoint operator in L 2(R3

). As
suming from now on m = !, e2 = 1, the explicit form of His 
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H= -L1-Z(1 + 2Jf\~_ Z2 ~+F(1 + 2W\ 
eZ) r e2 r2 eZ ) 

F2 2 2ZF X W 2 
--x+----

e2 e2 r 7' (2.1) 

Since we intend to adapt to the present situation the Faris
Lavine l7 version of the Nelson l8 commutator theorem, we 
begin by introducing an auxiliary operator, related to the 
self-adjoint realization of H + (2F 2

/c
2
)X

2
• 

More precisely (see Ref. 19, Sec. VI.4.3) let N be the 
semibounded self-adjoint operator in L 2(R3

) defined by the 
partial differential expression 

N(a,{3,y) = -L1- a?_ P...+ yx2, a<!, {3ER, y>O, 
r - r 

(2.2) 

on the domain [from now on, we shall take L 2 = L 2(R3
) un

less otherwise stated] 

D (N) = [uEL 2Iu'==graduE(L 2)3111xull < 00 

lL1u exists IN (.)uEL 2], (2.3) 

where all differentiations are taken in the generalized sense. 
Let in addition Ho be the semibounded self-adjoint op

erator in L 2 defined by N (a, {3,0) on the domain 

D(Ho) = (uEL 21u' = graduE(L 2)31L1u existsIN(.,O)uEL 2J. 
(2.4) 

We recall that the implicit spectral problem for H o, i.e., Eq. 
(1.2) for F = 0, can be exactly solved (See Ref. 22, Sec. 42), 
the implicit energy eigenvalues being given by 

w~,1=!e2[(1+ ~22 ,.1_2)-112 -1], 

A=n+!+ [U+!)2- ~22r2, n,l=O,l,···. (2.5) 

Our purpose is to prove that Has given by Eq. (2.1) generates 
an essentially self-adjoint operator in L 2 when defined on 
D (Ho)nD (X2), D (x2) being the domain of the maximal multi
plication operator by x 2 in L 2. 

Let us begin by the following quadratic estimate: 
Lemma 2.1: Let uED (Ho)nD (x 2

). Then there are posi
tive constants a and b such that 

IIHoul1
2 + Ilyx2uI12<all(Ho + yx2)u11 2 + b Ilu112. (2.6) 

Proof Let uED (Ho)nD (x2). Then, following the argu
ment of Ref. 15, Lemma 11.1.1, as quadratic forms on 
D (Ho)nD (x 2

) ® D (Ho)nD (x 2
) we can write 

(Ho + yx2? = H6 + yx4 + yHox
2 + yx2Ho 

= H6 + yx4 + yp2x 2 + yx2p2 -2yx2 

x(!:.. + P...) 
r2 r 

=H6 + yx
4 + Y[Px,[Px,x2]] 

+2y p·x2p -2yx2 (!:.. + P...) 
r 2 r 

>H 6 + yx4 -2y -2yx2 (!:.. + P...). 
r2 r 

[It is easy to check that all commutations appearing above 
make sense when considered as quadratic forms on D (Ho) 
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nD (x2) ®D (Ho)nD (x2).] Now choose two positive constants 
k < 1 and b such that kyx4 

- 2yx2[(alr 2) + ({3 If)] - 2y 
+ b>O for all x. Then we have (Ho + yx2)2 + b ;;;.(1 - k) 
X (H 6 + yx4

), whence the result with a = (1 - k tl. 
The above estimate implies uW (N) if uW (Ho)nD (x2

). 

Since D(N)~D (Ho)nD(x2
), and Nis self-adjoint, we have 

the following: 

Corollary 2.1: Let Nbe defined by Eqs. (2.2) and (2.3). 
Then D (N) = D (Ho)nD (x 2

). 

Lemma 2.2: Let HI be defined as an operator in L 2 by 

D (HI) = D (Ho)nD (x2), HI = N -2yx2 + 8x, 8ER. 
(2.7) 

Then HI is essentially self-adjoint. 
Proof HI is trivially symmetric. Hence, by the Faris

Lavine variant 17 of the Nelson 18 commutator theorem, it is 
enough to prove on D (N) ® D (N) the quadratic form 
estimate 

± i[HI,N]<kN 

for some k > 0. 

(2.8) 

A simple computation shows that, as quadratic forms 
onD(N)®D(N): 

± i[H1,N] = ± 2i[p~,yx2] + i[p~,8x] 
so that, when uED (N); 

± i(u,[HI,N]u) 

= ±4y[(pxu,xu) + (xu,Pxu)] ±20(pxu,u) 

<4y( -L1u+x2u,u) +28( -L1u,u) +kl(u,u) 

from some kl > 0. Now (see again Ref. 19, Sec. VI.4.3) the 
quadratic form domain Q (N) of N is given by 

Q( - L1 )nQ (x 2)=H 2 ,I(R3)nQ (x 2
), 

H 2,1 being the usual Sobolev space. Since Q (N) ~ D (N), we 
have uEH 2 ,I(R3

), so that, as is well known (see, for example, 
Ref. 20), there are a < 1 and b > ° such that the quadratic 
form estimate (air 2) + ({3 Ir) < a( - L1 ) + b holds. Hence, 
as quadratic forms onD (N) ®D (N) - L1 <(1 - atlHo + b, 
[and thus 4y( - L1u + x 2u,u) <4y(1 - at'(Hou,u) 
+4y(x2u,u) +4yb (u,u), 28( - L1u,u)<28(1- at l 

X (Hou,u) + 28b (u,u)], whence, adding a positive constant 
to N, we get the existence of k > ° such that 

± i[Hl,N] <kN, 

and this proves the lemma. 
The realization of H as an essentially self-adjoint opera

tor is now an immediate consequence of this lemma. 
Theorem 2.1: Let WER, and (Z 2/c2) <!. Then the oper

ator H defined by Eq. (2.1)onD (N) = D (Ho)nD (x2
) is essen

tially self-adjoint in L 2. 

Proof It is enough to take a = Z 21 e2, 

{3 = Z[1 + (2W le2
)] , y = F 2/c2

, 8 = F[1 + (2W leZ)], and to 
remark that the maximal multiplication operator by xlr in 
L 2 is bounded. Hence, the result follows from Lemma 2.2 
and the Rellich-Kato theorem. 

Remark: Returning to the usual units, we see that H is 
essentially self-adjoint for all Z < el2 = 137/2, in our units, 
exactly as in the F = ° case. 

Let us now turn to the realization of the complex scaled 
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operator associated with H by the dilation analyticity tech
nique. Let U (fJ), fJER, be the unitary dilation group in L 2: 
(U(fJ}f)(x) = e(3/2)'l(e lJx), fEL 2, xER3. 

Then it is easily seen that, on U(fJ)D(N), 

U(fJ)HU(fJt' 

= e ·~2f) ( _ .1 _ !!.- - !i e + IJ - r e4IJx 2 + 8e31Jx 
r2 r 

x W 2 

+ 17 eZIJ 
_ _ -,- e2IJ

, 
r e-

ZZ (2~ a=-2' {:1=Z 1+-" 
e e-

17 = 2~F, D = F (1 + 2e~' 
In particular, on U (fJ)D (H 0), 

U(fJ)HoU(fJ)-' 

-20 ( a e
fi 

=e -.1---{:1--
r2 r 

F2 
r= -2' 

e 

W
2 2e) -2- e . 

e 

(2.9) 

(2.10) 

(2.11) 

To get well defined operators out of the above differen
tial expressions also for ImfJ i'0, let us first recall that (see, 
for example, Ref. 15) the operator Tin L 2 defined by 
D (T) = D( - L1)nD (x2

), T= -.1 - rx2,0 <argr < 21T,is 
strictly m sectorial, with quadratic form domain 
Q (T) = Q ( - .1 )nQ (x 2

). The uncertainty principle inequal
ity a(u,r -2U) < ( - L1u,u), a <!, UEQ ( -.1 ), shows that 
(Tu,u) - a(u,r -2U) is a closed strictly sectorial quadratic 
form if UEQ ( - .1 ) (see again Ref. 19, Sec. 1-4-3). Let T, be 
the unique strictly m-sectorial operator associated with this 
quadratic form. To determine its domain, let us prove a fur
ther quadratic estimate: 

Lemma 2.3: Let uED (N), a < A, Imri'O. Then there are 
positive constants a < 1 - I Rerlrl and b such that 

\ I ( -.1- ;2)U 112 + I rl211x2u l1
2 

~all( -.1 - ;2 - rx
2 

)ulI
Z 
+ b lIu11

2. (2.12) 

We further define Proof Again, we follow an argument of Ref. 15 
H(fJ) = U(fJ)HU(fJt', Ho(fJ) = U(fJ)Ho(fJ)U(fJt', I (Lemma II.9.1). 

As quadratic forms on D (N) ® D (N) we can write 

( -.1 -- :2 -rx2 
)( - .1 - :2 - YX 2

) 

=( -.1- :2Y + IrI2x4-Rer[x2( -.1- :2)+( -.1- ;2)X2] ±illmrl [ -.1- ;2,X2] 

=IR;rl[( -.1- :2)+lrlx2r +(I-IR;rl)[( -.1- ;2Y+lrI2x4]+21Imrl(pxx+xPx) 

;.(for some R>O)(a+R)[( -.1- ;2Y + Ir12x4] -21Imrl(-L1 +x2)+21Imrl(Px ±X)2 

;'(a + R ) [ ( - .1 - ;2Y + I r 12X4] - 2 I Imr I ( - .1 - ;2 + x
2 

) - 2 I Imr I ;2 

;'(by the uncertainty principle lemma) 

;'(a +R)[( -.1- ;2Y + Ir1 2x4 ] -41 Imrl( -.1- ;2) -21 1mrl x2 

;.a[( -.1- ;2Y + IrI 2x4 ]-b+R( -.1- ;2Y -41 Imrl( -.1- ~)+ t+R 
b 

I r 12x4 
- 21 Imr I x 2 + -. 

2 

A suitable choice of b makes both R [ -.1 - (air 2W 
-41Imrl[ -.1 - (air 2)] + (b 12)andR Irl2x4 - 211mrlx2 
+ (b 12) positive, and this proves the lemma. 

To define H (fJ), we need a further preliminary result. 
Lemma 2.4: Let a < &' 0 < argr < 21T, 1/31 < 1Iy18, DEC. 

Then the maximal multiplication operator by /3 Ir + ox is 
relatively bounded with respect to T" with relative bound 
smaller than one. 

Proof By lemma 2.3, we have D (T,) = D (Ho)nD (x2) 
= D (N). Now {:1 I r and ox are both relatively bounded with 
respect to T, by the closed graph theorem, since D (11 r) 
= Q (lIr 2):::)Q( -.1) = Q(Ho):::)Q (T,):::)D (T,), D(x) 
:::)D (x2):::)D (T,). Now x is relatively bounded, with relative 
bound zero, with respect to x 2

, and thus by Eq. (2.12) is 
relatively bounded with respect to T, with relative bound 
zero. Furthermore, applying twice the uncertainty principle 
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I inequality we see that 1{:1 121r 2 is relatively form bounded 
with respect to -.1 - (air 2) with relative bound smaller 
than 1. Since -.1 - (air 2) is self-adjoint and bounded be
low for a <!, 1{:1 IIr is also relatively bounded with respect to 
- .1 - (air 2) with relative bound smaller than one. Hence, 

by Eq. (2.12) it is relatively bounded with respect to T, with 
relative bound smaller than one. Hence, for uED (T,) we have 

II ~ u + Dxu II ~ II ~ u II + IIDxuli 

~aIIT,ull + b Ilull + a'IIT,ull + b'lluli 
~(a + a')11 T,ull + (b + b ')llull, 

with a < 1. Since we can take a' as small as we like, the 
Lemma is proved. 

Theorem 2.2: Let (Z2Ic2
) < §, IZ [1 + (2W Ic2)]el!l 
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< 11\18. Then Ho(f) and iIo(f) defined on D (Ho) by Eq. 
(2.11) are a holomorphic family of operators of type A (in W 
for fixed f). and in f) for fixed W). The implicit eigenvalues of 
Ho(f) are given by Eq. (2.5). 

Proof We have just seen that 13 Ir is relatively bounded 
with relative bound smaller than 1 with respect to the self
adjoint operator - Ll - (air 2). a <~. where 1131 < 1Iy'8. 
Hence. the first assertion follows by the standard criterion 
(see, for example. Ref. 19). The second assertion follows 
from the usual dilation analyticity arguments (see, for exam
ple Ref. 13) which make the eigenvalues of Ho(f), and hence 
also its implicit ones, independent of f). This proves the 
Theorem. 

Theorem 2.3: Let 

'!T 
O<Imf)< -. 

2 
(2.13) 

ThenH (f) )[andiI (f) )] defined by Eq. (2.9)onD (Ho)nD (x2)is 
a holomorphic family of operators oftype A (in f) for fixed W 
and in W for fixed f). 

Proof By Lemma 2.4. the operator T J - (13 Ir) + ox 
+ (1]xlr) defined on D (Ho)nD (x2) is closed and has a non

empty resolvent set. Then it is enough to take a = Z 2/e2, 
13 = Z [1 + (2 W le2)]e II, y = (F 2/c2)e 48, 

0= F[l + (2 W le2)]e 311.1] = (2ZF le2)e le, and to remark 
that not only the domain is independent of Wand f) but also 
that H (f)u is of course a vector valued holomorphic function 
off)and WwhenuED(Ho)nD (x 2

). Hence,H (f)isaholomor
phic family of type A by definition, I) and the theorem is 
proved. 

Remark: From now on, in writingH (f) we shall always 
mean that the conditions (2.13) are satisfied. 

As in the nonreJativistic case, the lack of dilation analy
ticity for f) real makes the limit Imf)~, which provides the 
connection between Hand H (f). a delicate one. We solve 
this problem along the lines of Herbst's treatment,9 actually 
proving in this particular case a slightly stronger statement. 

Theorem 2.4: H (f) converges strongly in the general
ized sense to H (f)ElR) as Imf)---O. 

Proof The assertion is of course equivalent to the strong 
resolvent convergence of iJ (f) to iI. where iI stands for 
iI (f), f)EJR. To see this. first remark that the union u of the 
numerical ranges of iI (f). O(Imf) < c < '!T12. is not the whole 
complex plane, as it is easy to check. Hence we can take a 
pointAECsuchthatd (A,f) > 1] > 0, whered = dist(A,U).and 
1] does not depend on f). Since II[iI (f) - A ]-111 (d (A.f) >-1. 
O(Imf) < c < '!T12, the resolvent is uniformly bounded for 
Imf);"O for some AEe. Then the strong resolvent conver
gence follows by a direct application of theorem VIII.1.5 of 
Ref. 19.becauseonehas II[iI (f) - iI]ull~asImf)-Owhen 
uED (Ho)nD (x 2

). which is a core of iI. This proves the 
theorem. 

III. ESSENTIAL SPECTRUM OF H(e) 

In this section we intend to obtain some information on 
the spectral properties of Hand H (f), both in the standard 
sense as well as in the implicit one. 
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Let T be the essentially self-adjoint operator in L 2 de
fined as 

D(T)=D( -Ll )nD(x2
), 

y> O. OEJR 

T= - Ll - yxl + ox, 

(3.1) 

and T (f) ) the m-sectorial operator in L 2 defined as 

D (T(f)) = D ( - Ll )nD (x2), 

T(f) = - e-leLl - yxle 11l + oxe e• 

0< Imf) < '!T12. (3.2) 

It is well known that u(T) = U ess (T) = JR. The spectrum of 
T (f) ) is easy to determine. 

Lemma 3.1: u(T(f) »=uess (T(f) »consists of an infinite 
family of parallel half-lines emanating from the points 
- iyl/2(2n + 1) - (o2/4y), n = 0,1.·.·. and forming an angle 
-2 Imf) with the positive real axis. 

Proof We can of course realize T (f) ) as a tensor product 

T (f) = - e- ze (p~ + p;) ® I 

+ I ® ( - e - zep: - yx2e28 + &IiX) (3.3) 

(the meaning of the symbols being obvious). The strict sec
toriality of the operators appearing in Eq. (3.3) allows the 
application of a well known result (see, for example, Ref. 20) 
stating that the spectrum of the tensor product is the set 
theoretic sum of the spectra of the separated operators. Now, 
as is well known, e 18p: - ye28x2 + &8X defined on 
D (p:)nD (x2

) has a purely discrete spectrum consisting pre
cisely of the simple eigenvalues - iy1/2(2n + 1) - (o2/4y), 
n = 0,1,.··, so that by the well known nature of the spectrum 
of - e - 28 (p~ + p;) the lemma is proved. 

Theorem 3.1: U ess (H (f)) consists of an infinite family of 
parallel half-lines emanating from the points 
- i(F le)(2n + 1) - (e2/4)[1 + (2W le2W - (W2/e2

), 

n = 0,1,2,.··, and forming an angle -2 Imf) with the posi
tive real axis. 

Proof By a well known criterion, it is enough to prove 
that [T(f) ) - A ]-1 - [H (a, f3,y,o.1];f) - A ]-1 is compact for 
someAEC. and then to seta. f3.y,o,,,, to their physical values. 
In this proof H (f) is intended of course without the factor 
- (W2/e2). We first remark that the setoftheAECforwhich 

both [T(f) - A ]-1 and [H (f) - A ]-1 exist as bounded opera-
tor in L 2 is not empty by the strict sectoriality. Then since 
Q (T(f)) = Q ( - Ll )nQ (x2) = Q (H (f) ». as quadratic forms 
on L 2 ®L 2, we can write (see Ref. 19. Theorem VII.4.3) 

[T(f) - A ]-1 - [H (f) - A ]-1 

= [T(f) - A ]-I[H (f) - T(f))][H (f) - A ]-1 

= [T(f)-A ]-I[ _e-28~_ e-e/!....+1]~] 
r 2 r r 

X[H(e)-A]-I. (3.4) 

Let us prove the compactness of each term separately. First 
recall thatr -I is compact as a map fromH 2.2(JR3) = D ( - L1 ) 
to L 2 and hence, a fortiori. as a map from 
H2,lnD(X2

) = R ([T(e) - A ]-1) = D (T(e» toL 2. Hence, 
r -I[T(O) - i]-I is compact, and so is its adjoint 
[T(f) - A ]-I r -I. The middle term is thus the form of a com
pact operator because [H (e) - A ]-1 is bounded. Apart from 
multiplicative constants, the third term can be written as 
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[T(O) - A ]-I r -1.x[H (0) - A ]-1. As above, [T(O) - A ]-Iy-I is 
compact, and hence it is enough to have x[H (0) - A ]-1 
bounded, which is true by the closed graph theorem since 
D (x):JD (x2):JD (H (0». As for the first term, again apart 
from multiplicative constants, it can be written as 
[T(O) - A ]-Iy-I.r -I[H (0) - A ]-1. Now the first factor is com
pact, and the second is bounded again by the closed graph 
theorem, becauseD (r -I):J D (H (0) )(seetheproof ofLemma 
2.4). To sum up, the rhs ofEq. (3.4) is the form of a compact 
operator, and putting a = Z2/c2, /3 = Z [1 + (2W /c2)], 
Y = F2/e2,o = F[1 + (2W /e2)],1] = 2ZF /e2thetheoremis 
proved. 

According to physical intuition the spectrum of H, both 
in the standard sense as well as in the implicit one, should 
cover the whole real axis. 

In this case the holomorphic dependence of H (0) on 0 
and the known nature of its essential spectrum allow one to 
prove this assertion. 

Theorem 3.2: Let WER. Then u(H(W» = R. 
Proof Let (a,b ) be an open, bounded interval having 

empty intersection with u(H(W». Let us prove that 
(a,b) = ¢>. To see this, consider the function 
jll,(A) = (tf,[H(W) -A ]-Itf), analytic for IrnA >0, tfbeing 
any dilation analytic vector for lImO I < (1T/2). By our as
sumption all functionsj.;, (A ) have uniform analytic continu
ation to the whole complex A plane cut along ( - oo,a] and 
[b, + 00). On the other hand, since tf is dilation analytic, 
standard arguments (see, for example, Ref. 13) and Theorem 
2.4 show that (tf,[H (W) - A ]-Itf) 
= (tf(if),[H(W,O) - A ]-ltf(O»,withtf(O) = U(O)tf.Since 
the dilation analytic vectors are dense, by Theorem 3.1 there 
is at least a tf for whichj", (A) has a singularity when A is a 
point of U ess (H (0 », which lies in the lower half-plane 
IrnA < O. This contradicts the hypothesis, and the theorem is 
proved. 

As an immediate consequence we have the following: 
Corollary 3.1: Let WER. Then the implicit spectrum of 

H(W) covers the whole real axis. 
Proof By the above result, given W the spectrum of 

H (W) is R, so that in particular it contains the point Witself. 

IV. COMPLEX ENERGY EIGENVALUES OF H(O) 

Our purpose in this section is to prove the existence of a 
discrete spectrum of H (0) in the energy variable W, to be 
identified with the resonances in Sec. V. To this end, it is 
convenient, as in the nonrelativistic case, to realize H (0) in 
squared parabolic coordinates, in order to exploit its invari
ance with respect to any subspace corresponding to a con
stant value of the projection of the angular momentum along 
the x axis. 

Introducing the squared parabolic coordinates u, v, ¢> 
defined by 

u = (r + X)1/2, x = ~(U2 _ v2), 

v = (r - X)1/2, Y = uv sin¢>, 

¢> = arctan ~), z = uv cos¢>, 
(4.1) 
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after separation of the angular part and a unitary transfor
mation one finds (see Ref. 4 for details; compare also with 
Ref. 7) that the eigenvalue equations Ha(O)tf = Wtf and 
H (0) = WtfinL 2 [H (0) and Ha(O) being defined as in Sec. 
II] are, respectively, equivalent to the following infinite sets 
of implicit eigenvalue equations in 

L 2(R2+ + ) = L 2(R. X R.): 

H?n(O)tf = 2Ztf, m = 0,1,.··, 

Hm(O)tf = 2Ztf, m = 0,1,. ... 

here H?" (0) is defined as an operator in L 2(JR2+ +) by 

D (H?n(O» 

(4.2) 

(4.3) 

= !uEL 2(JR2tt )lru=~(u2+v2)uEL2(JR\ + )Iu'=gradu 

E(L 2(JR2+ + »2ILlu exists IH~,(O)UEL 2(JR2+ f)l 

(differentiations in the generalized sense) with 

and Hm (0) by D (Hm (0» = D (H?" (0 »nD «u2 
-- V

2
)2 

X (u 2 + v2» with Hm (0) = H?" (0) + 1]eiJ(u2 -- v2) 
+ !e20o(u4 _ v4) _ !e3iJy(u2 _ v2f(u 2 + v2). 

The coefficients a,y,o,1] are given by Eq. (2.9). 
Under the same conditions on Z,e, W, and 0 of Theo

rems2.2and2.3,H?,,(0)-2Z andHm (0)-2Z will of 
course be holomorphic families (of type A ) of operators in 
L 2(JR2

+ + ), in W for fixed 0, and in 0 for fixed W. 
For the sake of simplicity from now on by the general

ized spectrum of Hm (0) corresponding to the point AEe we 
shall mean (compare also Ref. 19, Theorem VII.6) the set of 
all points WEe such that A belongs to the spectrum of Hm (0), 
i.e., the set \AEb (Hm (0 »1 WEe l. An analogous definition for 
H?" (0) applies. The implicit W spectrum of H (0) is then 
given by the union over m;;.O of the generalized spectrum of 
Hm(O ) corresponding to the point A = 2Z. Then we have the 
following: 

Theorem 4.1: Let H ~, (0) be defined as a holomorphic 
family of type A of operators in L 2(JR2+ + ) as above, and let 
0< arg[(W2/e2

) + W]e 20 < 21T. ThenH~(O ) has a compact 
resolvent and discrete generalized spectrum. The union over 
m;;.O of the generalized spectra of H?n (0) corresponding to 
the point A = 2Z coincides with the unperturbed implicit 
energy eigenvalues W~'J given by Eq. (2.5). 

Proof See the Appendix. 
Theorem 4.2: Let Hon (0) be defined as a holomorphic 

family of type A of operators in L 2(R2+ + ) as above, and let 
Re[ - e 2iJ[(W2/e2

) + W] > O. Then we have the following: 
(a) H m(O) has compact resolvents; (b) Hm (0) has discrete 
generalized spectrum; (c) any eigenvalue 
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A (a,[W1/c1) -+- W],7],8,y) of Hm«(}) enjoys the Symanzik 
scaling property 

A (a, (~1 + W),7],8,y) 

= (U-iA (a,(U1( ~1 + W),(U17],(U38,(U4y) (4.5) 

for each (U > 0, and elsewhere by analytic continuation. In 
particular, by setting (U = eO we see that the eigenvalues of 
Hm «() )donotdepend on (). (d)Hm «()) converges in the norm 
resolvent sense to H ~ «() ) as F-o, uniformly on compacts in 
(}and W. (e) The eigenvalues A (.,y)ofHm «(}) have an asymp
totic expansion to all orders in powers of y near y = 0, given 
by the Rayleigh-Schr6dinger perturbation series. 

Proof See the Appendix. 
By Eq. (4.3) and Theorem 4.2(a), the energy eigenval

ues of the problem are implicitly defined by all equations of 
the type 

A (W,F) = 2Z, (4.6) 

if we require the condition Re[ - e10[(W1Ic1) + W]]>O. 
Here A (W,F) denotes an arbitrary eigenvalue of Hm«(})' 

As in the nonrelativistic case, we can prove the exis
tence of the implicit function W = W (F), independent of (), 
for small values of the field strength F. 

Let us first remark that by Theorem 4.2(d) any eigen
value A = A (.,F) of Hm «(}) is continuous as F-o, i.e., its 
limit exists and is equal to an eigenvalueAo of H~,«(}), for 
which the equation 

(4.7) 

can be explicitly solved to yield an unperturbed energy ei
genvalue. Then we have the following: 

Theorem 4.3: Let Hm«(}) and H~«(}) fulfill the condi
tions of Theorem 4.1 and 4.2, and () < 1T14 be fixed. Let in 
addition A = A (W,F) be an eigenvalue of Hm «(}), 
Ao = limF-->uA an eigenvalue of H~ «(}), and Wo an unper
turbed energy eigenvalue determined by Ao, i.e., Eq. (4.7) 
holds for W = Wo, A = Ao. Then there are 8 > ° and € > ° 
such that for I W - Wol < 8, ° <F < €, Eq. (4.6) with the ini
tial condition Ao( Wo) = 2Z implicitly defines a function 
W = W (F), independent of(}, such thatlimF--.o W (F) = WOo 

Proof First remark that for 8 small enough we have 
I W IIc2 <~, (arg( - W» < (1T12) - 2 Im(}, so that the condi
tion Re[ - e 20[(W2/c2) + W]] > ° is satisfied. 

Given Eqs. (4.6) and (4.7) for W = Wo, the implicit 
function theorem tells us that the implicit function, which 
does not depend on () by the scaling property (4.5) and the 
fact that also the initial condition does not depend on () 
(Theorem 4.1), exists when A and aA law are analytic in W 
near Wo for all F> 0, aA law I w~ w, ~o, A uniformly con
tinuous as F-O. The anlyticity of A near Wo is true because 
Hm«(}) is a holomorphic family in W, and the uniform con
tinuity as F-O follows from Theorem 4.2(d). To verify the 
remaining condition, remark that sinceHm «(}) is a holomor
phic family of type A in Wat fixed () for any F> 0, the eigen
value A (W,F) can be expanded in Taylor series of powers of 
(W - W;» near Wo, the nth derivative at Wo coinciding with 

1049 J. Math. Phys., Vol. 21 , No.5, May 1980 

the nth coefficient of the Rayleigh-Schr6dinger perturba
tion expansion (times n!). Hence, we immediately have for 
F>O: 

:~Iw~w, 
= (t/J( Wo,F,iJ), [ - eO (1 + 2 ~o )(U2 + v2) 

- - + - (u 4 
- v4

) t/J(Wo,F,(}) , 4Z e10F ] ) 
c1 c1 

(4.8) 

t/J( Wo,F,(} ) being the eigenvector corresponding tOAo( Wo,F). 
Analogously, for F = 0, we get 

a~~)lw=w, 
- (1 + 2~o ) (t/J(Wo,iJ),eO(u2 + v2)t/J(Wo,(}» 

4Z -
- -1 (t/J(Wo,(}),t/J(Wo,(}» <0 (4.9) 

c 
strictly. 

Now the norm resolvent convergence of Hm«(}) to 
H';,.«(}), uniform in compacts in W, implies that the scalar 
product appearing in the rhs ofEq. (4.8) is continuous at 
F = 0, i.e., its limit exists and is equal to the scalar product in 
the rhs ofEq. (4.9). This is because 

t/JCWo,F,(})- t/J(Wo,(}), 
F-.Q 

and 
(u 4 

- v4 )t/J( Wo,F,(}) _ (u 4 
- v4 )t/J( WO,(}) 

F.Q 

by the known exponential fall off of the eigenfunctions at 
infinity. Hence, 

aA ~:;F)I w~ w"~ aA;~) I w~ w, ~O. 
Hence, by continuity, there is € > ° such that 
aA (W,F)laW I w~ w, ~O for all Fin O<;F < €, and the theo
rem is proved. 

The realization of H «() ) in squared parabolic coordi
nates is most convenient also for the determination of the 
nonrelativistic limit c- 00. To this end, we briefly recall 
some results of Ref. 4. 

Let 0 < Im(} < 1T 13, and Am (F,(}), m = 0,1,. .. be the dif
ferential operator defined in L 2(JR+) by 

D(Am) = ! fEL ~(JR+)lfEH2,2(JR+)lf(0) = Olu'1EL 2(JR+)], 
(4.10) 

A = e -- ° [ - ~ + (m 2 
- 1) ~] - WeOu 2 + IFe2f1u4

• 
m du 2 4 U 2 2 

It is proved in Ref. 4 that if the differential expression 

Km«(})=e-o[- ~_ a
2

, +(m2-n(~+ 1)] 
au2 av- u2 7 

- W eO(u2 + v2
) +!F e20(u4 

- v4
) 

is realized as an operator in L 2(JR2+- +-) by the tensor product 

(4.11) 

the following properties hold: 
(i) K m «(}) is a holomorphic family of type A of operators 

in L 2(JR2+- + ), in () for any fixed Wand in W for any fixed (). 
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(ii) K m (0 ) has a discrete spectrum and discrete general
ized spectrum. 

(iii) All points W of the generalized spectrum of Km (0) 
corresponding to the point 2Z are resonances of the nonrela
tivistic essentially self-adjoint Stark effect Hamiltonian 
K = - L1 - (Z Ir) + Fx, D (K) = C a (IR3), and converse
ly.7 

(iv) The implicit spectral problem corresponding to the 
point 2Z can be solved, at least for a finite number of eigenva
lues of Km «(), when F is small enough, and the resulting 
resonances converge to the Hydrogen bound states as F---+O. 

We now have the following: 
Theorem 4.4: Let 0 < ImO < rr/3, 

Re[ -- e 21l[(W2/c2
) + W]] > O. ThenHm(O)convergesinthe 

norm resolvent sense to Km (0) as C-+oo, uniformly on com
pacts in W, 0, and F. 

Proof See the Appendix. 
An immediate convergence is as follows: 
Corollary 4.1: LetA (W,F,c) be an eigenvalue of Hm (0), 

andIL(W,F) = lime 'X A (W,F,e)aneigenvalueofKm(O).Let 
Fbe so small that both implicit equations A (W,F,e) = 2Z 
andll(W,F) = 2Zhave solutions. Let W(F,c) and W(F) be 
the corresponding generalized eigenvalues. Then 
lime 'oc W(F,e) = W(F). 

By Theorem 5.3 below, when Fis small enough, the 
implicit eigenvalues W (F) of H m (0) are actually resonances 
of H. Hence we can conclude the following: 

Theorem 4.5: Let W (F) be a resonance of H. Then there 
are values of Fso small that W (F,e) converges to a resonance 
of the nonrelativistic Stark effect as C-+ 00 . 

V. RESONANCES 

We have so far shown the existence of solutions of the 
implicit spectral problem H (W,O)tf; = Wtf;. 0 < ImO < rr/2. 
These implicit eigenvalues are independent of 0, so that they 
could be already interpreted as resonances (see Simon 16). 
However, the implicit nature of the spectral problem and the 
lack of dilation analyticity for OEIR make by no means obvi
ous the fact that these eigenvalues are resonances also ac
cording the more usual notion of second sheet poles of the 
scalar products of the resolvent operator taken on some 
dense set of vectors. (It is well known that this assertion is 
true for the standard dilation analytic problems; see, for ex
ample Ref. 16). 

In the present situation, given the implicit nature of the 
spectral problem, we have to show not only that, when tf; 
belongs to a suitable dense set in L 2, the function 
(tf;,[H (W) - A ]-10), WEIR, whichisaprioriananalyticfunc
tion of A for Im;l > 0, has a meromorphic continuation to the 
second sheet 1m;l.;;;0, but also that the second sheet poles 
coincide with the solutions of the implicit spectral problem 
for H (0) found in the former section. This represents of 
course a translation into the implicit language of the usual 
notion of resonance, and hence we go on to prove the above 
assertions in order to conclude that the Weigenvalues of 
H «() are resonances of the problem. 

Let us first formulate the above remarks in a more 
mathematical language. Consider the operator H (0) 
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= H (W,F,O) defined in Sec. II, with 0 < ImO < rr I 4, 
ReW <O,lmW.;;;O,Re[ - e 20W[1 + (W le2

)]] > O.ByTheo
rem 4.2, we know that H (W,F,O) has a discrete spectrum 
with this choice of the parameters, independent of O. 

Definition 5.1: By resonances of the self-adjoint opera
tor H defined in Sec. II we mean all eigenvalues A = A (W,F) 
ofH(W,F,O), O < ImO < rr/4, Re[ - e 2°W[1 + (W!e2

)]) > 0, 
Re W < 0, 1m W.;;;O, satisfying the condition 

A (W,F) = W. (5.1) 

Remark: (a) The resonances as defined above can be 
characterized also by the implicit functions W = W(F) de
fined by Eq. (5.1). (b) The implicit Weigenvalues defined by 
A (W,F) = 2Z, A an eigenvalue of Hm (W,F,(), satisfy of 
course Eq. (5.1), and conversely. Then we have the following 

Theorem 5.1: Let tf;EL 2 be a dilation analytic vector for 
limO I < rr 14. Then the function 

lif,(W,F,}.) = (tf;,[H (W,F) - A ]-Itf;), (5.2) 

originally defined as an analytic function of A in the upper 
half-plane Im;l > 0 when WEIR, FEIR, has a meromorphic 
continuation to the lower half-plane Im;l .;;;0. For any fixed A 
in the lower half-plane,f,p (W,F,). ) is a meromorphic func
tion of Wwhen ReW <0, ImW.;;;O, Re[ - W - (W2Ic2

)] 

< O. The resonances of H in the sense of Definition 5.1 are 
second sheet (i.e., Im;l = ImW.;;;O) poles of/if,(W,F,}.) such 
thatA (W,F) = W,whereA (W,F) is a pole offif, forlm;l.;;;O. 

Proof By Theorem 2.4 and the standard dilation analy
ticity arguments (see, for example, Ref. 21), if WEIR, tf; is a 
dilation analytic vector for limO I <rr/4,andtf;(0) = U«()t/J, 
we have 

lu,(W,F,}.) = (t/J(if),[H(W,F,O) - A ]-Itf;(O», (5.3) 

whence the analyticity properties in Wand A by the proper
ties of the operator families H m (W,F,O) stated in Theorem 
4.2. Furthermore, the resonances in the sense of Definition 
5.1 are by direct inspection second sheet poles of I", (W,F,). ) 
satisfying the constraint A (W,F) = W, and the theorem is 
proved. 

To complete the argument showing that the implicit W 
eigenvalues of H (W,F,O) whose existence has been shown in 
Sec. IV are resonances of H according to Definition 5.1, it 
remains to be proved that, at least for F small, one has 
ImW(F)';;;O. To this end, let us first prove a preliminary 
proposition. 

Lemma 5.1: LetA (W,F)bean eigenvalue ofH (0 )satis
fying the constraint A (W,F) = W, W = W (F), the implicit 
function thus defined, and Wo an unperturbed energy eigen
value [i.e., an implicit eigenvalue of Ho(O)] such that 
limp---o W(F) = Wo, and letg(W,F) = A (W,F) - W. Then 
there are {j > 0 and € > 0 such that aglaW ;;60 for all 
I W - Wo I < {j, when 0 < F < €. 

Proof We know thatH (0) is for any fixed 0 a holomor
phic family of type A in Wwhen IZ[1 + (2W Ic2)]eOI 
< 1Iy18. Hence, proceeding as in the proof of Theorem 4.3, 
we can conclude that aA law I w~ w, coincides with the co
efficient of (W - Wo) in the Rayleigh-Schrodinger expan
sion of A (W,F) of initial point WOo Hence, we have 
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Jg I = JA (W,F) I - 1 
JW w~w, JW w~w, 

= - 22 (tP(Wo,O),V¢(WolJ» -1, 
e 

where V = ( - Fxe e + (Z /r)e ~ e + Wo), and ¢(W,O) de
notes an eigenvector corresponding to A (W,F). The same 
argument, applied now to Ho(O), yields 

JAo I -1 
JW w~w, 

- 1 - :2 (tPo( wo,ij), ~ e ~ etPo( Wo,O) ) 

-2 Wo( tPo(Wo,O),tPo(Wo,O» 

< _ ~ w: -1 < - ~ (Wo + e
2

) < 0 
e20 e2 2' 

whereA o = limF_oA (W,F),andtPo(W,O)denotestheeigen
vector corresponding to Ao. Now, as in Theorem 4.3, 
JA (W,F)/JW~F.oJAoIJW. Hence by continuity, there is 
8> 0 such that Jg(W,F)/JW;60 for I W - Wol < 8, and this 
proves the Lemma. 

Weare now in position to prove that for F small enough 
the imaginary part of the implicit eigenvalues found in Sec. 
IV has the correct sign. 

Theorem 5.2: LetA (W,F) be an eigenvalue of H(O), 
0< Imlk 1T/4,satisfyingtheconstraintA (W,F) = W. Then 
there are values of Fso small that if W(F) denotes the corre
sponding implicit function, W(F)~Wo as F~O, Wo an im
plicit eigenvalue of Ho(O), one has ImW(F),O. 

Proof Consider first the implicit eigenvalue problem 
forH(W,F,O)definedasReA (W,F) = W,A (W,F)asabove. 
This problem has a solution under the present assumptions, 
becauseJ ReA (W,F)/JW -1 ;6 0 for Wreal, I W - Wol <8, 
sinceJ ReA (W,F)/JW = ReaA (W,F)/JWfor Wreal, and 
ReaA (W,F)/JW -1;60 by Lemma 5.1. Denote by WI 
= W1(F) the solution, of course real, of ReA (W,F) = W. 
Now H (W) is essentially self-adjoint for Wreal, and since by 
Theorem 2.4 and the usual dilation analyticity arguments we 
have 

(CP.[H (W) - /t]-lcp > = (CP (O),[H (W,O) - /l]-Icp (0» 

for a suitable dense set of dilation analytic vectors {CP J, it 
must be lmA (W1(F),F),0. 

LetusnowrelateA 1 A1(WI(F),F)toA A (W(F),F) 
- W (F). As in Lemma 5.1 and Theorem 4.3, the analyticity 
of H (W,O) allows one to write, through first-order perturba
tion theory, 

A - Al = - (W -2 WI) C1(W1,F) + 0(1 W - WI 12) 
e 

(A - ~eAI) C1(WI,F) + OCA _ ReA 1)2, (5.4) 
e 

where 

C1(W1,F) = 2 (tP(WI,F,ii),( - Fx ee + (Z /r)e ~ e 

+ WI)tP(WI,F,O» >2Wo 

for F small by the same continuity argument of Lemma 5.1 
and Theorem 4.3. Taking the real part ofEq. (5.4) we get 
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Re(A -A I)(1 + ~;) + 0 (Re(A -AI») = O(lmA f. 

For F small, we have 1 + (CI/c
2) + 0 (Re(A - A I») 

> 1 +2WoIe2>O, so that Re(A -AI) = O(lmA )2. 
Taking the imaginary part of Eq. (5.4) we get 

lmA [ 1 + ~; + 0 ( lmA )] = lmA I , 

so that lmA /lmA I> 0 for F small if lmA I ;60. When 
lmA I = ° we have A = A I so that we can conclude that 
there are values of F so small that lmA ,0 in any case. The 
Theorem is proved. 

Remark: By Remark (b) after Definition 5.1, the im
plicit eigenvalues of H m (0) of Sec. IV satisfy the conditions 
of Theorem 5.2. Hence, they are resonances ofR (W) accord
ing to Definition 5.1. 
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APPENDIX 

Consider in L 2(R2+ + ) = L 2(R+ X R+) the operator de
fined as follows: 

Sm = - Li + (m 2 
_ D(x12 + 1) 4a 

y2 x2 + y2 
+ y'(x2 + y2), 

D(Sm) = fuEL 2(R2+ + )Iu' 

graduE(L 2(R2+ + »2ILiu exists I 

( _ Li + (m 2 _ D(..!.. + ..!..) _ a ) 
x 2 y2 x2 + y2 

XuEL Z(R2+ + )JnD(x2 + yZ), (AI) 

m = 0,1,.·· . 

(Differentiations in the generalized sense). Then we have the 
following: 

Lemma A.l: Let a < 1/ 16. Then S m is a holomorphic 
family of type A of compact resolvent operators when 
largy'l < 1T. 

Proof Consider in L 2(R4) the operator B defined by 

B = - Li l - Li2 + y'(x2 + y2), x 2 = xi + x~, 

J2 J2 
-Li2= - -- -

Jyi Jy~ , 

J2 J2 

Jx2 ' 
2 

D (B) = H 2.2(R4)nD (x 2 + y2). 

It is well known that B is a holomorphic family (of type 
A ) of strictly m-sectorial compact resolvent operators for 
largy'l <1T, with quadratic form domain given by 

Q(B) = H 2
.
I (R4)nL 2.I(R4) = Q( _ Li l _ Li 2)nQ(X2 + y2). 

By the uncertainty principle lemma, the maximal multipli
cation operator by 4a/(x2 + y2) is relatively form bounded 
with relative bound smaller than one with respect to B if 
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a < 1/16. Then we can define C = B -4a/(x2 + y2), 
Q(C) = Q(B),astheformsumofBand4a/(x2 + y2),andC 
is again strictly m sectorial with compact resolvents. 
Through a quadratic estimate analogous to Lemma 2.1, one 
easily proves that 

by a well known result (see Ref. 19, Theorem VII.1.10). Its 
explicit form for A = 2Z is of course due to the exact solv
ability of the problem, known without the separation into 
squared parabolic coordinates. 

D (C) = D (x2 + y2)nl uEL 2(R4)lu' = gradu 

Consider now in L 2(R2+ + ) the operator A m defined as 
follows: 

E(L 2(R4»41(Lil + Li2)U existslBu - 4a/(x2 + y2)uEL 2(R4) J, Am =Tm +ilmy'(x2+y2)+f3'V, 

T m = S m (Rey'), V = (x2 _ y2)2(X2 + y2), 

f3' > 0, Rey' > 0, 

which does not depend on y'. Then the Lemma is proved just 
by remarking that Sm is nothing else than the "radial part" 
of C with respect to the change of variables 

D (Am) = D(Sm)nD «x2 - y2?(X2 + y2» = D (Sm)nD (V). 

Let us prove the following quadratic estimate (compare with 
Lemma 11.9.1 of Ref. 15). 

.I. Yz (Yl'Y2)-~(y,t/J2)' 0/2 = arctan-, 
Yl 

i.e., the restriction of C to the invariant subspaces spanned 
by the functions of the formf(x,y) e ± im(4). + 4>,). 

Lemma A.2: LetuED (Sm)nD (V). Then there area > 0, 
b> 0, independent of f3' and of y', when y' ranges on the 
compacts of the half-plane Rey' > 0, such that 

a[II Tm u11 2 + I Imy'1211(x2 + y2)u11 2 +f3'21IVuI12] 

ProofofTheorem 4.1: By Eqs. (4.4) and (AI), we have 
H~(e) = e- oS", if we set y' = - e 20[W + (W 2/c2

)]. 

Hence the discreteness of the generalized spectrum follows 

< IIAm ul1 2 + b Ilu11 2. (A2) 
Proof As quadratic forms on 

D (Sm)nD (V) ®D (Sm)nD (V) we have 

A ;"Am = T~ + limy' 12(X2 + y2)2 + f3 ,2V2 ± i Imy' [Tm,(x2 + y2)] + f3 '(Tm V + VTm) 

= T~ + I ImyT(x2 + y2)2 + f3 ,2V 2 ± i Imy' [Tm,(x2 + y2)] + f3'( - Li V + V( - Li» 

+ 2f3' [(m
2 

- D(-\ + -\) - 2
4a 

2 + Rey'(x2 + y2)] V. 
X Y x +y 

Now 

± i Imy' [Tm ,(x2 + y2)] = ± i Imy' [ - Li,(x2 + y2)]» ± limy' II - IV.(2x,2y) + (2x,2y). - iV J 

= limy' II - IV ± (2x,2y)J2 - limy' I [ - Li +4X2 +4y2 ]» - Ilmy'l( - Li + 4x2 +4y2). 

Furthermore 

f3'[ - Li V + V( - Li )] = f3' [ - iV, [ - IV,(X2 - y2)2(X2 + y2)]] +2f3'i V(x2 - y2)2(X2 - y2)IV 

= f3'( -28 X4 -28y4 +24x2y2) +2f3'i V(x2 - y2)\X2 - y2)IV, 

2f3 '[(m2 - D(~ + ~) - 4a + Rey'(x2 + y2)](X2 _ y2f(x2 + y2) 
x2 y2 x2 + y2 

( 2 + 2)2 
= 2f3 '(m2 - !)(x2 - y2? x 2;' + 2f3' Rey'(x2 + y2)2(X2 _ y2)2 _ 8af3 '(x2 _ y2)2, 

xy 
whence 

A * A» T ~ + limy' I \x2 + y2? + f3 ,2 V 2 - limy' I ( - Li +4x2 +4y2) 
+ f3' [24x2y2 -28(X4 + y4) ] +2f3'i V(x2 _ y2)2(X2 + y2)IV 

+2f3 '(m 2 _ D(x2 _ y2)2 (x
2 

+ y2)2 +2f3' Rey'(x2 + y2)2(X2 _ y2)2 -8af3' (x2 _ y2? 
x2y2 

» T~ + limy' 12(X2 + y2)2 + f3 '2(X2 - y2)4(X2 + y2? - limy' I ( - Li +4x2 +4y2) -28f3'( X4 + y4) 

(Xl +y2)2 _ ifJ '(x2 - y2)2 +2f3' Rey'(x2 + y2)2(X2 _ y2) -8af3 '(x2 _ y2)2 
x 2y2 

»(for some a < 1 and some R,O <R < 1 - a) 

»a [T ~ + limy' 12(X2 + y2)2 + f3 '2(X2 - y2)4(X2 + y2)2] + R [T ~ + limy' 12(X2 + y2? + f3 '2(X2 _ y2t(X2 + y2)2 ] 

_ limy' I ( - Li + 4x2 + 4y2) - ifJ ' (x2 _ y2) 2 (x
2 

+ y2)2 _ 28f3 ' (X4 + y4) _ 8af3 ' (x2 _ y2)2 
x 2y2 

+ 2f3' Rey'(x2 + y2)\X2 _ y2)2 

»a[T~ + I Imy' I 2(X2 + y2)2 +f3'2(X2 _ y2)4(X2 + y2)2] - b + [RT~ - Ilmy'l( -Li +4x2 +4y2) + :] 

+ [ifJ 'Rey' (x2 + y2)\X2 - y2)2 - 28f3 ' (X4 + y4) + :] + [ifJ' Rey' (x2 + y2)2(X2 - r? - 8af3 ' (x2 _ y2)2 + :] 
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+ [{3' Rey' (x2 + y2)2(X2 _ y2f _ ! {3 , (X2 _ y2)2 (X2 + y2? + .!!.-] . 
x2y2 4 

I t remains to be proved that a suitable choice of b makes the last four terms positive. The first term is positive by taking b 14 not 
smaller than the lowest eigenvalue of the positive self-adjoint operator Ilmy'l( -.J + 4x2 + 4y2). The second tenn is positive 
if 28{3 '(x4 + y4)<!{3' ReY'(x2 + y2)2(X2 _ y2)2 + (b 14), i.e., (X4 + y4)/(x2 _ y2)2«ReY'156)(x4 + y4) + (Rey'/28)x2y2 
+ [(b )/4/3 '(x2 - y2)2] which is true for some b large enough, uniformly with respect to {3' in any open interval (0,/3 b). The 
third term is clearly positive for b large enough, which can be chosen independently of {3 , in any interval (0,/3 b). The fourth 
tenn is positive when 

~+y4 b ---'--.::.- + 1 < Rey'(x4 + y4) +2 Rey'x2y2 + , 
2x2y2 4{3'(x2 _ y2? 

which is true for b large enough, again independent of /3' for ° <{3' <{3 b. The Lemma is proved. 

As a consequence we have the following, in analogy 
with Theorem 11.9.2 of Ref. 15: 

Theorem A.I: Le {3 , > 0, Rey' > 0. Then A m is closed on 
D (Sm)nD (V), and represents a holomorphic family of type 
A in y' for Rey' > 0. 

Lemma A.3; The maximal multiplication operators by 
(x2 _ y2)2, x 2 _ y2, X4 _ y4 are relatively bounded with re
spect to Am, with relative bound zero, uniformly on com
pacts in Rey' > 0, ° <{3' <{3o' 

Proof: The assertion is a consequence of Eq. (A2) 
because 

(x2 _ y2?,(X2 _ y2),(X4 _ y4) = (x2 _ y2)(X2 + y2) 

are all relatively bounded with respect to 
V = (x2 - y2?(X2 + y2) with relative bound zero. 

We can now define 

Vm = Am + r(x2 - y2) + o'(x2 - y2), 1]'EC, O'EC 
(A3) 

as a closed operator on D (A m ) = D (S m )nD (V). By Lemma 
A.3 and problem IV. 1.2 of Ref. 19, we can immediately con
clude the following: 

Lemma A.4: The assertion of Lemma A.3 remains true 
if we replace A m by V m . 

A computation completely analogous to that per
formed in obtaining Eq. (A2) yields the following for {3' = 0: 

Lemma A.S: Let Rey' > 0. Then the maximal multipli
cation operator by (x2 + y2) in L 2(JR2+ + ) is relatively 
bounded with respect to Sm . 

Lemma A.6 (Symanzik scaling property): Let 
A = A (a, {3 ',y',o ',1]') be an eigenvalue of Vm (a, {3 ',y',O',1]'). 
Then, if OJ> 0, OJ-1A (a,OJ4{3 ',OJ2y',OJ30 ',OJ21]') is an eigenvalue 
of OJ-I Vm (a,OJ4{3 ',OJ2y',OJ30 ',OJ21]'). 

Proof: Exactly as in Theorem 11.2.1 of Ref. 15. 
Remark: The above relation extends to all complex OJ 

whenever the analytic continuation is possible. 
LemmaA.7:Leto' = fJ.. IV7J',1]' = fJ.. 2V7J', largull < 'TT, 

I argu21 < 'TT. Then V m converges in the norm resolvent sense 
to Sm as {3 '--0, unifonnly on compacts for Rey' > 0, 
largull <'TT, largu21 <'TT. 

Proof: Let us proceed as in Ref. 15, Lemma 11.9.3. First 
remark that the union U of the numerical ranges of Vm for 
{3 ';;'0 in the above described regions is not the whole complex 
plane, so that II [V m - A ]-111 is bounded uniformly in {3' for 
some A. For these values of A we can write 

(Vm - A )-1 - (Sm - A t 1 = - (Sm - A )-1 [1]'(x2 - y2) + o'(x4 - y4) + {3'(x2 _ y2)2(X2 + y2)](Vm - A tl 

= -fJ..1VP.(Sm -Atl [(X2 _y2)(Vm -Atl] -fJ..2VP. [(Sm _Atl(X2+y2)] 

X [(x2 - y2)(Vm - A tl] - {3' [(Sm - A t 1(X 2 + y2) ][(x2 - y2)2(Vm - A t 1]. 

By Lemmas A.4 and A.5 each operator within the square bracket is bounded, so that we can repeat word by word the 
remaining part of the argument of Lemma 11.9.3 of Ref. 15 and the Lemma is proved. 

We are now in a position to prove Theorem 4.2. 
Proof of Theorem 4.2: By rescaling the phase of - e40==.eiTre40, instead of eOHm «() we can equivalently look at 

= eil (Tr/4) + Im0 1•e -20 {[ -.J + (m 2 _ V(~ + ~) _ 4a ] + ie2Reo ( W
2 

+ W )(X2 + y2) 
x 2 y2 x2 + y2 c2 

_ e - i(Tr/4)eReO 4ZW _ i e2 Re°1](x2 _ y2) + e - i(3Tr/4)e3 ReO ~(X4 _ y4) + 1 L e40 1 (X2 _ y2?(X2 + y2)}. 
c2 2 4 

Then Hm (I (yI4)e40 I ,Re() coincides with Vm times a constant if we set 

Y'=ie2Reo(~2 +W). /3'=1: e4ol' 1]'= _ie2Re01], o'=e-i(3Tr/4)e3ReOo/2. 

Hence assertion (d) of Theorem 4.2 is Lemma A.7, and assertion (b) is Lemma A.6. Assertion (a) is a consequence of (d), 
given the fact that Hm «() is a holomorphic family oftypeA. Assertion (b) is a consequence of (d), and again of the hoI om or
phic nature (of type A ) of the operator family Hm(B) (see Ref. 19, Theorem VlI.1.10). 
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Finally, we omit the proof of part (e), since given the above assertions it is an almost word by word repetition of the 
arguments of Ref. 15, Sec. 11.10. 

Proof of Theorem 4.4: Let e belong to the stated region. Again by the uniform sectoriality of H m (e) there are values of A 
for which II [Hm (F,e,c) - A ]'111 is bounded uniformly with respect to c. 

Then, proceeding as in Lemma A. 7, write 

[Hm(F,e,c) -A ],1 - [Km(F,e) -A ],1 

Z22 e-21! [Km(F,e) -A ],I(X2 + y2),I[Hm(F,e,c) -A ],1 
c 

~2 e21! [Km(F,e) _ A ]-I(X2 + y2)[Hm(F,e,c) _ A ]-1 
c" 

4Z2W el![Km(F,e)-A ]-I[Hm(F,e,C)-A ]-1 
c 

+ 2~F e2f! [Km(F,e) -A J-1(X2 - y2)[Hm(F,e,c) -A ]-1 
c 

+ ~ e3 f! [Km(F,e) - A ]-I(X4 - y4)[Hm(F,e,c) - A ]-1 
C 

- ~: e4
1! [Km(F,e) -A ]-I(X2 - y2)2(X2 + y2)[Hm(F,e,c) -A ],1. 

Now the inequality (X2 + y2tl';;;(l/x2) + (l/y2) clearly shows that first term is bounded; X2 + y2 is relatively bounded with 
respect to Km (e) (see, for example, Ref. 4), so that [Km (F,e) - A ]-I(X2 + y2) is bounded, and the same is true for 
[Km (F,e) - A ]-I(X2 + y2). Hence, the first four terms vanish in the norm as C-oo. Now recall (see always Ref. 4) that also 
(X4 - y4) is relatively bounded with respect to Km (F,e); since X2 + y2 is by Lemma A.4 relatively bounded with respect to 
Hm(F,e,c) uniformly on c, also the last two terms vanish in the norm as C-oo and the theorem is proved. 
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Continuum calculus. IV. The Laplace transform method in the evaluation of 
the Feynman path integrals with a Gaussian measure and applications in 
quantum mechanics 

L. L. Lee 
School C.E.M.S., University o/Oklahoma, Norman, Oklahoma 73019 

(Received 31 August 1978; accepted for publication 9 April 1979) 

The continuum calculus, proposed earlier [J. Math. Phys. 17, 1988 (1976)], is applied here to the 
development of a functional version of Laplace transform and a method for the evaluation of path 
integrals containing a Gaussian-like measure. Two methods in functional integration are 
proposed. First, the Gaussian integral for polynomial functionals and consequently functionals 
that can be expanded in Taylor series are examined. Formula (2.12) is derived. Next, we define 
the Laplace transform in the function space through the weak distribution formulation of 
Skorohod. Comparison of both approaches enables us to determine the expression of the 
functional integeral through a series of Laplace transformations. The second formula is given in 
Eq. (4.5). The latter formula is applicable to all Laplace transformable functionals. For 
illustration of the utility of the formulas derived, we evaluate the integral of a cosine functional by 
methods 1 and 2, and obtain consistent results. Further applications to quantum mechanics are 
also presented. We examine the cases of a free particle,the quantum harmonic oscillator, the 
forced oscillator, and charged particle in a magnetic field. In all cases, we obtain correct results in 
comparison with known expressions. A numerical procedure is employed in the calculation of 
infinite products. The usefulness of the p -integral method is stressed. 

I. INTRODUCTION 

The conventional Feynman 1,2 path integral in quantum 
mechanics involves a kinetic energy term and a potential 
energy term in the Lagrangian. The nonrelativistic kinetic 
energy is usually quadratic in momentum. This term acts 
like a Gaussian (or pseudo-Gaussian) measure on the rest of 
the integral. Therefore path integrals in the function space 
with Gaussian-like measures are important and are most 
widely studied. 3 

In a series ofpapers4
-

6 (referred hereafter as papers I, II, 
and III, respectively) we proposed an operational calculus, 
called the continuum calculus, designed to treat the integral 
of functionals. In this approach we are able to integrate func
tionals of various types with or without a Gaussian measure. 
In addition, the integral can have finite limits of integration. 
Therefore the calculus proposed is of a more general nature. 
Tests with probability theory and known physical formulas 
gave valid results. 4 In this investigation, we propose to look 
specifically at Gaussian integrals and apply the continuum 
calculus method. 

We define the class offunctionals to be investigated. 
Consider a Banach space, B, over the complex number field 
C. Let CBbe the collection of all functions,y(t), fromBto C, 
i.e.,y:B-C. We construct a Banach algebra, A B, from C B by 
the usual process of completion and definitions of sums and 
products of elements of CB. We further require that Band 
A B be Hausdorff in the norm topologies. Two measure 
spaces (B,SB,/-l) and (AB,SA ,m) are defined on B andAB, 
respectively, with SB and SA the (7 algebras and/-l, m the 
measures on B andA B , respectively. A functional, ¢ [y], is a 
form from A B to C, ¢:A B _Co A functional integral is gener
ally of the form, 

If[¢ ] = Im(dY)'¢ [y], Fc;;;,A B , (1.1) 

for some measure m on SA . When the measure is of the 
Gaussian form, 

m(dy) = m(dy) exp [ -! J dr ds y(r)A (r,s)y(s)]. (1.2) 

and the ¢ functional can be represented as a certain integral, 
we have 

If[¢] = L m(dy)exp[ -!J drdSy(r)A(r,S)Y(s)] 

X.f:(dt}(y(t», (1.3) 

where E c;;;, B,f C-c. (1. 3) is a Gaussian functional in tegral. 
A (r,s) is the covariance matrix. When A is positive definite, 
we have a strictly Gaussian process. Otherwise, we have a 
Gaussian-like process. For example, in Feynman integrals, 
A can be imaginary. In this paper, we shall investigate inte
grals oftype (1.3). 

We start out with an analysis on the polynomial func
tionals, which have been studied extensively.7-9 With results 
from polynomial functionals, we can next treat functionals 
that can be expanded in to functional Taylor series 10 (Sec. II). 
We obtain formula (2.12) which is an infinite series in terms 
of the functional derivatives of ¢. In order to generalize to a 
wider class of functionals, we propose a functional Laplace 
transform method in Secs.III and IV. Later demonstrations 
show that this method is not only more general, but also 
more powerful than the functional Taylor expansion meth
od. From Sec. V onwards, we present illustrations and appli
cations of the methods proposed. A mathematical function
al, the cosine functional, is integrated by both methods and 
results in the same form. The quantum mechanics of a free 
particle, and harmonic oscillator is examined in Secs. VII 
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and VIII. The properties of the kinetic energy matrix are 
important in the final results and are examined carefully in 
Sec. VI. Its eigenvalues are displayed in Table I and Fig. 1. 
As further applications we treat the forced harmonic oscilla
tor in Sec. X, and a charged particle in a magnetic field in 
Sec. XI. In all cases, correct results are obtained in compari
sion with known formulas. Due to the absence of analytical 
expression for the spectrum of the kinetic energy matrix, we 
evaluated a number of p integrals numerically. They con
verged rapidly to known functions. 

In the following, we review previous developments 
briefly. The continuum calculus consists oftwo operations: 
(i) the r differentiation, and (ii) the p integration. In approxi
mate language, the r derivative (rational derivative), denoted 
by RJ / Rt, of a functionJ(t), is the ratio ofthe function at two 
neighboringpoints[J(t + Lit )lJ(t), J(t )*O];incontrastto 
the differential derivative which is a measure of the differ
ence of the function at two neighboring points [J(t + Li t ) 
- J(t)]. The two kinds of derivatives are related by a corre-

spondence theorem (paper 14) 

RJ (t) = exp( ~ InJ(t »). (1.4) 
Rt dt 

The p integral (potential integral) arose from a search for the 
primitive of the r differentiation. Another correspondence 
theorem4 relates it directly to the ordinary integral, 

;Jjl E dt).g(t) = exp i dt lng(t ). 
E 

(1.5) 

The functional integral is obtained as a consequence of the 
interaction between the p integration and the ordinary inte
gration. For an exponential functional 

t/J[y] = exp LfL(dt )1( y(t» (1.6) 

we have developed the formula for the functional integral, If 

If[t/J] =exp Lfl(dt) In L m(dy)exp[J(y)]. (1.7) 

For details and proofs, see paper 1.4 

II. GAUSSIAN FUNCTIONAL INTEGRAL 

In this section, we restrict B to be a real Banach space 
over the real number field, R. For convenience in notation, 
we take B = R. A B is the complex Banach algebra, and ifJ is 
the functional, ifJ:AB---+C. For a generalfunctional, ifJ [y], it is 
a difficult problem to evaluate its functional integral. We 
therefore first consider here the special class of functionals, 
{ifJ }, that can be represented in functional Taylor series, 10 

i.e., 
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(2.1) 

where<5</> l<5y(s), etc., are functional derivatives; the subscript 
o denotes that the derivatives are evaluated aty(s)-O. For 
convenience, we shall use Borel measure ds instead of fl(ds) 
in the future to simplify writing. 

Each term on the right-hand side of (2.1) is recognized 
as a so-called polynomial functional. The Gaussian integral 
of polynomial functionals has been studied. 1

-
9 In general, it 

contains a k-ic defined as, 

Pk [y] f ds l · .. dsk K (SI ,· .. ,sdY(SI ) .. ·Y(Sk)' 

k = 0,1,2,.··. (2.2) 

For kernels, K (SI , ... ,Sk)' that are invariantly traceable,' the 
Gaussian integral, 

If[Pk ] = f m(dy) exp[ -! f (dt)A (t,t )y(t)2] 

X [ f dS I ... dSk K (S,,,,,Sk)'Y(SI )".Y(Sk)] (2.3) 

can be evaluated. Due to the property of Gaussian integral, 
polynomial k-ics contribute only when k is even, k = 2n, 

IAP2n 1 = (~)112 (2n)! (Trt(P2"), n = 0,1,2,.·· (2.4) 
detA n!2" 

and If[Pk ] = 0 for k odd. In (2.4), the symbol, (Tr)", indi
cates the nth order trace of the kerneP It is defined 
recursi vely, 

(Tr) ° 1, (2.5) 

(Tr)"(P m) (Tr)(Trt .. I(P",», 

for m;;.2n, and n = 1,2,3,.··. (2.6) 
When the covariance matrix A (t,t) is the unit matrix, <5 (s,t), 
Friedrichs' gave the formula, 

Tr[P m ]Friedrichs 

= Tr f dS l ... ds", K (SI '''''Sm ... 2 ,Sm ~ 1 ,Sm)Y(S)· .. Y(Sm) 

= f dSl· .. dsm~2 dtK(SI"",Sm~2,t,t)Y(SI)"'y(Sm~2)' 
(2.7) 

In our case the (diagonalized) covariance matrix is 
A (t,t) with eigenvalues a(t). (2.7) must be modified to give 

Tr [Pm]-f ds1· .. dSm 2 dtK(SI,,,,,Sm_2,t,t) 

XY(S)",y(Sm .. 2 )/a(t). (2.8) 

Here we have assumed, without loss of generality, thatA (t,t) 
is diagonal. For a Gaussian integral in the strict sense, we 
require that the covariance matrix be positive definite. How
ever, for Gaussian-like measures, (e.g., in Feynman path in
tegrals where the matrix can be imaginary), we relax this 
condition. The eigenvalues of a continuum matrix (matrix 
with continuous indices) were defined in a previous work. 4 

(2.8) is consistent with the known discrete formula of 
moments, 

f 4'" (2n)1 (21T)112 
. 

dx Xl" exp( - lbx2
) = --'- -- . 

. ~ 2 n!2"b n b 
(2.9) 
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Now we are in a position to apply (2.4) to the Taylor series 
(2.1). We observe that (2.1) consists ofa sum ofO-ics, 1-
ics, ... , and n-ics, with the functional derivatives as kernels. 
Due to the commutativity in the order of partial differenti
ations (under suitable continuity conditions) the kernels are 
totally symmetric, e.g., if 

tj4¢ 
K (q,r ,s,t)- , (2.10) 

t5y(q)<5y(r)<5y(s)t5y(t) 

then 

K (q,r,s,t ) = K (r,q,s,t ) = K (t,s,r,q) = K (perm qrst ), 
(2.11) 

where perm qrst means all permutations of the four argu
ments (q,r,s,t). The functional integral of ¢ [y] is then 

If[¢ 1 = ( 211' )112 (Po +0 + ..!. ~ Tr(P2) 
detA 2! 1!2 

+0 + ..!.~(Tr? (P4 ) + ... ) 
4! 2!22 

= ( 211' )112 (Po + _1_ Tr(P2) + _1_ (Trf(P4) 
detA 1!2 2!22 

+ _1_ (Tr)J (P
6

) + ... ) 
3!23 

( 
211' )112 'x> 1 

= - I - (Trnp2.), 
detA • = 0 n!2· 

where 

Po =¢o, 

Tr(P2) = J ds K (s,s)a(s) - 1. 

(2.12) 

(2.13) 

(2.14) 

Here we writeK (s,s) for the derivative 15 2¢ /t5y(s) 2. In gener
al, we shall write K (SI ... s.) for the derivative t5n¢ /8y(sl) 

I 

... t5y(s.). The higher order traces require some care here. 
Due to the different treatments of the Gaussian integral to 
different moments in the random variable, and to maintain 
consistency with the discrete multivariate case, we rederive 
the expressions for higher order traces in (2.12), which re
present modifications of the Friedrichs formulas. 8 

J 2!2!2! 
(Tr)2 (P4) = ds K (ssss)a(s) -2 +--

4!1!1! 

X I J dr dr' K (rrr'r')[ 1 - t5(rr') 1 
perm rr' 

X [a(r)a(r') 1 - I, (2.15) 

where ..Eperm rr' denotes the sum of distinct permutations of 
the arguments rrr'r'; e.g., rr'rr', rr'r'r, etc. The factor 
1 - 15 (rr'), where t5(rr') is the Dirac delta, is to remove the 
diagonal elements K (rrrr) which have already been account
ed for in the first term on the right-hand side. The fact that 
this separation is necessary can be seen from the discrete case 
that 

f +oo (a) 4' (2 )112 dy y4 exp _ _ y2 = ~ -.!!.. , 
-- 00 2 2.2 a a 

(2.16) 

while 

dx dy x2y2 exp _ ~X2 _ _ y2 f +oo ( b ) 
- 00 2 2 

2!2! ( 211') 112 
= 1!2·1!2ab --;;; . 

(2.17) 

The coefficient of the fourth moment is different from that of 
the two second moments. A study of Gaussian integrals by 
Kollmann9 also indicated this difference. Higher order 
traces can be similarly analyzed. In general, 

(Tr)"{P2.) = f dr K (r ... r)a(r) - n + I n!2!(2n - 2)! f dr dr' K (r ... rr'r') [1 - 8(rr') 1 a(r) - • +- I a(r')- I + ... 
penn rr' (2n)!1!(n - I)! 

+ I n!(2!t. fdrl ... drn K(rl r\ ... r.rn) (1 - IIt5(r;r) - LLL t5(r;fj)8(rjrk) - ... - II t5(r;rj»)II a(rJ - I . 

penn (2n!)( 1!) i=l=j i 

r •... r" i=l=j i=l=j=l=k 

Equation (2.12) is the desired result as the integral of the 
functional (2.1) under a Gaussian measure. We note that the 
traces are dependent upon the covariance matrix, A, of the 
Gaussian measure. This is natural since we expect the func
tional integral to be different for different Gaussian process. 

We have succeeded in deriving a formula for the inte
gral of functionals that can be expressed in Taylor series. 
However, we would like to extend it to more general cases. 
This is achieved by using the method of functional Laplace 
transform to be discussed in the next section. 

Ill. FUNCTIONAL LAPLACE TRANSFORM 

In this section we shall establish the Laplace transform 
in function space and exhibit some of its properties. The lan
guage of weak distributions ofSkorohod ll is again appropri
ate here and we shall follow his terminology. Let X be a real 
separable Hilbert space and S the a algebra of measurable 
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(2.18) 

rsets of X. Let L be a finite dimensional subspace of X under 
the action of the projection operator PL' If A is a subset of L, 
the cylinder set, A c ' in X is defined as, 

Ac {xEX': PLxEA j (3.1) 

and A is called the base of Ac. The collection of all cylinder 
sets with bases in L form a a algebra, SL CS. Let {L. j be an 
increasing sequence of subspaces of X such that L. _ I CL., 
and u. L. is dense in X. Then the a closure of the corre
sponding a algebras u. SL" gives S. Let m be some normal
ized measure on (X,S). This measure induces on L a projec
tion measure m L defined by 

mL(A )= m(!xEX':PLxEA j), AESL. (3.2) 

The family of projection measures mL defined on all finite 
dimensional subspaces, L, of X and satisfying a compatibility 
condition (see Skorohod ll

) is called a weak distribution, 
m. = {m L j. Under suitable conditions, this weak distribu-
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tion converges to m on (X,s) (see Lemma 1, p. 5, Skoro
hod!!). In this paper we are not concerned with this ap
proach. We shall follow instead the continuum calculus 
formulation developed so far. 

To apply to our functional case, we identify X with A B 

and set B = R. The inner product of y, zEA B is defined as, 

(y,z) f:(dt )y(t )z(t). (3.3) 

To guarantee the existence of the inner product, we may 
restrict A B further to be L z . Now the Laplace transform of a 
functional,,p [y]: AB-C, is given by 

Y',p [z] = ¢' [z]_ Ix. m(dy) exp[ - (y,z)].,p [y], 

(3.4) 

where X + is the collection offunctions yEA H , 
X + = (yEAH: yet );;;.0, 'titER J. In weak distribution 
language, 

¢' [z] ~ f m.(dy) exp[ - (y,z).],p. [y] (3.5) 

where the subscript, ., denotes the weak distribution coun
terparts of the respective quantities. For example, the qua
dratic functional, 

y[y] f drK(r,r)y(r)2 

under the action of the projection operator, Pn , where 
Pn (y) = (YI '···'YI1 J becomes the cylinder functional 

(3.6) 

(3.7) 

The corresponding Laplace transform in discrete notation is 

(3.8) 

Application of Fubini theorem!2 gives 

iCC dYI e- YIZl 1''' dY2 e-y,z, ... f" dYn e-y.,z"(~K.iiYJ) 

(3.9) 

where we have taken mn to be the Borel measure. We ob
tained an fl product and an n sum. As n--'> 00, the /1 sum 
becomes the Riemann integral, 

11 21K "'L f ,2:1 'Z~l'" --~ 2! dr K (rr)z(r) (3,10) 

As for the n product, the p integral in continuum calculus4 

can be applied to give 

ill Zj I ".:oc exp [ - f dt Inz(t) l (3.11) 

As n- 00, we pass, in the sense of continuum calculus, from 
m. to m. Therefore, we define the Laplace transform of this 
quadratic functional to be 

.Yy[z] 2!exp [ - f dtlnz(t)]J drK(rr)z(r)-2. 

(3.12) 

This example is illuminating. We thus can generalize the 
same procedure to other polynomial functionals. For exam
ple, let 

P~ [y]- f dr K(r ... r)y(rl· (3.13) 

The Laplace transform, after going through the necessary 
algebra, is 

Y'P~ [z] =k! exp [ - f dtlnZ(t»)J drK(r ... r)z(r)". 

(3.14) 

This enables us to give the following definition for a general 
polynomial functional. 

Definition 3A: The functional Laplace transform of 
polynomial functionals. Given a k-ic of the form 

Pk[y]-- f dsj ... dsk K(SI,···,sdY(Sj) ... y(Sk)' (3.15) 

the Laplace transform is defined as 

:f Pk [z] [- f dt lnz(t) H k! f dr K (r, ... ,r)z(r) - k + (k - I)! 1! p~ f dr ds K (r ... rs)[ 1 - o(rs)] 

xz(r)' - 1 z(S) - 1+ ... + (1!)k I. f dS k ••• ds k K (Sj ,.··h) [1 - I.I. o(SiSj) - .,. - IIo(Si S)] II z(s/7/) - ,} (3.16) 
perm. l-:-IJ m 

i-.:F-j 

when the integrals exist. The symbol.Iperm denotes the sum 
of distinct permutations of the arguments of K (SI ",Sk)' The 
factors, 1 - 0 (rs), etc., are designed to remove the diagonal 
elements of K (rs), etc., respectively. 

The capability of defining Laplace transforms for poly
nomial functionals enables us to define Laplace transforms 
for functionals expressible as Taylor series, e.g., (2.1). In fact 
we can do better. By application of the weak distribution 
formalism, we can treat more general functionals. However, 
in the following, we return to the study of functional 
integrals. 
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I 
IV. ALTERNATIVE FORMULATION 

In this section we shall develop an alternative way of 
evaluating the integral of type (1.3). The use of the Laplace 
transform in the function space accrues to the functional 
integral in two ways at least: (i) for those functionals whose 
Laplace transforms are known, this method avoids the eval
uation of multiple integrals (k-ics) and the summation of 
infinite series; (ii) it generalizes the integral to functionals 
that can be Laplace transformed but may not possess a Tay
lor series expansion, thus enlarging the class of functionals 
that can be integrated with a Gaussian measure. 

L.L. Lee 1058 



                                                                                                                                    

We have already developed a formula for polynomial 
functional, Definition 3.A. This can now be applied to the 
Taylor series (2.1). Since our eventual Gaussian integral re-

tains only the terms of even powers of the random variable, 
we Laplace transform only the even polynomial functionals 
in the Taylor series. We shall call this subseries tPE [y]. We 
have then, 

~dz] = exp( - f dt In Z(t») {tPo + ;! [2! f dr K (rr) z(r) -2] + ~! [4! f dr K (rrrr)z(r)-4 

+ 2!2! p~ f dr ds K (rrss)[ 1 - 8(rs)] z(r) -2] z(s) -2 + ... }. (4.1) 

Now we multiply both sides of (4.1) by exp[ - S dt Inz(t)] and transform the variable from z to w by w(t) = z(t) 2, 

exp( - ~ f dt Inw(t )}~E [V-;] = exp [ - f dt In w(t) ].{tPo + f dr K (rr)w(r) -I + f dr K (rrrr) w(r)-2 

2!2! f } + -, L dr ds K (rrss) [1 - 8(rs)] w(r) - I w(s) - I +... . 
4. perm. 

(4.2) 

we now define the inverse Laplace transform.::e -I as the natural extension of the discrete case and the weak distribution 
expression: 

(4.3) 

wherew(t) is complex and ranges over the half-plane, W* = ! a(t) + P(t )i: - 00 <f3 (t)<. + 00 J. Application of(4.3) to (4.2) 
gives 

.::e-I{exp [ - ~ f dtlnW(t)l~E[V-;]} [x] =1,60 + f drK(rr)x(r) + ;! f drK(rrrr)x(rf 

1 2!2! ~ f d d K ( ()x( [ 1 f 1 (2n - 2)12' + -- ~ r s rrss)x r s) 1 - 8(rs)] + ... + - dr K(rrr ... r)x(r)" + -- .. 
4! 1!1! perm. n! (2n)! (n - 1)!1! 

X L f drds K (r ... rss) [1 - 8(rs)] x(r)" - I xes) + ... + (21)" n L f drl ... drn K (rl rl .. ·rnrn) 
perm. (2n!)(l!) perm. 

X [1 - i 8(r;r) - ... - IT 8(ri rj )] [x(rl ) ... x(rn)] - 1+ .... 
i¥i ;*'j 

(4.4) 

Comparison of (4.4) with (2.12) shows that if we replace x(r) in (4.4) by [2a(r)] - I, then the two expressions give the same 
result, i.e., 

We have obtained a methodology of finding the functional 
integral through the Laplace transform route. We shall show 
in the following sections that indeed both methods give iden
tical results for know functional integrals. The advantage of 
the Laplace transform alternative has been mentioned, in 
that it can be applied to more general functionals. 

We summarize the steps in using the Laplace method: 
(i) Extract the symmetrical part tPE[Y] out ofa given 

functional 1,6 [y]. tPE[Y] has the property that, for any t, 

ItPE [y] I-j\t) = tPE [y], (4.6) 

where the subscript means that at t, the original value ofy at t 
is replaced by its negative value. 

(ii) Take the Laplace transform ~ E of 1,6 E' 
(iii) Multiply ~d z] by exp[ - S dt lnz(t )]. 
(iv) Transform the variables from z(t) to w(t) by 

w(t) = z(t) 2. 

(v) Take Laplace inverse transform with respect to the 
new variable wet ), 
.::e -II exp[ - !S dt lnw(t )]'~E [(w) 1/2] J .[x]. 
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(4.5) 

(vi) The functional integral of the original 1,6 [y] is ob
tained by substituting [2a(r)] -I for x(r) above and by multi
plying the resulting expression by the factor (21T/detA ) 112. 

(4.7) 

In the following sections, we shall test both methods on 
some mathematical functionals and a few known problems 
in quantum mechanics. In the known cases, valid results are 
obtained. 

V. THE COSINE FUNCTIONAL 

In the following, we examine a functional of the type, 

1,6 [y] = f drB(r)cos[y(r)]. (5.1) 

This cosine functional is interesting because it is simple 
enough that it can be expanded into Taylor series and it also 
has a functional Laplace transform. Thus we can calculate 
the Gaussian integral using both methods developed so far. 

The Gaussian integral is written as, 

If[tP] = f iii (dy) exp [ - + f dt A (t,t )y(t f] 
L.L. Lee 1059 



                                                                                                                                    

· f dr B (r) cos[y(r)]. (5.2) 

First, we apply the Taylor series method. Equation (5.1) is 
expanded into the following series: 

tP[y] =1,60 +fdr~1 y(r) 
oy(r) 0 

+ ~ f dr ds 0
2

1,6 I y(r)y(s) + ~"" 
2! oy(r)oy(s) 0 3! 

(5.3) 

where the functional integrals are evaluated as, 

~ = - f dr B (r) sin [y(r)] o(r,s) 
oy(s) 

= - B (s) sin [y(s) ] (5.4) 

021,6 
----'---= -B(t)cos[y(t)]o(s,t) (5.5) 
oy(s)oy(t) 

031,6 
-----'---- = B (t) sin [y(t )] o(s,t)o(t,u), etc. 
oy(s)oy(t )Dy(u) 

(5.6) 

Setting y(r) = 0 causes all odd order derivatives to vanish. 
Equation (5.3) becomes 

1,6 [y] = 1,60 - ~ f dr B (r)y(r)2 + ~ f dr B (r)y(r)4 
2! 4! 

+ ... + ( - It f dr B (r)y(r)2n + .... (5.7) 
(2n)! 

Application of the formula for IA 1,6 ] of (2.12) gives 

If[tP] = (21T/detA )112 {f dr B(r) - f dr B(r)[2a(r)]-1 

+ ~ f dr B (r)[ 2a(r)] - 2 - ~ f dr B (r) 
2! 3! 

X [2a(r)] - 3 + - ... } 

= (21T/detA )112-5 dr B (r).{ 1 - [2a(r)] - 1 

+ ~[2a(r)] - 2 _ ~ [2a(r)] - 3 + ... } 
2 3! 

= (21T/detA )112. t dr B (r) exp [ __ 1_], (5.8) 
Jo 2a(r) 

where a(r) is the spectrum of the covariance matrix A (t,t ). 
The result is surprisingly simple, because we can resum the 
infinite series into an exponential. 

Now we try the alternative method of the Laplace 
transform. Since the given cosine functional is already an 
even functional, 1,6 E [y] = 1,6 [y]. We follow the steps starting 
from (ii) in (4.7). The Laplace transform of (5.1) is 

~ [z] = exp [ - f dt lnz(t )]. t dr B (r) ( z(r? ). Jo z(r)2 + I 
(5.9) 

Next, multiply by exp[ - S dt lnz(t)] and change to variable 
wet) = Z(t)2, 

exp [ - + f dt lnw(t)]i [V-;;] 
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= exp( - f dt InW(l») t dr B(r) [ w(r) ]. 
Jo w(r) + 1 

(5.10) 

The inverse Laplace transform of (5.10) is known from 
mathematical tables, 13.14 

sP - 1 {exp [ - + f dtlnW(t)] ~ [V-;;]} [x] 

= f dr B(r) exp[ - x(r)]. (S.l1) 

Substituting [2a(r)] - 1 for x(r) and multiplying by 
(21T/detA ) 1/2 give 

(21T/detA )112 2/ 1 {exp [ - + f dtlnw(t) j 
~ [Yw]} [Xllx~(la) 1 

= (~)In f dr B (r) exp [ __ 1 ]. 
detA 2a(r) 

(S.12) 

Equation (5.12) is precisely the integral (5.8). Therefore both 
the Taylor expansion method and the Laplace transform 
method gave the same result for (5.1). 

The Laplace transform method holds certain advan
tages over the Taylor series. With know Laplace transform 
for the functional under study, the process of getting the 
integral is much simplified. There is no need of evaluating 
the functional derivatives, collecting the traces, and resum
ming the infinite series. The Laplace method also generalizes 
at once to cases where the Laplace transforms exist for the 
given functionals, which may not possess Taylor series ex
pansions. We shall make full use of these properties in future 
studies. 

VI. THE COVARIANCE MATRIX AND KINETIC ENERGY 

The Lagrangian of a particle undergoing translational 
motion in a potential field, V (x) (for illustration, we consider 
here a one-dimensional one-body system) is 

L(x,x,t)=!mx 2
- Vex). (6.1) 

The propagator kernel is given2 by a path integral, 

K(Xb' tb;xa, ta) 

= B f Dx(t) exp{di ···1 r' dt [+mx(t)2 - V (x(t») 1} , 
(6.2) 

where m is the mass of the particle, x(t) is the path as a 
function of time, t, which starts at Xa at time ta and ends at 
Xb at time tb' B is the normalization constant. Comparing 
expression (6.2) with the standard form of a Gaussian inte
gral, (1.3), shows that the covariance matrix in this case is 
given by 

f drdsy(r)A (r,s)y(s) = m(ifz)- 1 f dt X(t)2, (6.3) 

i.e., it is the kinetic energy term in the Lagrangian. Our de
velopments show that the eigenvalues of this covariance ma
trix play an important role in the functional integral [see, 
e.g., Eqs. (2.18), and (4.5)]. Since the kinetic energy term 
appears constantly in Lagrangian and Hamiltonian mechan-
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ics, we devote a few paragraphs to the discussion of its 
eigenvalues. 

First we note that the Gaussian measure can be written 
in the Riemann sum, 

(drdsy(r)A(r,s)y(s) = lim II..::1t2YiAijYj' (6.4) Jo .11-+0 i j 

where T = N..::1t, Yi = y(i..::1t), Aij = A (i..::1t,j..::1t). The limit is 
taken asN-+oo, and..::1t-+O, while keepingN..::1t = T. Now if 
we consider the velocity, i(i..::1t), as given by 
lim[x«i + 1)..::1t) - x(i..::1t )]/..::1t, the rhs of(6. 3) can be written 
as, 

1 x· x· 
m(i-K)-I lim - II..::1t 2-' Qij -' , (6.5) 

.1I-+o..::1t i j ..::1t ..::1t 

where the matrix Q is defined as (order N - 1 XN - 1) 

Q= 

2 -1 0 0 0 0 

o 
o 

2 - 1 0 

-1 2 - 1 

o 
o 

o 
o 

-1 2 
o -1 

o 
o 

(N.B. We have set Xa = Xo = 0, and Xb = X N = 0, in this 
case. Reasons will become apparent later.) The correspon
dence between (6.4) and (6.5) is then, 

Yj=x/..::1t, Aij=m(ili..::1t)-IQij' (6.7) 

Therefore in formulas (2.18) and (4.5), the eigenvalues a(tj) 
of Aij correspond to m(ili..::1t) - Iq(tj ), where q(tj ) are eigen-

A 

4.0 
0 

0 

0 

3.0 
0 

2.0 

1.0 

o 

o 
o 0.25 0.5 0.15 1.0 

t 
FIG. I. The eigenvalues of the matrix Q. Circles, 0, are for LIt = 0.0909; 
Crosses x, arefor LIt = 0.0244. The continuous curve is for LIt = 0.01234. 
The unit of time is T. 
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TABLE I. Eigenvalues of the matrix Q (rank = 80). 

0.1502E"'{)2 0.50 I 2E"'{)2 0.1352E--OI 0.2402E"'{) I 
0.3749E--OI 0.5391E--OI 0.7328E"'{) I 0.9550E"'{) I 
0.1206 0.1486 0.1793 0.2127 
0.2489 0.2877 0.3290 0.3729 
0.4192 0.4679 0.5189 0.5721 
0.6275 0.6850 0.7444 0.8057 
0.8688 0.9336 1.000 1.068 

1.137 1.208 1.280 1.352 
1.426 1.501 1.577 1.653 
1.729 1.806 1.884 1.961 
2.039 2.116 2.194 2.271 
2.347 2.423 2.499 2.574 
2.647 2.720 2.792 2.863 
2.932 3.000 3.066 3.131 
3.194 3.255 3.315 3.372 
3.428 3.481 3.532 3.581 
3.627 3.671 3.712 3.751 
3.787 3.821 3.851 3.879 
3.904 3.927 3.946 3.982 
3.976 3.986 3.994 3.998 

values of the matrix Q. For finite N, both a(t) and q(tj ) are 
dependent on the partition of T = N..::1t, the time interval. 
But as N-+ 00, (..::1 t-+O), a(tj) should approach the eigenva
lues a(t ), O.;:;t.;:; T, of the continuum matrix, A (r,s), as dis
cussed in paper I. The same limit is expected of q(tj ), even 
though Q is of the discrete form (6.6). The reason for this can 
be seen in the marker, the time interval..::1t in the quadratic 
form, (xj /..::1t); i.e., thepathx(t) is divided into Nintervals at 
points, XI' X 2 , ... , X N _ I • And the entries of the matrix Q 
correspond to thesexj . As N-+oo and ..::1t-+O, x(tj ) becomes 
the continuous path x(t ), and the eigenvalues q(tj ) approach 
the continuum eigenvalues q(t). To show this numerically, 
we have evaluated the eigen val ues of the matrix Q of (6.6) for 
N - 1 = 10, 20, 40, and 80. The results are presented in Fig. 
1 and Table I. It is seen from the graph that the eigenvalues 
q(tj ) lie between 0 and 4, and as N increases, q N(tj ) approach 
a limiting curve. The values of q(tj ) of N - 1 = 40 are al
ready very close to q(tj) of N - 1 = 80, and are hardly distin
guishable from each other. We evaluated q(tj ) for even high
er values of N. The shape of the curve did not change much 
for N> 81. 

VII. THE FREE PARTICLE IN QUANTUM MECHANICS 

In this section and in the following, we shall evaluate 
the Feynman path integrals for certain known problems in 
quantum mechanics, e.g., the free particle and the harmonic 
oscillator. This will serve the purpose of testing the method
ology developed so far. It will also shed new insights into 
some old problems and point out new directions of applica
tion of the present method. 

The one-dimensional free particle which is at position 
Xa at time ta and position Xb at time tb (ta < tb ) is described 
by a propagator K (b,a) given by Feynman/ 

K (b,a) = L Dx exp[ (iHi) S (b,a)], (7.1) 

where S (b,a) is the action, 

S (b,a) = rl

' dt L (x,x,t) (7.2) 
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and L (x,x,t) is the Lagrangian. For a free particle, 
L (x,x,t) = !mx(t) 2. (7.3) 

Note that r is the collection of all paths in the function space 
which pass throughxa at time ta andxb at time tb, (ta <tb)· 
To take care of the boundary conditions properly, we follow 
Feynman2 in first expanding the path, x(t ) = x(t) + y(t ), 
around the classical path, x(t). The difference functiony(t) 
defined above now has the boundary conditions: 

y(ta) = 0, and y(tb) = o. (7.4) 

Substitution of x = x + y into (7.2) gives 

S[x] = J'o dt [L (x,x,t) + aL I y + a~ I y 
'0 ax ox ax ox 

1 (~L I 2 a2L I .2) ] +- - y +- y + .... 
2 ax2 ox ax2 ox 

(7.5) 

The first term on the right-hand side gives the classical ac
tion. The first-order terms in y vanish, since the action is 
stationary wi th respect to x( t ). For the Lagrangian of the free 
particle (7.3), we have 

L (x,x,t) = !mx 2 + !m(2.xy) + !my 2. (7.6) 

We have then, 

where Sci is the classical action, 

Sci = !m(xb - xaf/(tb - ta)· 

The propagator is then, 

(7.8) 

K(b,a) = exp(ill-l Sci) L. Dy.exP(ill- 1 Lb dt !my (t)2). 

(7.9) 

where r * refers to all paths with boundary conditions 
y(tu) = O,y(tb) = o. It is the usual practice in evaluating this 
integral to discretize the kinetic energy term, 

(7.10) 

where 

YN = y(tb) = 0, Yo = y(ta) = 0, and e = (tb - ta)lN. This 

is a quadratic form. We can write, 

N I (Yi - Yi_l)2 = yTQy, (7.11) 
i= I 

with 

Y = (Yl 'Y2'···'YN-l) (7.12) 

J'b S [x] = Sci + '0 dflmy(t f, (7.7) and the matrix, as defined before, is, 

2 -1 0 0 

2 -1 0 

0 -1 2 -1 

Q= 0 0 -1 2 

0 

0 

0 

-1 

o 
o 
o 
o 

I 
o 
o 
o 
o 

o 
o 
o 
o (N - l)x(N - 1), (7.13) 

0 0 0 0 0 - 1 2 

0 0 0 0 0 o 

i.e., Q is the covariance matrix with value "2" on the diag
onal and value" - 1" on the off diagonals. We are to find the 
integral 

(7.14) 

where B is a normalization constant. It is determined by the 
formula, 

K (b,a) = I Dxc K (b,c)K (c,a) 
r, 

as given by Feynman. 2 In our case this is 

B = m/(21TH1e). 

(7.15) 

(7.16) 

In the continuum case, we are to evaluate the equivalent 
integral, 

If=B f m(dy)exp[ -!(m/i~) f drdSy(r)Q(r,s)y(s)). 

(7.17) 

Comparison or (7.17) with (1.3) shows that this is a Gaus
sian-like integral with covariance matrix (m/i~)Q and the 
functional ifJ [y] is simply unity. The result is given immedi
ately by formula (2.12) where now ifJo = 1, and all 
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-1 2 

I 
K(r ... s) = 0: 

If = B·(21T/detQ) 112 (i~/m)l/2 = (m/21Ti~detQ)1I2. 
(7.18) 

To find the determinant of Q, detQ, we note some recursion 
relations. For the matrix (7.13), if we take the lower right 
corner and carve off a square matrix, D n , of order n, 
O<;n<;N - 1, we have 

Dl = (2), D2 = ( 2 
-1 

- 1) 
2 ' 

D, ~( ~ 1 

-1 

~} eto 2 (7.19) 

-1 

and the determinants of these matrices obey the recursion 
relation: 

detDn = 2 detDn _ 1 - detDn_ 2, n = 2,3, ... ,N - 1. 
(7.20) 

Rearrangement gives 

(detDn - detDn _ 1) - (detDn _ 1 - detDn _ 2) = o. 
(7.21) 
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In the continuum case, 

a
2
[detD(/)] = o. 

at 2 
(7.22) 

The appropriate boundary conditions are detD (0) = 1, 
a[detD (O)]lat = 1. We have the solution, 

detD (I) = t + 1. (7.23) 

Therefore detD (N - 1) = detQ = (N - 1) + 1 = N, and 

If = (m/21Tif1£N)1I2 = [m/(21Tili(tb - ta»r/2 (7.24) 

and the propagator K (b,a) is given by 

K (b,a) = ( . m )1/2 exp(iIi - 1 Set). 
2mli(tb - ta ) 

(7.25) 

This is precisely the result given by Feynman.2 

The above result has been obtained by the Taylor series 
method. The method of the Laplace transform can be equal
ly well applied. However since in this case, the functional 
¢ [y] to be integrated is identically unity, the calculations are 
trivial. To show consistency, we nonetheless carry out the 
evaluations. 

The Laplace transform of ¢ [y] = 1 is 

<J[z] =exp [ - J dtlnz(t»). (7.26) 

Multiply by exp( - f dt Inz(r» and change to w(t) = z(t) 2, 

exp [ -~J dtlnW(t»)<J[Z] =exp [ - J dtlnW(t»). 

(7.27) 

The inverse Laplace transform gives back 

2'-1 {exp [ -+ J dtlnW(t»)<J[y'-;J}[X]=1. 

(7.28) 

Therefore the functional integral If is given by, 

If = B (21Tif1£/m detQ )112 2' - 1 {exp [ - + J dt lnw) 

X<J [y'-;1} [x] I x~(2a) , 

= B (21Tif1£/m detQ )1/2 = (m/21Tili(tb - to»I12. (7.29) 

Thus we obtain results identical to (7.18) from the Taylor 
series method, and the two methods are equivalent. 

VIII. HARMONIC OSCILLATOR 

That the continuum calculus is applicable to the quan
tum harmonic oscillator has already been demonstrated in 
paper 1.4 There we considered integrals of exponential 
functionals: 

if![ y] = exp J l1(dt )1(v(t ». (8.1) 

The method presented there' is naturally suited to analyze 
cases such as harmonic oscillators, and is recommended for 
use over the materials to be given in this section for exponen
tial functionals. The purpose of this section is to demonstrate 
further the validity of the present method for Gaussian-like 
integrals. Valid results are obtained. The mathematics, 
though involved, is quite interesting. 
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The Lagrangian of the harmonic oscillator is 

L (x,x,t ) = 1m(x 2 - W 2X 2), (8.2) 

with the boundary conditions, 
X{ta) = x a, X(tb) = x b, ta < tb' The propagator is then 

K (b,a) = exp{ili - 1 fb dt + m [X(t)2 - w2 x(t )2] }. 

(8.3) 

We follow Feynman in expandingx(t) = x(t) + yet ) around 
its classical path, x(t). Then we obtain, as before, 

K(b,a)=exp(iIi-1Sct ) f m(dy) 
Jr-

xexp { - ~ (~) It" dt [y(t)2 _ w2y(t )2]} , 
2 Iii t" 

(8.4) 

where r· consists of all paths in A B with end conditions, 
y(ta) = 0, andy(tb) = O. Set is the classical action, 

Set = (mw/2 sinwT) [(x~ - xD cowT - 2xaXb]. 
(8.5) 

To evaluate (8.4), we again discretize the integrand. The ki
netic energy part is 

- ~ (~) f'b dty(t)2 = - ~ (.!!!-) i (Yi - Yi-- 1)2 
2 Iii 1 2 1f1£ i=1 

1 . TQy = - 7(m/lf1£)y , 
2 

(8.6) 

where y and Q are defined as in (7.11) and (7.l3). The poten
tial energy part becomes 

( 
imw2 ) Itb d ()2 _ ( ime(2) ~ 2 - -- t Y t - - --- L Yj 

21i ta 21i j = 1 

= _ ay7'y, (8.7) 

where 

a=imew2/21i. (8.8) 

We consider first the weak distribution integral 

I. =B f m.(dy).exp[ -~(m/if1£)yTQy].exp[ -ayTy], 

(8.9) 

where B is a normalization constant and B = m/(21Tif1£). 
The continuum analog is then obtained as 

If = B J m(dy) exp[ -1 f dr ds y(r)Q (r,s)y(s») 

xexp [ - a J dt y(t)2]. (8.10) 

Comparison with (1.3) shows that the ¢ functional to be 
integrated is 

¢ [y] = exp [ - a f dt y(t)2]. (8.11) 

The covariance matrix is identified as (m/if1£)Q. The kinetic 
energy part acts as Gaussian measure on a potential energy 
functional. This behavior is general for Feynman path inte
grals in physics. Because the nonrelativistic kinetic energy is 
quadratic, the integral is always the expectation of some qua
si-Gaussian process. 

l.l. Lee 1063 



                                                                                                                                    

To evaluate (8.10), we can use either the Taylor series 
method or the Laplace transform method. In the former 
case, we need to find the functional derivatives of all orders 
for the functional (8.11). This process degenerates very soon 
into a tedious task (however, it is similar to the cumulant 
method in statistical mechanics). t5 Instead, we look into the 
Laplace transform method. 

We follow the steps outline in (4.7). First we note that 
the functional (8.11), is already even, (,6E[Y] = (,6 [y). Its La
place transform can be found from standard transform ta
bles t3

.
t4 as 

<$[z] = (1T14aYl2 exp [(4a)_t f dtZ(t)2].&dt 

:>erfc [(z(tfl4a)t12], (8.12) 

where & dt:>(.) is thep integral of the continuum calculus.4 

For definition and properties, see paper I. The erfc(.) is the 
complementary error function. Next multiply by 
exp[ - S dt Inz(t)] and change to w(t) = z(t) 2, 

exp( - ~f dt lnw)¢ h/~] 

= (1TI4a)lIZ exp( - ! f dt lnw) 

xexp [ (4a) ~ t f dt W(t)] & dt:>erfc[(wl4a)1!2]. 

From the inverse transform table, 14 we have the 
relationship, 

o'£' - t s ~ v exp(as)erfceV as) 

tV -t/2 2 F t [q; -!; - tla] 

V 1Ta r(v+ D 

(8.13) 

(8.14) 

where 2Ft [a,b;c;x] is the hypergeometric function defined as, 

oc (a)" (b)" X" 
2F t [a,b;c;x] ==0 I (8.15) 

,,~o (C)II nl 

and 

(a),,=a(a + 1).··(a + n -1), etc. (8.16) 

Application to our case yields 

x·· t {exP(-!f dtlnW)¢[V~]}[X] 
= & dt:>zFt [1,P; -4ax(t)]. (8.17) 

By using (8.15), we can evaluate 2FI' 

[1 1'1' -4a ] = ~ (I)"(D,, (-4ax)" 
2Fl '2" X "L::o (I)" n! 

=l+(+)(-~X) +(~)(~)<_~X)2 

+(~)(~)(~)(_:7X)3 + .. . 

+ I·3·5···(2n -1) (-4ax)" + ... . 
2" n! 

(8.18) 

This is precisely the binomial expansion of the function 

(1 +4ax) ~1!2 = 2Ft [I,P; -4ax]. (8.19) 
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Therefore, we have 

Y- I {exp[ .. -.~ f dtlnw]¢ [V~]} [x] 

= :7 dt>(1 + 4ax(t» ··112 

Substitution into (4.5) gives 

(8.20) 

If = B (2rrifzelm detQ )112 :f ·1 {exp( .. ~ + f dt lnw) 

x¢[Yw]} [X]IX~(2amlilie)' 
= (mI21Tifze detQ )112 & dt> [1 + 2aifzelma(t) ] ··112 

(8.21) 

where a(t) is the eigenspectrum of the matrix Q. From (8.8) 
we can further write, 

If = (mI21Tifze detQ )112 & dt> [1 - e2w 2 I a(t)] _. 1/2 

. (8.22) 

we know already that detQ = N. In Eq. (8.22) we also need 
the eigenvalues, aCt ), of Q. To evaluate thep integral, we have 
written a computer program. Since computer calculation 
deals with discrete numbers, the p integral (8.22) was discre
tized. The details are presented in Sec. IX. Here we give the 
results. 

The p integral in (8.22) was found to be equal to, 

[7 dt>(l _ e
2(2) ~ 112 = (~)112, 

a(t) sinw T 
(8.23) 

where T= tb ~. tao 

Substitution of (8.23) into (8.22) and then into (8.4) gives 

K (b,a) = (m(uI21Tifz sinwT)1I2 exp(ifz - I ScI)' (8.24) 

This is the well-known results for quantum harmonic oscil
lator (see, e.g., Feynman et al. 2

). 

IX. NUMERICAL METHOD 

In this section we report the numerical method used in 
evaluating thep integral (8.23). There is up to now no known 
method of obtaining an analytical expression for the eigen
values, a(t), of the matrix Q (7.13). Thus we cannot used 
directly the analytical formula of the p integral given in pa
per 1.4 The evaluation has to be done numerically. Numeri
cal methods, when carried out properly, are equivalent to 
analytical methods. The results should be equally valid. 

First we observe some characteristics. The matrix Q is 
given in a discrete form (7.13). In order to obtain an approxi
mation to the continuum case, the rank, which is N - 1, of Q 
will have to be very large, ideally N-+ 00 • The limitations will 
come in from the capacity of the computer and the numeri
cal precision of the working programs seeking the eigenval
ues. The computer handles discrete numbers. Thus the p 
integral must be put in discrete form. A natural way of doing 
this is to discretize (8.23) consistent with the existing matrix 
Q. 

Secondly, Feynman2 integrated the path integral using 
the Fourier series method. The resulting expression corre
sponding to (8.23) was also an infinite product, 

Ci:~T y/2 = "fIl (1- ::~2r 1/2. (9.1) 
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Our expression is 

( 
e2(2)-I12 N-I ( W2T2)-1I2 

9 dt> 1 - -- ~ IT 1 - -2 - . 
a(t) j~ I N aj 

(9.2) 

where aj , 1 <.j<.N -1, are the eigenvalues of the 
(N -l)X(N -1) matrix Q, and we used e = TIN, as de
fined before. Our n product (9.2) is not the same as Feyn
man's n product even though both give the same limit. In 
other words, term by term, there is no correspondence be
tween (9.1) and (9.2). They represent different ways that the 
function (wT IsinwT) 1/2 can be decomposed. 

We evaluated the product (9.2) numerically taking 
N = 11,21,41, 81, for the values of T = 0.1, 0.2, 0.3, ... ,3.0. 
Part of the results are presented in Table II. Together we 
have also calculated the Feynman product (9.1). The eigen
values of Q at N -1 = 80 are given in Table I. For two val
ues of T = 0.6 and 0.8, we plot the results in Fig. 2. We see 
that (9.2) converges to the exact values (wT IsinwT) 112 as N 
becomes large. The contribution to the product (9.2) comes 
essentially from the small eigenvalues, since for large eigen-

values, (UJT IN) 21aj is essentially zero. For the Feynman 
product (9.1), the convergence is from below and is well be
haved. The rate of convergence is less rapid than (9.2). 

We conclude that numerically we have demonstrated 
that product (9.2) converges to 

lim Ntf [1 _ w2T2] ~~ 112 = (~)1I2. 
N->oo j~ I N 2aj sinwT 

(9.3) 

This result is quite fascinating since it arose from the eigen
values of the matrix Q. The eigenvalues lie from close to zero 
to a maximum of just below 4 and form a slightly S-shaped 
curve. Even when Nbecomes very large, the maximum val
ues of aj never exceeds 4. We have thus shown that the pre
sent Laplace transform method gives valid results for the 
harmonic oscillator. 

X. HARMONIC OSCILLATOR IN AN EXTERNAL FIELD 

The forced harmonic oscillators are of interest in quan
tum electrodynamics because the electromagnetic field can 
be represented as a set of forced harmonic oscillators. If the 

TABLE II. Convergence of the N-product formula (9.2) in the case of harmonic oscillator to the function [ruT Isin(oJT)] 1,". 

wT 0.0909 0.0476 0.0244 0.01234 (mT IsinwT) 1/2 

exact 

0.1 1.0008 1.0008 1.0008 1.0008 1.0008 
( 1.00(78) ( I. 00(8) ( I. 000 8) (1.0008) h 

0.2 1.0033 1.0033 1.0033 1.0033 1.0033 
(1.0031) (1.0032) (1.0033) (1.0033) 

0.3 1.0075 1.0075 1.0075 1.0076 1.0076 
(1.0070) (1.0073) (1.0074) (1.0075) 

0.4 1.0134 1.0135 1.0134 1.0135 1.0135 
(1.0126) (1.0131) (1.0133) (1.0134) 

0.5 1.0211 1.0212 1.0211 1.0213 1.0212 
(1.0199) (1.0206) (1.0209) (1.02105) 

0.6 1.0306 1.0307 1.0306 1.0309 1.0308 
(1.0289) (1.0299) (1.0303) (1.0306) 

0.7 1.0421 1.0423 1.0421 1.0424 1.0424 
(1.0397) (1.0411) (1.0417) (1.04204) 

0.8 1.0556 1.0559 1.0557 1.0561 1.0560 
(1.0524) (1.0543) (1.0552) (1.0556) 

0.9 1.0713 1.0717 1.0714 1.0720 1.0719 
(1.0673) (1.0696) (1.0708) (1.0713) 

1.0 1.0894 1.0899 1.0895 1.0902 1.0901 
(1.0843) (1.0873) (1.0887) (1.0894) 

8Time interval.dt = TIN, where T = tb - to is taken to be unity. hValues in the parentheses refer to the Feynman product (9.1). 
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FIG. 2. Convergence of then product (9.2) to the function [wT /sin(wT»)1!2. 
Circles: the n product (9.2). Horizontal lines: the exact values. The upper set 
of curves is for wT = 0.8. The lower set of curves is for wT = 0.6. 

external force is given by J(t ), it is coupled to the oscillator by 

L = !mx(t) 2 - !mw 2X(t) 2 + J(t )x(t). (10.1) 

By using the results of the harmonic oscillator obtained pre
viously, it will be a simple matter to obtain the path integral 
for the propagator, 

K(Xh,th;xa,ta) 

= B f Dx expifz - I flh dt (!mx2 - !mw2x2 + Jx). 
I" 

(10.2) 

To extract the classical path, we write the path, x(t) 
= x(t ) + yet ), wherex(t ) is the classical path that makes the 

action S = S dt L stationary; i.e., the first order variation 
8S = O. Substitution of x(t ) into the action gives 

S = f dt (!mx2 - !mu/x2 + JX) 

+ f dt (mxy - mu/xy + Jy) 

+ f dt (!mp - !mw2y2). (10.3) 

The first term on the right-hand side gives the classical 
action, 

Sci = mw(2 sinwT) -I [COSlUT (x~ - x~) - 2xbxa 

+ 2xb(mw) -I In dsJ(s) sinq + 2xa(mw)-1 

X flh dtJ(t) sinp - _2_ f ds dtJ(s)f(t) sinp sinq], 
I" m2w2 

(10.4) 

where p = W(tb - t), q = w(s - ta)' and T = (tb - ta). The 
second term of (10.3) is zero because it is first order in the 
perturbation yet ), i.e., 8S = O. Therefore we have 

K = B exp(ifz - I ScI) 

X f Dx expifz -I f dt (!my2 - !mw2y 2). (10.5) 
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This integral is the same as (8.4), the unperturbed harmonic 
oscillator case. So the answer is given immediately, 

K= (21Tifz::(WT)YI2 exp(ifz-1ScI )· (10.6) 

The difference of the forced harmonic oscillator from (8.24) 
lies in the classical action, Sci' The normalization factor, 
which was obtained from the path integral, is the same in 
both cases. 

XI. CHARGED PARTICLE IN AN EXTERNAL MAGNETIC 
FIELD 

The Lagrangian for a particle of charge e and mass m in 
a constant external magnetic field B, in the z direction, is 

L = !m(x 2 + y2 + i 2) + (eB 12e)(xy - yx). (11.1) 

Let the classical path be (x(t ),y(t )$(t ». We can extract the 
classical action, Sci , by writing x = x + u, y = y + v, 
Z = Z + w, where u, v, ware perturbations over the classical 
path. The action is then 

S = f dt (!m(x2 + yz + ZZ) + !mw(xy - yX» 

+ f dt (m(xti + yv + zw) + !mw(uy + xv - vx - yu» 

+ f dt (!m(ti 2 + v2 + w2) + !mw(uv - vti». (11.2) 

The first term on the right-hand side is the classical action, 

Sci = !mw {(Zb - za)2lT +!w cot(!wT) 

X [(Xb - Xa)2 + (vb - Ya)2] + W(xaYb - xbYa)}' 
(11.3) 

where w = eB I(me). The second term is zero, because first 
order variations over the classical path, 8S = O. Therefore 
we have as the propagator, 

K = B I exp(ifz - I Sci) f DuDvDw 

X exp [ifz- I f' dt (!m(ti 2 + v2 + w2) + !mw(uv - vti» l 
(11.4) 

We note that this integral is in three-dimensional space. 
Comparison with the Gaussian integral of (1.3) shows that 
the covariance matrices are 

(11.5) 

where u, v, and ware the vectors (u l , U 2 '''''UN _ 1)' 
(VI , ... ,VN _ I)' and (WI ,,,,,WN _ 1)' and Q is the same for iso
metric motion, [see (6.6)], in all three directions. The func
tional whose Gaussian expectation is to be evaluated is 

¢ [u,v,w] = exp f dt !ifz- 1 mw(uv - vti) 

= lim exp(!ifz - Imw uTRv), 

L.L. Lee 

(11.6) 

1066 



                                                                                                                                    

where 

0 0 0 0 0 

0 0 0 0 0 

-1 0 0 0 0 
R= 

0 0 0 -1 0 

0 0 0 0 -1 0 

i.e., a matrix with 0 on the diagonal, + Ion the upper off
diagonal, and - 1 on the lower off-diagonal. This matrix is 
obtained when the velocities Ii, and V, are discretized as 
[u«i + l).1t) - u(i.1t )]/.1t, and [v((i + 1).1t) - v(i.1t )]/.1t, 
respectively (see section VI). The limit in (11.6) was taken as 
.1t-+O and N-+oo. The functional rp is independent of w(t). 
The functional integration over Dw then gives a factor of 
[ml(21TiIiT)] 112. We have 

K=B"[ml(21TiIiT)]1I2exp(iIi- IScl) f m. (dv)m.(dw) 

X exp [ - ! [ml(.1tili)] (uTQu + vTQv)] 

Xexp[ - !(mmlili) uTRv]. (11.8) 

We note that R is an antisymmetric matrix, which can be 
diagona1ized by some regular matrix, C,; i.e., CRC - I = A, 
where A is a diagonal matrix with the eigenvalue Ai dis
played on the diagonal. For (11. 7), all the eigenvalues are 
imaginary. Table III gives the spectrum of R. Now if we 
define the new integration variables, u = C Ta, with Jacobian 
oftransformationJ (aulaa) = detC, and v = C - Ib, withJa
cobian of transformation J (avl ab) = detC - I = 11 detC, 
(11.8) will be 

K = B ,,(~)112 exp(.i.scl) f m. (da)m. (db ) 
2mliT Ii 

xexp{ _~~ [aTCQCTa+ bT(C -I)TQC -Ib]} 
2 lru1t 

(11.9) 

There is no change in the differential volume due to the can
cellation of the Jacobians. We diagonalized the matrix in the 
rp-functional part in order to facilitate the application of the 
Laplace transform, 

!/' rp = f m* (da)m* (db ).exp( - (a,r» 

Xexp[ - (b,s)].rp [a,b] , (11.10) 

according to (3.4). The procedure of (4.7) is then activated. 
Namely, we first seek out the even functional, rpE [a,b]. This 
is relatively easy since A is already diagonalized. We then 
transform rpE into (r - s) space, and multiply by 
exp[ - Sdt lnr(t)] and exp[ - Sdt lns(t»). Changing the var
iables, r 2 = r', and s 2 = s', and inverse-transforming back to 
the (p - q) space give the path integral after replacing the 
variables, Pi' by the eigenvalues, in the form of (2J.li) - I, of 
CQC T, and qi by (2v;) -I of (C -I)T QC -I, and multi
plication of the normalization factor (21TldetQ). The follow
ing shows this construction step by step. 

The even functional, rpE' of rp, in (11.9) is simply the 

1067 J. Math. Phys., Vol. 21, No.5, May 1980 

hypergeometric functional, 

rpda,b] = & dt>IF2 [1;Q;!a2a2b 2], (11.11) 

where a is the constant HmmA (iii) - T Its Laplace trans
form can be obtained directly from the standard mathemat
ical table,14 and is given by 

!/' rp E 

= [exp( - f dt Inr(t ») exp( - f dt lns(t ») ] & dt 

(11.12) 

Multiplication by exp[ - S dt In(rs)], and transformation of 
variables, r' = r 2, and s' = s 2 gives 

!/'rpdr',s'] = (exp [ - f dtln(r'S')]) & dt 

[
1 •• 4a

2
(t) ] >4FI 2,1,1,1,1, . 

r'(t )s'(t) 
(11.13) 

The inverse transform can be easily obtained again from the 
mathematical table: 14 
2' ~ I (2' rpE [r',s']) [p,q] = & dt 

>2FI [P;l; 4a2 p(t)q(t)]. 
(11.14) 

TABLE III. Eigenvalues of the matrix R (rank = 80). 

real imaginary real imaginary 
0.0 1.998 0.0 -1.998 
0.0 1.993 0.0 -1.993 
0.0 1.986 0.0 -1.986 
0.0 1.975 0.0 -1.975 
0.0 1.962 0.0 -1.962 
0.0 1.945 0.0 -1.945 
0.0 1.926 0.0 -1.926 
0.0 1.904 0.0 -1.904 
0.0 1.879 0.0 -1.879 
0.0 1.851 0.0 -1.851 
0.0 1.820 0.0 -1.820 
0.0 1.787 0.0 -1.787 
0.0 1.751 0.0 -1.751 
0.0 1.712 0.0 -1.712 
0.0 1.671 0.0 -1.671 
0.0 1.627 0.0 -1.627 
0.0 1.580 0.0 -1.580 
0.0 1.532 0.0 -1.532 
0.0 1.481 0.0 -1.481 
0.0 1.427 0.0 -1.427 
0.0 1.372 0.0 -1.372 
0.0 1.315 0.0 -1.315 
0.0 1.255 0.0 -1.255 
0.0 1.194 0.0 -1.194 
0.0 0.3877£-01 0.0 -0.3877£-01 
0.0 0.1163 0.0 -0.1163 
0.0 0.1936 0.0 -0.1936 
0.0 0.2706 0.0 -0.2706 
0.0 0.3472 0.0 -0.3472 
0.0 0.4234 0.0 -0.4234 
0.0 0.4988 0.0 -0.4988 
0.0 0.5735 0.0 -0.5735 
0.0 0.6474 0.0 -0.6474 
0.0 1.31 0.0 -1.131 
0.0 0.7203 0.0 -0.7203 
0.0 0.7921 0.0 -0.7921 
0.0 0.8627 0.0 -0.8627 
0.0 1.066 0.0 -1.066 
0.0 0.9320 0.0 -0.9320 
0.0 1.000 0.0 -1.000 
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TABLE IV. Eigenvalues of the matrix Q - IRQ- IR (rank = 72). 

real imaginary 

-513.0 0.0 
-132.0 0.0 
-59.00 0.0 
-59.00 0.0 
-20.89 0.0 
-20.89 0.0 
-10.35 0.0 
-7.771 0.0 
-7.772 0.0 
-4.743 0.0 
-3.809 0.0 
-3.100 0.0 
-2.549 0.0 
-2.113 0.0 
-2.113 0.0 
-1.976 0.0 
-1.976 0.0 
-1.043 0.0 
-0.8784 0.0 
-0.7387 0.0 
--0.7388 0.0 
-0.5182 0.0 
-0.5182 0.0 
--0.3559 0.0 
-0.3559 0.0 
-0.2355 0.0 
--0.2355 0.0 
-0.1467 0.0 
-0.1467 0.0 
-0. 8249E--D I 0.0 
-0.8250E--Dl 0.0 
-0.3845E--DI 0.0 
-0.2302E--DI 0.0 
--0.4567 E--03 0.0 
-0.4170E--02 0.0 
-0.1166-01 0.0 

This whole procedure is reminiscent of the case of the har
monic oscillator cited in Sec. VIII. The hypergeometric 
function 2 FI [4,1; 1; 4a2 pq] is a representation of the func
tion (1 - 4a 2pq) - 112. Substitution of the eigenvalues f.t(t ) 
and v(t) into (11.14) gives 

J. = (mN /21T )3/2 9 dt 
f detQ ifzT 

~(1 - (~;)2 f.t(t) -I A (t )v(t) -I A (t») -112.(JcJ ). 

(11.15) 

The result is similar to Eq. (8.22), except (11.15) should be 

real imaginary 

-513.0 0.0 
-132.7 0.0 
-32.98 0.0 
-32.98 0.0 
-14.32 0.0 
-14.32 0.0 
-10.35 0.0 
-6.005 0.0 
-6.406 0.0 
-4.743 0.0 
-3.800 0.0 
-3.100 0.0 
-2.549 0.0 
-1.762 0.0 
-1.762 0.0 
-1.240 0.0 
-1.240 0.0 
-1.044 0.0 
-0.8785 0.0 
-0.5198 0.0 
-0.5199 0.0 
-0.4310 0.0 
-0.4310 0.0 
-0.2912 0.0 
-0.2912 0.0 
-0.1877 0.0 
-0.1877 0.0 
-0.1118 0.0 
-0.1118 0.0 
-0. 5817E--Dl 0.0 
-0.5817E--DI 0.0 
- O. 3845E--D I 0.0 
-0.2303E--DI 0.0 
-0.4627E--DI 0.0 
-0.1 I 66E--D 1 0.0 
-0.41 78E--D2 0.0 

treated in matrix form. f.t(t) - i A (t )v(t) - i A (t) is the ei
genvalue of the matrix product, 

(CQCT)-I A (C - TQC -I)-IA 

(11.16) 

where we have used the diagonalized matrix relation, 
CRC- I = A. The eigenvalues of (11.16) are the same as 
Q-IRQ-IR T, from a well-known spectral theorem ofma
trices. Since R is antisymmetric [see (11.7)], R T = - R. 
Therefore we need only to find the eigenvalues of the matrix 
product, - Q-IRQ-IR, and substitute for the eigenvalue 
term ofthep-integral (11.15). [We note the use of the sym-

TABLE V. Convergence of the N product (11.17) in the case of charged particle to the function ~wT /sinqwT). 

wT 0.11111 0.05882 0.1538 0.0137 ~wT /sin(!wT) 
exact 

0.2 1.0012 1.0014 1.00155 1.0015 1.0016 
0.4 1.0046 1.0056 1.0062 1.0062 1.0066 
0.6 1.010 1.013 1.0141 1.014 1.0152 
0.8 1.019 1.023 1.025 1.026 1.0271 
1.0 1.03 1.036 1.04 1.041 1.043 
1.2 1.043 1.052 1.058 1.06 1.063 
1.6 1.08 1.1 1.11 1.11 1.115 
2.0 1.13 1.155 1.17 1.173 1.188 

"The time interval,.dt = T / N, and T = tb - ta is set to unity. 
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boIs: C - T is the transpose of the inverse of the matrix C, and 
lcl is the classical part of the path integral in (11.4)]. 

It remains to be shown that the p integral in (11.15) 
conforms to the answer, !(tJT Isin(!(tJT), i.e., 

9 dt>( 1 - (~;r r(t)) -1/2 = sin~~:T)' (11.17) 

where y(t) is the eigenvalue of the matrix, - Q -IRQ -IR. 
Table IV lists the eigenvalues r for a discrete matrix of rank 
72. (This corresponds to a time interval of 0.0137 T, where 
T = Tb - Ta.) It is interesting to note that the eigenvalues 
appear in pairs. This fact, upon closer scrutinization, is re
sponsible for the result being the square of (!(tJT I 
sin(!(tJT» 1/2 which was obtained in the one-dimensional 
case of the harmonic oscillator [see Eq. (8.23)]. The antisym
metrical nature (the exterior product) of the movement in a 
magnetic field is effectively two dimensional, and thus we 
have !(tJT Isin(!(tJT). Extension to a suitable three-dimen
sional case could have given a ~ power. 

To calculate the p integral, we again used numerical 
quadrature on a computer. The results are presented in Ta
ble V. We see as the time interval,Lit = TIN, is reduced, the 
p integral (11.17) approaches the function !(tJ T I sin(!(tJ T) as
ymptotically for various values of the frequency (tJ T. The p
integral as calculated in the numerical program was sensitive 
to the round-off errors. Therefore double precision arithme
tic or high precision was required. The 4 bytes precision in 
the search of the eigenvalues could lead to imprecision in the 
small eigenvalues. Thus we urge the use of a high-accuracy 
eigenvalue search subroutine. 

The final result for the propagator kernel is 

K (b,a) = exp(i/i -I Sci) (21T7rzT y/2 Cin~~:T») , 
(11.18) 

which checks with the known correct answer.2 

XII. CONCLUDING REMARKS 

In this paper we derived two new methods for the calcu
lation of Gaussian path integrals. The first method was 
based on the consideration of polynomial functionals, and 
the resulting formula, (2.12), is applicable to functionals ex
pressible in Taylor series, i.e., the class C 00 in function space, 
A B' The second method was derived by using functional La
place transform, and the procedure of integration (4.7) is 
applicable to all Laplace transformable functionals in A B • 

The latter class is certainly wider than the class C 00 (since all 
polynomial functionals with well-behaved kernel are La
place transformable, while not vice versa: e.g., the Dirac del
ta functional has no Taylor series representation.) 

The proofs of these methods are given in Sees. II and 
IV. They constitute the mathematical basis for the two meth-
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ods. We underscore here that the present study is a first step 
in the development of the Laplace transform method. Fur
ther applications and comparison with other integration 
methods shall come in the future. However, for the sake of 
illustration we looked at four physical applications, the 
quantum mechanics of a free particle, the harmonic oscila
tor, the oscillator in an external field, and the charged parti
cle in a magnetic field. The mathematics of the harmonic 
oscillator and the charged particle is of particular interest, 
not only in the correct answers obtained but also in the unex
pected tour deforce of the mathematics: the identification of 
the hypergeometric function with a simple binomial, the 
pairing of the eigenvalues of the matrix product, 
- Q - IRQ - I R, to cite just a few points. Since the Laplace 

transform is a general method, the second method shall find 
applications in other interesting physical problems that can 
be formulated in terms of a Gaussian path integral. Under 
study are the generating functional of the Bogoliubov equa
tion. 16

•
17 where the interaction potential acts as a Gaussian 

measure, and the kernel of the characteristic functionals in 
Hopf 's turbulence theory, where the quadratic form is pro
vided by the two-point correlation tensor. 18 We shall report 
the results in due course. 
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A method for systematically improving Hall-Post-Stenschke lower bounds to the bound state 
eigenvalues of three-body Schrodinger equations is given. The improved bounds are obtained by 
solving coupled one variable integral equations; the bounds get better as the number of coupled 
equations is increased. The method generates explicit wave functions which can be used to obtain 
complementary upper bounds via the Rayleigh-Ritz variational method. Either identical or 
nonidentical particles can be handled. The method is illustrated by calculations for three identical 
particles bound by Hooke's law forces. A brief discussion of extensions to more than three 
particles is given. 

I. INTRODUCTION AND SUMMARY 

The quantum mechanical N-body problem can, in gen
eral, not be solved exactly for N> 2. Approximate methods 
must then be used. The present paper is concerned with the 
approximate computation of bound state energy eigenvalues 
in the three-body problem. More specifically, it describes 
and illustrates a method for computing improvable lower 
bounds to such eigenvalues. The method is expected to be 
most useful in nuclear physics and in molecular physics. 

The most desirable approxmation methods are those 
for which error estimates can be obtained; one would like 
these error estimates to be both rigorous and realistic. The 
most popular methods for the computation of bound state 
eigenvalues in the three-body problem have been (1) the nu
merical solution to Faddeev's equations ' and (2) the Ray
leigh-Ritz variational method. 2 Both statistical error esti
mates and rigorous error bounds are in principle available 
for the numerical methods used on Faddeev's equations;3 
unfortunately, the statistical estimates are not rigorous while 
the rigorous bounds are unrealistically large. In practice, 
neither the statistical error estimates nor the rigorous error 
bounds are usually calculated. The Rayleigh-Ritz variation
al method gives rigorous upper bounds (iftheerrors made in 
its numerical implementation are rigorously bounded), but 
gives no information about the difference between these up
per bounds and the true eigenvalues. Complementary lower 
bounds are needed to complete the picture. The present pa
per will present a new method for obtaining such comple
mentary bounds. 

There is an enormous literature on bounds to eigenval
ues. The author has found the books of S.H. Gould,4 of A. 
Weinstein and W. Stenger,5 and ofH.F. Weinberger6 par
ticularly helpful. In atomic physics, impressive results have 
been obtained by Bazley:7 rigorous lower bounds to the 
ground state energy of helium which agree to five significant 
figures with Rayleigh-Ritz upper bounds. Bazley's method 
and its extensions and generalizationS depend on the fact 
that, in atomic physics, exactly solvable "base problems" 
can be obtained by deleting the Coulomb repulsion between 
electrons. Such base problems are not available in nuclear 

and molecular physics, where typical potentials have the 
form shown in Fig. 1. Thus, an alternative to Bazley's ap
proach is needed if good lower bounds are to be obtained for 
nuclear and molecular problems. 

Hall and Post9
• \0 and, independently, Stenschke ll have 

given an unimprovable lower bound on the lowest energy 
eigenvalue of the identical particle N-body Schrodinger 
equation. Better bounds were devised for the N-fermion 
problem by Hall '2 and by Carr and Post. 13 Hall '4 obtained a 
better bound for the mixed symmetry representations which 
occur in the three-body problem of nuclear physics, and 
showed 15 how lower bounds to excited states could be ob
tained. Generalizations have been given by Calogero and 
Marchioro 16 and by Savchenko. 17 Post's original bound'! has 
been tested 18 for N spin less bosons bound by attractive Cou
lomb forces; in combination with a simple Rayleigh-Ritz 

V(r) 

r 

FIG. I. A typical potential in nuclear or molecular physics. 
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upper bound, results accurate to ± 8% were obtained. Tests 
of the Hall-Post-Stenschke (HPS) bounds for N particles 
bound via either square wells, exponential wells, Gauss 
wells, or Hulthen wells have been carried out by Hall and 
Post 10 and by Hall. 19 A comparison of the HPS lower bound 
with Rayleigh-Ritz upper bounds and with bound state en
ergies obtained via numerical solution of the Faddeev equa
tions has been conducted by Humberston, Hall, and Os
borne. 20 The usefulness of HPS lower bounds for the 
trinucleon has been explored by Brady, Harms, Laroze, and 
Levinger,2I who concluded that "the Hall-Post bounds 
work moderately well for central potentials, which may in
clude soft cores or weak tensor forces; but the bound is far 
from the true energy when hard cores or strong tensor forces 
are included." The HPS bound has been used in molecular 
problems by Stenschke, II by Bruch and McGee,2 and by Lim 
and Zuniga,2 who also found that HPS lower bounds are 
poor for interactions with hard cores. 

None of the papers discussed in the preceding para
graph, which derive and/or apply lower bounds ofHPS 
type, contains an algorithm for pushing the lower bound 
closer and closer to the true eigenvalue. The present paper 
provides such an algorithm for the three-body problem, and 
illustrates it with model calculations for particles bound by 
Hooke's law forces. Implementation of this algorithm re
quires the solution of coupled one-variable integral equa
tions; the lower bound can be improved by increasing the 
number of coupled equations. The lower bounds obtained 
are of interest not only in their own right, but also as a step in 
the implementation of a strategy such as Bazley8 employed 
on helium: The algorithm can be used to construct the lower 
bound to the first excited state which is needed for the Tem
ple22 lower bound to the ground state energy. Several au
thors23 have applied the Temple formula to the three-body 
problem with the lower bound to the first excited state pro
vided by the unproven assumption that there is only one one 
bound state. Lower bounding methods are needed to either 
prove such an assumption or replace it with a rigorous lower 
bound to the first excited state. Section II establishes nota
tion and constructs the internal Hamiltonian in a convenient 
form. Section III shows how to obtain the one-variable equa
tions whose eigenvalues give lower bounds to the eigenvalues 
of the original internal Hamiltonian. Section IV illustrates 
the method by calculating lower bounds to the eigenvalues of 
some exactly solvable problems of three particles bound by 
Hooke's law forces. Section V discusses a difficulty which 
can arise for some potentials, and discusses the extension to 
more than three particles. 

II. NOTATION. THE THREE·BODY HAMILTONIAN 

The three-body Schrodinger Hamiltonian is assumed to 
have the form 

3 

H = I p;/(2m,) + V,(r2 - (3) 
i= 1 

(2.1) 

where r i ,Pi are individual particle coordinates and momenta 
and the m i are particle masses. It is convenient to introduce 
the normalized Jacobi coordinates 

1071 J. Math. Phys., Vol. 21, No.5, May 1980 

R = (mlrl + m 1r2 + m3r3)/(ml + m2 + m 3), (2.2) 

riJ = r i - rj , (2.3) 

Pk = (2N3)[rk - (miri + mjrj)/(mi + m)], (2.4) 

where i=lfl=k =Ii. The normalizing factor 2IV3 in Pk is in
cluded so that permutations of particle labels will be equiv
alent to rotations in the space of the internal coordinates 
riJ,Pk when the masses are identical. The corresponding 
conjugate momenta are 

P = PI + pz + P3' (2.5) 

PiJ = (mjPi - miP)/(mi + m), (2.6) 

nk = (Y312) [(mi +m)pk -mk(Pi +p)]/ 
(ml + m 1 + m3)' (2.7) 

The center of mass can be separated off to obtain 

H = pl/[2(m l + m z + m 3») + Hint' 

where the internal Hamiltonian Hint can be written in the 
form 

Hint = (ml + m Z)pi.2/(2m lm 1 ) + 2(ml + m 2 + m3 ) 

xnU(3(ml + m 2)m3 ] 

+ Vd - (Y3P3/2) - [m lrl.2 /(m l + m 1)] J 

+ V2!(y3P3/2) - [m 1rl,2/(m l + m 2)]) 

+ V3(r l ,2)' (2.8) 

Choosing rl,2 and P3 as internal coordinates results in the 
form (2.8) for Hint; the form appropriate to other choices 
may be obtained from Eq. (2.8) by cyclic permutation of the 
indices (1,2,3). An alternative form which will be needed 
later is 

Hint = H I(r 2,3 ,PZ.3) + Hz<r3•1 ,P3.1) + Hirl,z ,pl,2), 
(2.9) 

where 

H3(r1.2,PI,2) = (ml + m2fpi.2/[2m1m2(ml + m2 + m 3)] 

+ V3(r1,2)' (2.10) 

HI and Hz can be obtained from HI by cyclic permutation of 
the indices (1,2,3). 

III. LOWER BOUNDS 

A. The basiC theorem 

The basic tool to be used is a comparison theorem24 

well-known among mathematicians who work on eigenval
ue problems: 

Theorem 1: Let H ( I, and H' 2, be two essentially self
adjoint (Hermitian) Hamiltonians whose discrete eigenval
ues below the bottom of the essential spectrum (i.e., the con
tinuous spectrum plus limit points of the discrete spectrum 
and discrete eigenvalues of infinite multiplicity) can be char
acterized by the familiar variational principle 
E = min(¢IH I¢) I (¢Iv'), with the minimization for excited 
states carried out subject to the constraint that I¢) be or
thogonal to preceding eigenvectors. Denote the ordered ei
genvalues of H(il by E\t)<Ei')< .. ·<E~)< ... <E~?s' where 
E ~~s is the energy at which the essential spectrum (if any) 
begins, Assume (¢IH' I 'I¢) is defined for all vectors I¢) for 
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which (t/!IH (2) It/!) is defined. Thenif(t/!IH (I) It/!) <; (t/!IH (2'1t/!) 
holds for all admissible state vectors I t/!), E ~I)<;E ~2) holds for 
all n, and E ~!~ <;E ~~;. 

The result E \ I) <;E \2) for the ground state energy follows 
immediately from the "familiar variational principle." 
Proofs of the result for the excited states are usually based on 
one of the minimax characterizations25 of eigenvalues. In 
practical applications of theorem 1 to the computation of 
lower bounds, H (2) is the original Hamiltonian, while H ( I ) is 
something more tractable. The results of the present paper 
will be obtained by letting H ( 2) be the internal Hamiltonian 
Hint whileH ( I) is something for which the Schrodinger equa
tion is reducible to one-particle Schrodinger equations. 

Model potentials used in nuclear physics and in molec
ular physics typically have a short range attraction [the 
Yukawa,-I exp( - f.1r) tail in nuclear physics, or the,-6 van 
der Waals tail in molecular physics], become repulsive at 
sufficiently short distances (a hard core or an ,-12 repulsion 
as in the Lennard-Jones potential are possibilities), and may, 
in nuclear physics, also include a long range Coulomb repul
sion. Most rigorous treatments of the N-body problem (for 
N-;;'3) known to the author26 place conditions on the poten
tials that exclude repulsions which are too singular. Howev
er, a recent paper of McKean27 proves the essential self-ad
jointness of the Hamiltonian for singular potentials which 
are nonnegative. The conditions placed on the potential by 
McKean permit extending his result to a potential which is 
bounded below by shifting the zero of energy; this extension 
does not include hard cores, but is sufficient to include most 
other potentials of interest in nuclear and molecular physics. 
Since essential self-adjointness implies, via the spectral theo
rem, that bound states can be characterized by the familiar 
variational principle in the hypothesis of Theorem 1, the 
application of Theorem 1 to the model Hamiltonians ofnu
clear and molecular physics is justified if the potentials do 
not contain hard cores. No attempt will be made here to 
supply the justification for the hard core case. 

B. Lower bounds via truncation 

In what follows it will be assumed that the lower part of 
the spectrum of the two-particle Hamiltonians HI' H 2, and 
HI is discrete. Denote the ordered eigenvalues of Hi by 
E\/)<;E~)<;"'<;E~:)<;"'<;E~:~" where E~~, is the energy at which 
the essential spectrum (if any) begins. The corresponding 
eigenfunctions will be called ¢> ~;). The ¢> ~) are assumed 
normalized: 

(3.1) J 

i~ I 

i r j--f- k ~L i 

It will now be convenient to write operators in continuous 
matrix notation. Define Hin

,), which is a two-particle opera
tor in the three-particle internal space, by 

(n,) • I I _ [n, - I (I) (I) (0 (I) I 
Hi (rj.k , p"rj.k' p;) - n~1 (En - En)¢> n (rj,k)¢> n (rj,k) 

+ E~;8(rj,k - rj,k) ]8(Pj - p;). (3.2) 

As a consequence of the familiar variational principle re

ferred to in Theorem 1, the expectation value of Hin
,) can 

never exceed the expectation value of H j : Expectation values 

of Hi and H;n,) are the same for functions ofthe form 
¢> ~)(rjk)t/!(pi)' n = 1,2, ... ,ni (where t/! is arbitrary); for func
tions orthogonal to these H in,) has the expectation value E~; 
while the expectation value of Hi cannot be less than E~'; . It 
follows from Theorem 1 that the eigenvalues of 

(3.3) 

are lower bounds to the eigenvalues of Hint. Clearly, the ei
genvalues E of H(n,.n,.n,) satisfy 

10\1) + 10\2) + E\3)<;E<;E~I,) + E~:) + E~3,>. (3.4) 

H ( 1.1.1) has only the infiniely degenerate eigenvalue 
Ell) + 10\2) + 10\3\ which becomes the HPS lower bound when 
the particles are identical. 

The method used above to obtain H in,) from Hi is 
known as truncation. It was introduced by H.F. Wein
bergerZ!! and developed for quantum mechanical problems 
by N.W. Bazley and D.W. FOX.29 

c. One-particle equations 

The Hamiltonian H (n, ,n"n,) is a sum of separable poten
tials with no kinetic energy. It has been known for a long 
time that the three-body Schrodinger equation for separable 
potentials is reducible to one-particle equations even with 
kinetic energy present. 30 Thus, a reduction to one-particle 
equations must be possible for H (n, ,n"n,). This reduction can 
be achieved by making the definition 

f?)(Pi) = (E~;-Eji)1/2f ¢»/)(r;.k) 

X8(Pi - p;)1/J(ri.k' p;)dOr;.kdllp; . (3.5) 

Here t/! is an eigenfunction of 

(3.6) 

and 8 = 1,2, or 3 is the dimension of the physical space in 
which the vectors Pi and rj .k live. Writing out the Schro
dinger equation (3.6) explicitly using Eqs. (3.2), (3.3), and 
(3.5) yields an equation which can be solved for t/! to obtain 

(3.7) 

The expression (3.7) for t/! can be inserted in the definition (3.5) offi'l to obtain coupled equations for thef)o. The relations 

d /)r;.2 d lip; = d xr; .. , d IIp; = d lir;, I d IIp; , (3.8) 

(3.9) 
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and 

O(P" _ p,~) = [(v'3)(mi + mk)(mj + mk) ]fJO{r
k
'" + (v'3)(mi + mk) [( ) 1} 

( 
mj + m k Pi + mj P; , 

2mk m l + m2 + m3) '2m k (m l + m2 + m3) 

(3,tO) 

where i=j=i=j=k =j=i, can be used to bring these coupled equations to the form 

(E_E'~I?_E'<;')-E'~~)f)O(p;)=L)of)')(p;)+ ± nil I M)~f2(pi,p)f<';?(p)dOpj' 
j= Im:-=-..: 1 

(3.11 ) 

Here 
L }O = - (E'~: - E'iO) 

and 

(3,12) 

MV'!2 = _(E~;_E'\i)1/2(E'~~)_E';~)1/2[(v'3)(mi +mk)(mj +mk)]b¢\l)(E'iJ,k(v'3)(mj +md[mi Pi +(mi +mk)PJ]) 
2mk(m 1 + m2 + m3) 2mk (m j + mz + m3 ) 

x¢<,;?( -E'iJ,dv'3)(m i +md[(mj +mk)Pi +mj pj ]), (3,13) 
2mk (m l + m2 + m3) 

where E'iJ,k is the Levi-Civita symbol 

{ 
+ 1 if (i,i,k) is an even permutation of (1,2,3) 

E'iJ,k = -1 if (i,i,k) is an odd permutation of (1,2,3), 

(3,14) 
When E = E~~) + E;,:) + E'~~l, !/; can not be constructed from 
Eq, (3.7) and the above reduction must be reexamined. This 
will not be done here, however, because E(1) + E'(2) + E'(3) is 
the upper bound to the spectrum of H (n, ,n,,:~) and nts the;~fore 
of no interest for the construction of lower bounds. 

D. Analysis of the one-particle equations 

Ifthe functionsf\O( p;), 1= 1,2, ... ,n i - 1, i = 1,2,3 are 
thought of as components of a vector, the eigenvalue prob
lem (3.11) can be written in the abstract form 

(L + M)lf) = plf), (3.15) 

whereL andM are given by Eqs. (3.12) and (3.13), respec
tively, and 

(3.16) 

Because the eigenfunctions ¢ )" which appear in M are nor
malized, M itself is square integrable and therefore com
pletely continuous. L, although not completely continuous, 
is already in diagonal form so that its spectrum can be imme
diately written down. Now it is known that the essential 
spectrum of an operator is not changed when a completely 
continuous operator is added to it. 31 Thus, the essential spec
trum of L + M is determined by L alone. Since L has only 
discrete eigenvalues of infinite mUltiplicity (which are the 
accumulation points of the spectrum of L + M), no lower 
bounds to discrete eigenvalues of the original problem can be 
obtained which lie above the bottom of the spectrum of L. 
Thus. only the eigenvalues of K = L + M which lie below 
the bottom of the speetrum of L are of interest. 

In practical applications of the present method, it will 
usually be necessary to find the eigenvalues of L + M by 
approximate methods. The most obvious approximation is 
the use of a numerical integration rule to convert the integra
tion which appears in M If) into a finite sum; this carries the 
integral equation (3.15) into a finite dimensional matrix ei
genvalue problem. Now it might be objected that such a pro
cedure cannot work, because the full kernel L + M is not 
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completely continuous and can therefore not be approximat
ed by a finite dimensional kernel. Such an objection is, how
ever, not valid if the only objective is the computation of the 
discrete eigenvalues of L + M which lie below the bottom of 
the spectrum of L. For p below the bottom of the spectrum of 
L, (PI - L tl exists (1 is the identity), and the integral equa
tion (3.15) can be rewritten as 

(3.17) 

The kernel of Eq. (3.17) is completely continuous since 
(PI - L t l is bounded (the product of a bounded operator 
with a completely continuous operator is completely con
tinuous). The use of a numerical integration rule converts 
Eq. (3.17) into a matrix eigenvalue problem equivalent to the 
matrix eigenvalue problem obtained by using the same nu
merical integration rule on the original integral equation 
(3.15). Since such an approximation is valid for (3.17), it 
must also be valid for the computation of the discrete eigen
values of (3.15) which lie below the bottom of the spectrum 
of L. This point has been discussed in more detail by Hether
ington.32 Approximate computation of the eigenvalues of 
(3.15) wiI1lead to rigorous lower bounds to the eigenvalues 
of the original problem only if error bounds can be found for 
the difference between the exact eigenvalues of (3.15) and 
their approximations. Error bounds on the eigenvalues of 
integral equations which have been solved approximately by 
numerical integration have been discussed by Mysovskih. 3 

The existence of discrete eigenvalues below the bottom 
of the spectrum of L can be discussed with the aid of a trick. 
The result is as follows: 

Theorem 2: Consider the eigenvalue problem (3.15), 
where both Land M are bounded Hermitian operators on a 
Hilbert space JY and M is completely continuous. Let 10 be 
the greatest lower bound to the spectrum of L: 

(3.18) 

for alII¢') in ,w'. Letpn be the largest number for which the 
inequality 

(3.19) 

holds for alii!/;) inJYn, where~n is the subspace of vectors 
I¢') in JYwhich satisfy the constraints (!/;I!/;) = 0, 
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j = 0, 1,2, ... ,n -1. Here the vectors I¢j) are eigenvectors of 
the problem (3.15) belonging to eigenvalueSflj <fln' Then, if 
fln < to, fln is a discrete eigenvalue with corresponding ei
genvector I ¢II ). 

Proofof Theorem 2: Let 

(3.20) 

where (L - fl J) I 12 is the unique positive definite square root 
of (L - fl n I) (a unique positive definite square root exists 
because to> fl nand L is Hermitian). Then the inequality 
(3.14) is equivalent to 

(<p IN I<p ) < v(<p l<p ), (3.21) 

where v = 1 and 

(3.22) 

with (L - fln/)-1/2 the inverse of(L - fln/)IIZ. [This inverse 
exists irLJr"1I because (¢I(L - flJ)

1/21¢) ~(lo - fln) 1/2 

X (z/Jlzjt) for alll¢) in dY ... ] Because (L - fln/)-1/2 is bound
ed, N is completely continuous. Hence, the Euler equation 
which follows from the variational principle (3.21) is the 
Hilbert-Schmidt integral equation 

NI<p)=vl<p)· (3.23) 

Because fl" is the largest number for which the inequality 
(3.19) holds, equality in (3.19) can be approached arbitrarily 
closely (or perhaps even achieved) by an appropriate choice 
of I ¢). Hence, equali ty can be approached aribitrarily close
ly in (3.21) with v = 1. Now Hilbert-Schmidt theory implies 
that the integral equation (3.23) with I<p) related to a It/!) in 
,k' .. by (3.20) has at least one discrete eigenvalue; the fact 
that equality can be approached arbitrarily closely in (3.21) 
with v = 1 implies that v = 1 is an eigenvalue of (3.23). The 
corresponding eigenvector is an eigenvector of (3.23) with 
eigenvalue v = 1 and an eigenvector of (3.15) with eigenval
ue fl". 

E. Identical particles 

If m I = m 2 = m3 = m and VI = V2 = V3 = V so that 
the particles are identical, the equations of the preceding 
section simplify somewhat. For three identical particles, the 
wave function t/! must transform (under permutation of par
ticle indices) as a partner in a basis for one of the irreducible 
representations of the permutation group on three objects. 
This permutation group has three irreducible representa
tions: the symmetric (identity) representation, the antisym
metric (alternating) representation, and the (two dimension
al faithful) mixed representation. All three can occur for real 
physical systems; to save space only the results for the sym
metric and antisymmetric cases, needed for the examples of 
the next section, will be recorded here. 

For identical particles, the two-particles eigenfunctions 
<Pi;) and eigenvalues Ey) no longer depend on i, so that a 
simpler notation can be used. If the particles are identical, 
then the potential V must possess the reflection symmetry 
V(r) = V( - r), which implies that the two-particle eigen
functions can be chosen to be symmetric or anti symmetric 
under reflection. The superscript i will be dropped; super
scripts S and A will be used to distinguish the two kinds of 
behavior under reflection: 
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<p ;S)(r) = <p jS)( __ r), 

<p;Al(r) = - <p;A l( - r). 

(3.24) 

0.25) 

The eigenvalue E;S) will belong to <p;s >; Ejl 1 will belong to 
d. (A) 
'I' j • 

In order to keep the lower bounding Hamiltonian 
H ('" .n,.n,) symmetric under permutation of particle indices, it 
is necessary that n I = n 2 = n l = n. It is then easy to show 
that, for a l/J which transforms according to the symmetric 
(identity) representation of the permutation group (3.5), 
(3.7), (3.11), (3.12), and (3.13) are replaced, respectively, by 

};(P3) = (E~;'i) --- E~SY'2f <p~.'n(r;.2)8(p.\ - p;) 

X ¢(r;.2 , p~)d,'jr;.2dbp; , 
n I 

(3.26) 

,I'(r p ) = (3E(S) _ E)-' "i:' (~(Sl_ E(S,)1/2[.J, (Sl(r ) 
Cf/ 1.2 , JilL.. n } ¥' J 1.2 

j I 

xJj( p,) + dJiS)(r2.3)f;( PI) 

+ <p j'i)(rl.l )Jj( P2)] , 

(E - 3c~;I));( P.l) = ~'tll f [LiJ(P,P') 

+ M;/ p,p')]Jj( p;)dbp; , 

L;J( p,p') = - (E~,:n - €;S)O(p - p')l\j , 

and 

_ 2(2/ Yl)"(€(S, _ E() ')1/2(c·(0') _ €(S 1)1/2 

(3.27) 

(3.28) 

(3.29) 

____ -__ n I t/ ) 

X<p\il[(p +2p')1v'3]tbf)[ - (2p + p')/ Y3] 
(3.30) 

It should be noted that only the functions dJ ~,S, which 
are symmetric under reflection appear. If the internal wave 
function 1/, is to transform according to the antisymmetric 
(alternating) representation of the permutation group, only 
the functions <p ~;1 ) appear; the relevant equations can be ob
tained by replacing Sby A everywhere in Eqs.(3.26)-(3.30). 
The mixed representation (which can occur for half-integral 
spin particles) is somewhat more complex, but is still simpler 
than the case of nonidentical particles. 

F. Angular decomposition for identical particles 

For three dimensional problems with spherically sym
metric pair potentials, the three dimensional integral equa
tions (3.28) can be reduced to one-variable equations by car
rying out an angular decomposition. The eigenfunctions of 
the two-body Hamiltonian introduced in (2.10) have the 
form 

(3.31) 

where YI"m, is a spherical harmonic. The eigenvalues E/,.n, 

of the two-body Hamiltonian depend only on II and n I; the 
approximate Hamiltonian introduced in (3.3), whose eigen
values are lower bounds, now takes the form 

(En, .1, -- £)tb/, .m, .", (rJ .k ) 

i~.= 1 I, 

it- j /" k -f I 
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Here the prime on the sum over n I and II means that the sum 
is restricted to values of n l and II for which En"I, < E. For t/J 
belonging to the symmetric (identity) representation, only 
terms with even II will contribute; for antisymmetric t/J only 
odd II contributes. The reduction of the Schrodinger equa
tion for the approximate Hamiltonian to an integral equa
tion [Eqs. (3.26)-(3.30)] is still valid with some trivial 
changes in notation: The single index i is replaced by the 
triple II,ml,nl;jis replaced by I; ,m; ,n; ;E~S) is replaced by E. 

Because H(<l in Eq. (3.32) is invariant under rotations, 
its eigenfunctions t/J can be taken to have definite values for 
the total angular momentum quantum number L and the z 

where 

and 

MIL) ",( ') 
1.,ll.fI, ;/1./2'"1 p,p 

component of angular momentum quantum number M. 
Equation (3.26) and the addition theory for angular momen
tum then implies that 

ft"m"", ( p) = C 
L+I, I 

I'~~~/'I M-
I m l 

X YI"M~ m, (O,cp )g~~L, (p)lp , (3.33) 

wherep, 0, cP are the spherical coordinates of p and the coeffi
cient ( ) is the Wigner 3-j symbol. 33 It can be readily shown 
with the aid of the orthogonality properties of the Wigner 3-j 
symbol and the spherical harmonics that the functions 
g~~l"" (p) satisfy the coupled one dimensional integral 
equations 

(3.34) 

(3.35) 

= _ ~ (2L + 1)(E _ E )I;\E _ E, ,)1/2 " ( II 12 L ) ( I; 
3t/3 I"n, I,.n, £.., 

m"m, m l (M-ml) -M m l (M-m l) 

I' 2 

xppJ dfl dfl' YI"M- m, (O,cp) YI;,M- miCe ',cP ') CPI"m"n, « p +2 p')N 3) CP/i.mi,ni( - (2p + p')N3). (3.36) 

Because II and I; are both even for the symmetric case and 
both odd for the anti symmetric case, the behavior of the 
integrand of Eq, (3.36) under inversion (parity) implies that 
L (L ) vanishes unless 12 and I; are either both even or both 
odd. 

IV. EXAMPLES: THREE IDENTICAL PARTICLES 
COUPLED BY SPRINGS 

Particles coupled by springs are the traditional exactly 
solvable model on which bounds ofHPS type have been test
ed. This section applies the methods of the present paper to 
three identical particles coupled by springs in one dimension 
and in three dimensions. No attempt will be made to present 
examples with nonidentical particles, because these exam
ples appear to require that the integral equations (3.11) be 
solved numerically. The Schrodinger equation for the inter
nal motion of three particles coupled by springs can be writ
ten in the dimensionless form 

[ - (pi + p~ + pD/(211 2) 

+p 2/(6fz2)_ ~(ri,2 +~,3 +,.L)+Ejt/J=O, (4.1) 

Construction of the exact eigenfunctions and eigenvalues of 
(4.1) is outlined in Appendix A. The exact eigenvalues are 
compared with the lower bounds in Tables I-III. Certain 
expansion theorems needed for the analytic solution of the 
integral equations (3.28) and (3.34) are developed in Appen
dix B. 
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A. One-dimensional examples 

The two-body Hamiltonian introduced in (2.10) is now 

H ,. - 2pi,2 2. ,.2 
3( 1,2,PI,2) - 3112 + 3 1.2' (4.2) 

The normalized eigenfunctions and eigenvalues of Eq. (4,2) 
in the one dimensional case are 

(4.3) 

and 

(4.4) 

where HI (x) is the I th Hermite polynomial defined by the 
Rodrigues' formula 

H,(x) = ( - l)lex '(d 'Idx')e - x' . (4,5) 

andx=r l ,2' 

The integral equation (3.28) has been written out and its 
solutions obtained for n = 2,3, and 4 in both the symmetric 
and anti symmetric cases. The results are summarized in Ta
bles I and II; n = 1 is the HPS bound. Details are supplied 
below for two representative cases; the reader should have 
no trouble filling in the details for the other cases listed in 
Tables I and II. The variables u = (2p + p')/t/3, 
v = (p +2p')/t/3 have been introduced to save space. For 
n = 2 in the symmetric case, 
~IS) = 2!3'~nS) = t'],S) = 10/3,cp~S) = XI' and (3.28) becomes 
the integral equation 
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( 22) 32 J E - 3 fl(p) = - 3v3 X\(V)XI(u)fI(P') dp' 

16 en . 

= - - 2: (-2) -kXk(p) 
3 ,~o 

sions given in Appendix B. The eigenvalues of (3.41) are 

Ek = (22/3) - (1613)( - 2) - \ k = 0,1,2,.··, (4.7) 

with corresponding eigenfunctions!1 = Xk' 
For n = 4 in the antisymmetric case, Xf Xk(P')fI(P')dp', (4.6) 

where the second equality follows from one of the expan-

ciA) = 2, c~A) = (14/3), c~A) = (22/3), c~A) = 10, 
cP\A)=XI' <p~A)=X3' <p~A)=X5,andEq.(3.31)becomes 
the coupled integral equations 

(E -22)fI(p) = [321 (3Y3") ] f XI(V) [3XI(U)f\(P') +6\/2X3(u)fz(p') + Y3x5(U)f3(P')]dp' 

= f [8Xo(p)XoCp') +8XI(p)XI(p') -lOX2(p)Xz{P') +8xip)xip') ]fl(p')dp' 

+ 6Y2Xz(p) 5 XO(P')f2(P') dp' - kto ( - 2) - k -2Xk +4 (p) 5 [2(3k + 11)Xk+4 (P'1fI(P') 

+ 6(k + 1) [(k + 3)(k + 4) ] 1/2Xk +2 (p')fz{p') 

+3(3k -5) [(k + 1)(k +2)(k +3)(k +4)/10 ]I/2Xk (p')f;(p')l dp', (4.8) 

(E - ¥)/2(p) = [32/(3Y3")]5 X3(V) [6 1/2XI(u)f\(p') +2XJ(U)f2(P') + Y2Xs(u)fip')] dp' 

= 6Y2Xo (P) 5 xZ<p')fI(p')dp' + 5 [1l'o(p)Xo(p') + ¥XI(p)XI(p')]fip')dp' 

-,to ( -2) - k ---lXk +2 (p) f [6(k + I)[(k + 3)(k + 4) ] 1/2Xk +4 (P')fI(P') 

+ ~ (9k 3 -45k - 20) Xk +2 (p'1fz{p') + (9k 3 -12k 2 + 123k - 20) 

X [(k + I)(k +2)/10 ]1/2Xk (p')f;(p')1 dp', (4.9) 

(E - ¥)f1(P) = [32/(3Y3")] f X5(V) [Y3"XI(U)fI(P') + Ylxiu)fz{p') + X5(U)f3(P') ]dp' 

= -! (-2)-k_2Xk (p)f [3(3k-5)[(k+l)(k+2)(k+3)(k+4)!10 ]1/2Xk+4(P')fI(P') 
k~O 

+ (9k 3 -12k 2 + 123k -20) [(k + I)(k + 2)/10 ]1/2Xk +2 (p'1fip') 

+ [(81k 5 -1485k 4 + 8685k 3 -18 675k 2 + 11 994k - 40)/60 ] 

XXk(p')f,(p')ldp'. (4.10) 

Among thesolutionsarefl = 3X2,J2 = - v2Xo,J; = o for E = 8 and the following solutions for E = 30:/1 = Xo.!; =f3 = 0; 
II = XI,J2 =J; = 0;/1 = X3,J2 =/1 = 0;/1 = 0,12 = X 1,13 = 0;/1 = V2X2,J2 = 3Xo,J3 = O. The remaining solutions have the 
form.!; = ak Xk f 4' h = b k Xk + 2 ,J; = Ck X k' where ak ,bk,Ck' and E are determined by solving the set of equations 

[2(3k + 11) + ( - 2)k t 2(E - 22) lak + 6(k + I) [(k + 3)(k + 4) ] II1b k + 3(3k - 5) 

X [(k + l)(k +2)(k +3)(k +4)/10 ]I/2e, =0, (4.11) 

6(k + 1)[(k +3)(k +4) ]1/2ak + [6k 3-30k - (40/3) + (_2)k+2( E - ¥)) bk 

+ (9k 3 -12k 2 + 123k -20) [(k + l)(k +2)/10 ]1/2Ck = 0, (4.12) 

3(3k - 5) [(k + 1)(k + 2)(k + 3)(k + 4)/10 ] lila, + (9k 3 - 12k 2 + 123k - 20) [(k + l)(k + 2)/10 ] 1/2bk 

+![C81k5-1485k4+8685kl-18675k2+1l994k-40)/60 )+(_2)k+2(E_ ¥)l]ck=O. (4.13) 

8. Harmonic oscillators in three dimensions 

This subsection illustrates the angular decomposition 
of Sec. III F by using Eqs. (3.34)-(3.36) to calculate lower 
bounds for the symmetric and antisymmetric states of the 
Schrodinger equation (4.1) in three dimensions. Only the 
lowest states (of the appropriate symmetry) of the two-body 
Hamiltonian (4.2) are kept in each of the two examples. Ta
ble III summarizes the results. 

The normalized eigenfunctions and eigenvalues of the 
two-body Hamiltonian (4.2) in the three dimensional case 
are 
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and 

c/.n = 2(4n + 21 + 3)/3, 

where 

R".,(r) = [2n!! r«2n + 21 + 3)/2) ]1/2r' 

(4.14) 

Xexp( - r 2/2)L ~ + D(r 2) , (4.16) 

with L ~,) the generalized Laguerre polynomial defined by 
the Rodrigues formula 

L ~a)(x) = X - a(n!tl(d "/dx")(e- AX" + a). (4.17) 
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If only the lowest state, for which II = m I = n I = 0, is 
kept in the symmetric case, then Eo,o = 2 and 
E = Eo, I = E2,0 = 14/3, The kernel (3.36) can be evaluated 
with the aid of the expansion given in Eq. (B9) of Appendix 
B; the integral equation (3.34) for the L th partial wave then 
takes the form 

(E- ¥)g~~2.o(p)= - ¥I (_2)-2n-LpR n,L(P) 
n=O 

(E- ¥)g\~I!+l,O(P)= Ji-I (_2)-2n-LpR n_ I,L+I(P) 
n=l 

The eigenvalues of (4.18) are 

E=¥- ¥(_2)-2n-L, (4.19) 

with corresponding eigenfunctions gb~2.o = pRn,L (p) . 
If only the lowest states, for which II = 1, m l = 0, ± 1, 

and n I = 0, are kept in the anti symmetric case, then 
EI,o = 10/3, and E = EI,I = E3,0 = 6. The kernel (3.36) can 
be evaluated with the expansion given in Eq. (B23) of Ap
pendix B; the coupled integral equations (3.34) for the L th 
partial wave then take the form 

x {[ - 2 + 3n(L + 1)(2L + 1>-1 ] f'" R" --I,L + I (p')g\~2 + 1,0 (p')p' dp' 

+ 3 [nL (L + 1)(n + L + D] 1/2(2L + 1)-1 i'" Rn,L -I (p')g\~2 -1,0 (p')p' dp' }, (4.20) 

(E - ¥) g\~2.o(p) = ¥n~o ( - 2) -2n - LpRn,L (p) f'" Rn,L (p')gl,L,o(p')p' dp', L #0, (4.21) 

and 

(E - ¥)g\~/ -I,O(P) = ¥ I (-2) -2n-LpR n,L_I (P){ 3[nL (L + 1)(n +L + !)]1/2(2L + 1)-1 

n=O 

x f'" Rn-I,L+I (p')g\~2+1,0(p')p' dp' 

+ [ - 2 + 3L (n + L + D(2L + 1)-1 ] IO R n.L -I (p')g\~L 1,0 (p')p' dP'} , L #0, (4.22) 

It should be noted that even 12 and odd 12 are uncoupled from 
one another, as they must be, in Eqs. (4.20)-(4.22). The re
striction L #0 in (4.21) and (4.22) arises from the summa
tion limitL + 1 <I ~ < IL - 11 in Eq. (3.34)(with I; = 1) and 
the fact that 12 must be nonnegative. The eigenvalues of 
(4.21) are 

E=¥+ ¥(_2)-2n-L, L#O, (4.23) 

with corresponding eigenfunctions g\~2.o(p) = pR n.L (p). 
The eigenvalues of the coupled pair (4.20) and (4.22) are 

E=¥- ¥(_2)-2nL, n#OandL#O, (4.24) 

and 

TABLE I. Lower bounds to energy eigenvalues for the symmetric states of a 
one dimensional three-body problem with harmonic forces. n = 1 is the 
HPS bound. 

Exact n=1 n=2 n=3 n=4 

2.0000 2.0000 2.0000 2.0000 2.0000 
6.0000 2.0000 6.0000 6.0000 6.0000 
8.0000 2.0000 7.0000 8.0000 8.0000 

\0.0000 2.0000 7.2500 10.0000 10.0000 
12.0000 2.0000 7.3125 11.2500 12.0000 
14.0000 2.0000 7.3281 12.0000 14.0000 
14.0000 2.0000 7.3320 12.3750 14.0000 
16.0000 2.0000 7.3330 12.6250 15.3125 
18.0000 2.0000 7.3333 12.6427 16.0000 
18.0000 2.0000 7.3333 12.6632 16.6427 

00 2.0000 7.3333 12.6667 18.0000 
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E=¥+¥(-2)-2n-L(6n+3L-4), n#O or L#O, 

(4.25) 

with corresponding eigenfunctions 
g\~2 + 1,0 (p) = apRn -I.L + I (p), g\~2 -1,0 (p) 
= bpRn,L -I (p), where the constants a and b can be calcu

lated from an easily obtained secular equation. 

v. DISCUSSION 

Upon reflection, two obvious questions arise with re
spect to the method of the preceding sections. Can the lower 
bounds obtained be pushed arbitrarily close to the exact ei-

TABLE II. Lower bounds to energy eigenvalues for the antisymmetric 
states of a one dimensional three body problem with harmonic forces. n = 1 
is the HPS bound. 

Exact n=1 n=2 n=3 n=4 

8.0000 6.0000 8.0000 8.0000 8.0000 
12.0000 6.0000 9.5000 12.0000 12.0000 
14.0000 6.0000 10.6250 13.3750 14.0000 
16.0000 6.0000 11.0938 14.0000 16.0000 
18.0000 6.0000 11.2578 14.6708 17.3438 
20.0000 6.0000 11.3\05 15.7500 18.0000 
20.0000 6.0000 11.3267 15.8897 18.6699 
22.0000 6.0000 11.3314 16.5350 19.4688 
24.0000 6.0000 11.3328 16.5625 19.9916 
24.0000 6.0000 11.3332 16.6454 20.0000 

00 6.0000 11.3333 16.6667 22.0000 
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T ABLE III. Lower bounds to energy eigenvalues for a three-body problem 
with harmonic forces. The numbers in parentheses specify the number of 
times a listed eigenvalue occurs. 

Exact 

6.0000(1) 
10.0000(6) 
12.0000( 10) 
14.0000(21) 
16.0000(45) 
18.0000(83) 

oc 

Symmetric States 
HPS lower 
bounds Lower bounds from Eq. (4.19) 

6.0000(1) 6.0000(1) 
6.0000(6) 10.0000(6) 
6.0000(10) 11.0000(10) 
6.0000(21) 11.0000(5), 11.2500(16) 
6.0000(45) 11.2500(12),11.3125(33) 
6.0000(83) 11.3125(12),11.3281(66), 

11.3320(5) 

6.0000 11.3333 

Antisymmetric states 
HPS lower 

Exact bounds Lower bounds from Eq. (4.23)-(4.25) 

10.0000(3) 10.0000(3) 10.0000(3) 
12.0000(10) 10.0000(10) 12.0000(10) 
14.0000(15) 10.0000(15) 13.5000(15) 
16.0000(45) 10.0000(45) 13.5000(6),14.0000(15), 

14.6250(24) 
18.0000(73) 10.0000(73) 14.6250(12),15.0000(35), 

15.0938(26) 
20.0000( 126) 1O.0000( 126) 15.0938(29), 15.2500(63), 

15.2578(34) 

00 10.0000 15.3333 

genvalues? Can the method be extended to more than three 
particles? These questions are discussed in order below. 

If, as is typical in nuclear and molecular physics, the 
interparticle potentials Vi are such that the two-body Hamil
tonians H, introduced in Eq. (2.10) have a finite number of 
discrete levels below a continuum, the best that can be done 
is to choose n i - 1 equal to the number of discrete levels of 
Hi and €::; equal to the energy at which the continuum be

gins, so that the sum in H;n,) defined in Eq. (3.2) includes all 
of the discrete levels of Hi' If the resulting lower bounds are 
not good enough, an alternative strategy is required. One 
possible way around the difficulty is to split the potential V 
into attractive and repulsive parts, put a coupling constant A 
in front of the attractive part, and let A instead of E be the 
eigenvalue. Such a strategy, which has the advantage of 
eliminating the continuum, was employed successfully by 
Bazley and Fox34 on a one dimensional (radial) Schrodiner 
equation. 

Extensions to more than three particles can be made in 
a variety of ways. The N-particle Hamiltonian 

,'II 

H = I p~/(2m,) + I V;/ri) (5.1) 
i =-- 1 i<j 

can be brought to the form 

( 
N )2 

H = ;"~I Pi /(2M) + Hint' (5.2) 

where 
N 

M= Im; (5.3) 
i = 1 
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and 

(5.4) 

with 

Hi.) (mi + myp7/(2mim}M) + Vi/ri) . (5.5) 

In the above equations, riJ and PiJ are the canonically conju
gate internal coordinates and momenta defined by Eqs. (2.3) 
and (2.6). One obvious approach is to truncate the HiJ in 
(5.4); this will in general lead to equations in N - 2 vector 
variables. However, it is possible to do better. For example, 
for four particles Hint can be expressed as 

Hint =Ha +Hb +He' 

where 

Ha = HI2 + H 34, Hb = HI3 + H 24, 

He =H14 +H23 • 

(5.6) 

(5.7) 

The eigenvalue problems for Ha ,Hb, and He can be reduced 
to eigenvalue problems for HiJ via separation of variables; if 
Ha ,Hb , and He are truncated, equations in one vector vari
able (instead oftwo vector variables) are obtained. 
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APPENDIX A: EXACT SOLUTIONS FOR HARMONIC 
OSCILLATORS 

This appendix derives the exact eigenfunctions and ei
genvalues for the harmonic oscillator examples. 

Introduce new coordinates 'i ,Oi via 

'\?2 = 'i cosOi , 

py) = '; sinOi , 

(AI) 

(A2) 

where '\'?2 and p~1) are the ith Cartesian coordinates of r 1.2 

and P3' These changes of variables bring the Schrodinger 
equation (4.1) to the form 

{ {, [( a2 

1 a 1 a
2 

)] } I -+ --+ --2 -?; +E 1/1=0, 
i ~ I a?; " a'i ?; ao i 

(A3) 

where, as before, {) = 1,2, or 3 is the dimension of the space. 
Equations (AI) and (A2) are obtained by regarding ,\i.)2 and 
p~) as a pair of Cartesian coordinates; 'i and Oi are the corre
sponding polar coordinates. This transformation is motivat
ed by the fact that particle permutations are equivalent to 
rotations in the '\":2 - p~) planes for O<J<{), as is spelled out 
explicitly below. The eigenvalues and (unnormalized) eigen
functions of this are35 

b 

E=2I (Im,1 +2ni +1) (A4) 
i= 1 

and 
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6 

'" = IT exp( - rJ/2)rJmiIL ~imil)(rJ) exp(im/'j) , (A5) 
j~ I 

where L ~a) is a generalized Laguerre polynomial as defined 
in Eq. (4.17). The mj are integers, and the nj are nonnegative 
integers. 

The behavior required of", under permutation of parti
cle coordinates imposes restrictions on the quantum num
bers mj Under interchange ofr l and rz, ej goes into1T - ej all 
},O<}</). Under the cyclic permutation r)-rZ,rZ-r3,r3-r), 
ej goes into ej + 21T/3, all}, 0< }<8. Since one interchange 
and one cyclic permutation generate the permutation group 
on three objects, it is sufficient to require proper behavior of 
'" under these two permutations. For a symmetric "', symme
try under the r I +->-r Z interchange implies that the dependence 
of", on the ej is given by. 

,p ex: CO{tl mj(ej - 1T12)] . (A6) 

For an antisymmetric "', anti symmetry under the r)+->-rz in
terchange implies that the dependence of", on the ej is given 
by 

(A7) 

Both the symmetric and the anti symmetric '" must be invar
iant under the cyclic permutation rl-rZ,r2-r3,r3-r). This 
fact used in Eqs. (A6) and (A 7) implies that 

b 

I m; = 0, ± 3, ± 6, ± 9,··· . 
)0. I 

(AS) 

The expression (A4) for the eigenvalue E combined with the 
restriction (AS) and the fact that not all mj can be zero in the 
antisymmetric case yields the exact eigenvalues which are 
compared with lower bounds in Tables I-III. 

APPENDIX B: EXPANSION THEOREMS 

This Appendix derives the expansion theorems used to 
solve the integral equations in the harmonic oscillator 
examples. 

The expansion theorems used in the one dimensional 
three-particle examples of Sec. IV A are all obtained from 
the basic expansion theorem 

Xo(u)Xo(v) = rv'3' ! (-2) - kXk (P)Xk (p'), (B1) 
k~O 

with the aid of raising and lowering operators. The functions 
X k in Eq. (B 1) are the normalized one dimensional harmonic 
oscillator eigenfunctions defined in Eq. (4.3); u and v are 
related to p and p' by u = (2p + p')/\/3 and 
v = (p + 2p')/\/3. The basic theorem (B1) can be obtained 
by letting x = p, Y = p', z = -! in Mehler's formula36 

[ 
2xyz - (x2 + y 2

)Z2 ] 
exp 

1 - Z2 

00 (Z/2)k = (l _Z2)1/2 I -,-Hk(z)Hk(y). 
k ~o k. 

The raising and lowering operators x ± a/ax have the 
properties 

(B2) 

(x + ~ )Xk(X) = (2k)1/2Xk_1 (x) (B3) 
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and 

(x - ! )b(X) = [2(k + 1) ]I/ZXk + I (x). (B4) 

Define S,(u,v) by 

S,(u,v) = ! a~)(p)Xk(P)b + ,(p') , (B5) 
k=O 

where the coefficients a~) are for the moment left unspeci
fied. Then it can be shown that 

(u - :u )s,(U,V) = kto ! 2(2k /3)
1/2

aE I 

+ [2(k + 1)/3])/2a~)l 
XXk(P)b+'-1 (p') (B6) 

and 

(v - !)s,(U,V) = kto ! [2(k + 1)/3]1/2a~~ I 
+2 [2(k + I + 1)/3]1/2a~)l 
XXk(P)Xk+'+1 (p'). (B7) 

Repeated application of the raising operator u - a/au and 
v - a/ av to the basic theorem (B 1), with the results evaluat
ed by using Eqs. (B3)-(B7), produces expansions of the form 

Xm(U)Xm+'(v) = ! (_2)-kc~m·I)Xk(p)Xk+I(P')· 
k=O 

(BS) 
The coefficients required for the examples of Sec. IV A are 
c~O,O) = \/3/2, C~I,O) = \/3( - 3k + 1)/4, 
C~2.0) = \/3(9kZ -21k +2)/16, 

Ck3,0) = \/3( - 9k 3 + 54k 2 - 63k + 2)/32, 
Ck4,0) = \/3(27k 4 _ 306k 3 + 945k 2 - 762k + 8)/256, 
C~,D) = \/3( -81k 5 + 1485k 4 -S685k3 + 18 675k 2 

-11 994k +40), C~O,I) = 3(k + 1)1/2/4, 
C~l,l) = 3( - 3k + 2) [2(k + 1) ])/2/16, 
C~2,1) = 3(3k 2 - 9k + 2) [3(k + 1) ]1/2/32, 
C~3.1) = 3( - 9k 3 + 63k 2 - 90k + 8)(k + 1)112/128, 
44,1) = 3(27k 4 _ 342k 3 + lI97e 

-1I22k +40) [(k + 1)15]1/2/512, 
C~O,2) = 3 [3(k + 1 )(k + 2)/2 ] 1/2/8, 
C~I,2) = 9( - k + 1)[2(k + l)(k + 2) ]I/Z /32, 
42

,2) = 9(3k 2 -11k +4) [(k + 1)(k +2) ]1/2/128, 
C~,2) = 3( - 9k 3 + 12k 2 - 123k + 20) 

X [3(k + l)(k +2)/5 ]112/256, 
CkO,3) = 3[3(k + l)(k +2)(k +3)/2 ])/2/16, 
C~1,3) = 3( - 3k + 4) [3(k + l)(k + 2)(k + 3)/2 ]1/2/64, 
C~,3) = 3(9k 2 - 39k + 20) 

X [3(k + l)(k + 2)(k + 3)/5 ])/2/256, 
C~O,4) = 9[(k + l)(k +2)(k +3)(k +4)/2 ]112/64, 
C~I,4) = 9( - 3k + 5) 

X [(k + l)(k + 2)(k + 3)(k + 4)/10 ]1/2/128, 
and 

C~O,5) = 9 [3(k + l)(k + 2)(k + 3)(k + 4)(k + 5)/10 ]1/2/128. 

The expansion theorems used in the three dimensional 
three-particle examples of Sec. IV B are obtained from the 
basic expansion theorem 

XO.O,O(u) Xo,o,o(v) 
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00 I 00 

=(3/4)3/22: 2: 2: (_2)2n-IXI.m.n(P)XI,m.n(P')· 
I~Om~-ln=O 

exp(z cosa) = (11'/2)1/2 ! (21 + I)PI(cosa)Z-1/2I1 + ~ (z) , 
1=0 

(BlO) 

the addition theorem for the spherical harmonics 

(B9) 

The functions XI.m.n in (B9) are the normalized three dimen
sional oscillator eigenfunctions defined in Eqs. (4.14) and 
(4.16); u and v are related to p and p' by u = (2p + p')/v3 
and v = ( P +2p')/v3. The basic theorem (B9) can be ob
tained from the well-known expansion3

? 

PI (cos{3) = _,411' ± YI,m(O,¢ )Y1.m(O I,¢ '), (BIl) 
2+1m~_1 

and the Hille-Hardy formula38 

[(1 - t)t a12 ]-1 exp[ - ~(x + y)(l + t)/(l - t)]Ia [2(xyt)1/2/(I - t)] 

= ! [n!/r(n + a + 1) ]t n exp[ - !(x + y)](xyt12L ~a)(x)L ~a)(y). (BI2) 
n=O 

PI in (BlO) and (BII) is a Legendre polynomial; II +! in (BlO) andla in (B12) are modified Bessel functions of the first kind. In 
Eq. (BII), /3 is the angle between the directions specified by the spherical coordinates (O,¢) and (0 I,¢ '). The other functions 
appearing in (BlO)-(BI2) are defined in the text. By using (4.14) and (4.16) which define the XI,m,n' formula (BlO) with 
z = 4pp'/3, a = 11' - [3, and the fact that PI [cos(11' - [3)] = ( -I)lp,(cos{3), it is easy to show that 

Xo,o,o(u)Xo,o.o(v) = (17/\/2YI exp[ _5(p2 +p'2)!6] ! (-1)/(21 + I)PI(cos[3)(4ppI/3tI/2II+l(4pp'/3), (BB) 
I~O 

where/3is the angle between p and p'. The useof(BII) and (BI2) with x = p2,y = p'2, t = 114, a = I + ~ and Eqs. (4.14) and 
(4.16) which define the XI,m,n in (B 13) produces Eq. (B9). 

It is convenient to define the raising and lowering operators A ± by 

A ± (1;r) = - (1IY2)[x + iy + (alax + ialay)] , (BI4) 

A ± (O;r) = z + alaz, 

A ± ( -I;r) = (lN2)[x - iy + (alax - ialay)] . 

(BI5) 

(BI6) 

The A ± are the spherical components of a vector operator. It can be shown (most easily with the aid of the Wigner-Eckart 
theorem) that 

{ 
j I (I + 1) 

A+(ml;r)XI,m.n(r) = 2( _I)/+m+m. +1 [(I + I)(2n +21 +3)/2 ]11 \ 

+ [I (n + 1) ]1/2( I (/-1) I) x,~,:~ m:~+ ~(:}I) 
- m I (m + m I) - m 

I )xI+l.m+m"n(r) 

-m 

(BI7) 

and 

A_(m l;r)XI,m,n (r) = 2( _1)1 + m + m. {w + l)n) Iii 1 (l + 1) I) XI + I,m + m .. n -I (r) 

\-ml (m+m l) -m 

+ [1(2. +21 + 1)!2 1,,{_lm, (:: :,) ~ J X, "m+m,,"('l (BIS) 

It can also be shown that 

A+(m1,u) = (lN3) [2A+(m l , p) + (-1)"" A_( - ml> p') ] (BI9) 

and 

-A-+(m-I,v-) = (1IY3)[( _I)m'A I( - m l , p) + 2A+(mp pI)] . (B20) 

Applying A+(ml,v) to Eq. (B9) and evaluating the result with the aid of Eqs. (B17)-(B20) yields the expansion theorem 
00 I 00 

(u) (v) = (3/4)3/2" " "(_I)m+m.+12- 2n - 1 
Xo,o,o XI,m.,D ~ ~ ~ 

I=Om~-ln~O 

XXl.m.nCP){[3CI+I)(2n+21+3)/4 )1/2( 1 

-ml 

(I + 1) 

I ) XI <-I.m+ m.,n( p') 
-m 
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(1-1) 
(B21) 

Applying (m; ,u) to Eq. (B21) and rearranging the result with the aid of Eqs. (B17)-(B20) and the formula 

Cm; (:::,) (-m+~,+mJCm, (~::;) (-m+~,+J 
(_I)m, +m,+ (2j+ I{ :: ::: J C (:: :,) (l + v) 

j ) 

-m 
(B22) 

(m - m;) 

yields the expansion theorem 

X l.m"O (u) X l,m"O (v) 

(3/4)M,t m t-, 1 (-2)'"- '+ ,{ - (21 + I)C / 

~J Co (m~m;J 
XX',m mj P)X',m_m,,"(P') +2(2/ + 1)(, (/ + 1) / ) ( 1 (I + 1) 

-m m l (m-m;) 

XX'+I.m- m,.n-I (P)X'+I,m- m;,n-I (p') 

(/ + 1) 

(m - m;) 

X X, ~ I,m _ m;,n _ I ( p') + (/ (n + / + p)1/2( 1 

m; 

(1-1) 

(B23) 
(m -m;) 

The formula (B22) can be obtained by rewriting formula (6.2,6) on p, 95 ofEdmonds33 in terms of the Wigner 3-j symbol. The 
needed values ofthe Wigner 6-j symbol which appears in Eq. (B22) can be obtained from Table V in Edmonds33 with the aid of 
the symmetry properties of the 6-j symbol. 
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Three identical particles in one dimension interact via a potential which is infinite whenever one 
or more of the interparticle separations is less than a or greater than b, and zero when all 
interparticle separations lie between a and b. Their Schr6dinger equation is solved by reducing it 
to the exactly solvable problem of the two dimensional Helmholtz equation inside an equilateral 
triangle. 

I. INTRODUCTION AND SUMMARY OF RESULTS 

Exactly solvable model problems provide useful testing 
grounds for approximation methods. This paper presents an 
exactly solvable one dimensional quantum mechanical 
three-body problem with hard cores. Stated explicitly, the 
interparticle potential is 

Vex) = roo, Ixl <a or Ixl >b, 
0, a<lxl<b, 

(1) 

where x is an interparticle coordinate. This model was in
vented as a testing ground for a method of improving Hall
Post-Stenschke (HPS) lower bounds to eigenvalues. I HPS 
lower bounds2 are known to be poor for potentials with hard 
cores3

; it was desired to see how well the improvements to 
HPS work for potentials with hard cores. 

It is found that the Schr6dinger Hamiltonian 

~2 ( a
2 

a
2 

a2 ) H= - - -,-+ --+ -,- + V(X I -X2) 
2m aXj ax~ ax] 

+ V(X2 - x 3) + V(X3 - XI)' (2) 

has the spectrum 

(3) 

where Ec.m . is the continuously variable center-of-mass ener
gy and E int is the internal energy, given by 

Emt = 4~~2(k2 + kl + 12)![3m(b -2a?L (4) 

with k and 1 integers subject to the restriction that neither k, 
I, or k + I can be zero. The ground state energy is 

Eo = 4ti~2![m(b - 2a)2]. (5) 

The HPS lower bound2 to the ground state energy is easily 
calculated; it is 

(6) 

The lower bound (6) exhibits the poor quality of the HPS 
lower bound for potentials with hard cores: it differs from 
the exact energy (5) by a factor of2 in the most favorable 
case, and gets worse as the ratio of a to b increases. 

II. DERIVATION OF RESULTS 

The center of mass can be separated offby introducing 
the Jacobi coordinates 

X t,2=X t -X2' 

(7) 

(8) 

t3 - (2X3 - X t - x 2)! vi 
The coordinates 

- (X 1,2 + V3t3)/2, 
- (x 1,2 - V3t3)!2 

(9) 

(10) 

(11) 

will also be useful. The Hamiltonian (2) can be brought to 
the form 

H= - [~2!(6m)]a2!aX2 + Hint' (12) 

where the internal Hamiltonian Hint is 

~2(a2 a
Z

) 
Hint = - m aXi.2 + at~ + U(X t.Z,t3)' (13) 

with 

U(X t,Z,t3) =V(Xt,z) + V(X2,3(X1,2,t3» 

+ V(X3,l (X t,2,t3»' (14) 

The regions in which U is zero are equilateral triangles 
in thex t ,2 - t3 plane, as shown in Fig. 1. Thus, the eigenval
ues of mHint!~2 are the same as the eigenvalues of the interi
or problem for the two dimensional Helmholtz equation for 
the equilateral triangle. The exact solvability of the interior 
problem for the equilateral triangle seems to have been first 
noted by S.A, Schelkunoff,4 who states the results without 
derivation. Because a derivation appears to be unavailable in 
the literature, one is sketched below. 

x = b 
2,3 

FIG. I. Regions in thex1.2-S,plane in which Uis zero. 
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FIG. 2. Reflecting the box instead of the wave. 

The derivation is based on de Broglie's old idea that an 
eigenfunction is a wave which interferes constructively with 
itself. One starts with a plane wave inside the triangular box 
and demands that, after several reflections off the sides of the 
box, a (multiply) reflected wave be obtained which interferes 
constructively with the original wave. Start with a plane 
wave whose direction of travel makes an angle a with the 
horizontal. Repeated reflections off the walls of the box then 
produce additional waves whose directions of travel make 
angles - a + 1T, - a ± 1T/3, and a ± 21T/3 with the hori
zontal, but no others. These waves can be easily analyzed by 
the trick of reflecting the box instead of the wave as shown in 
Fig. 2, where each triangle is labeled by the direction oftrav
el of the corresponding wave. The condition that the waves 
interfere constructively with themselves is equivalent to the 
condition that the waves have the periodicity of the hexagon
allattice in Fig. 2. A plane wave 

,p (X 1,2' 53) = exp [i(K1.zx 1.z + K 353)]' (15) 

whose direction of travel makes an angle a = tan- 1(K3/K1•Z ) 

with the horizontal, will have this periodicity if and only if 

K 1•2 = 1T (k + I )/(b - 2a), (16) 

and 

K3 = 1T(k -/)/[V3(b -2a) 1. (17) 

where kand 1 are integers. Given the conditions (16) and (17) 
on Kl 2 and K 3, a superposition of waves traveling in each of 
the si~ directions and having the same value of 
K = (KT.2 + K~)I/z is 

¢(X1,2,53) = ± C; exp!i1T[a;x 1•2 + (P;53/V3)];(b -2a)J 
;= 1 

(18) 

where a 1 = - a4 = k + I, a z = - a3 = I, 
a 5 = - a 6 = - k, PI = P4 = k - I, pz = P3 = - 2k - I, 
and Ps = P6 = k + 2/; the C; are constants. A wavefunction 
if! which satisfies the boundary condition if! = 0 on the sides 
of the triangle bounded by x 1•Z = b, X Z•3 = - (X 1•2 

+ 53y3 )/2 = - a,andx3•1 = - (X 1•2 -s3y3 )/2 = - a 
can be obtained by imposing conditions on the C;. The condi-
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tion ¢ = 0 when x 1•Z = b is satisfied if 

C4/C 1 = - exp[21Ti(k + I)b /(b - 2a)], 

c3/CZ = - exp[21Tilb /(b - 2a)], 

CS/c6 = - exp[21Tikb /(b - 2a)]. 

The condition ¢ = 0 when X 2.3 = - (X 1•2 + 0 53)12 
- a is satisfied if 

cZic l = - exp[21Tika/(b - 2a)], 

C3/C6 = - exp[21Ti(k + I)a/(b -2a)], 

C4/CS = - exp[21Tila/(b - 2a)]. 

The condition if! = 0 when X 3.1 = - (X 1•2 - 0 53)/2 
- a is satisfied if 

C~CI = - exp[21Tila/(b - 2a)], 

cs/cz = - exp[21Ti(k + I)a/(b -2a)], 

(19a) 

(19b) 

(19c) 

(20a) 

(20b) 

(20c) 

(21a) 

(21b) 

C4/C3 = - exp[21Tika/(b - 2a)]. (21c) 

Equations (19) - (21) are just the conditions on the relative 
phases of incident and reflected waves. Their solution is 

C2 = - C I exp[21Tika/(b - 2a)], (22a) 

C3 = CI exp[21Ti(k + 2/)a/(b - 2a)], (22b) 

C4 = - CI exp[41Ti(k + I)a/(b -2a)], 

Cs = C I exp[21Ti(2k + I)a/(b -2a)], 

C6 = - C I exp[21Tila/(b - 2a)]. 

(22c) 

(22d) 

(22e) 

The magnitude Ic II can be fixed by the demand that ¢ be 
normalized; the phase of CI is arbitrary. 

The result (4) for the eigenvalues of the internal Hamil
tonian follows from Eqs. (16) and (17) with the aid of E int 

= fl2 K 2/ m = fl2(K i 2 + K ~ )/ m. It should be noted that the 
pairs (k,/), (- k,k + I), (- k -I,k), (-I, - k), 
(I, - k, - I), and (k + I, - I) all correspond to the same en
ergy and the same ¢ (within an overall phase factor). If k, or 
I, or k + I is zero, ¢ vanishes. The form of ¢ within each of 
other five triangles in which U is zero can be obtained by a 
sequence of rotations through 1T /3 in the x 1.2 - 53 plane. 
Because permutation of the particles just interchanges these 
disjoint pieces of the configuration space, wave functions 
which transform according to the symmetric, antisymme
tric, and mixed representations of the permutation group on 
three objects have the same eigenvalues E int . 
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Test of a method for finding lower bounds to eigenvalues of the three-body 
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The simplest version of a method for systematically improving Hall-Post-Stenschke (HPS) lower 
bounds to eigenvalues is tested on an exactly soluble one dimensional three-body problem with 
hard cores. Significant improvement over the HPS bound is obtained, but considerable room for 
additional improvement remains. 

I. INTRODUCTION 

The preceding two papers 1
•
2 have presented a method 

for the systematic improvement of Hall-Post-Stenschke 
(HPS) lower bounds to eigenvalues and an exactly soluble 
three-body problem for testing the performance of the meth
od with hard core potentials. The present paper tests the 
method on this model problem. The simplest version of the 
method, which is the only version tested here, leads to sig
nificant improvement over the HPS lower bound, but still 
leaves considerable room for additional improvement. 
Much better bounds should be obtainable with additional 
computing effort, but this has not been done. 

Section II develops the integral equation which must be 
solved to get lower bounds for the model problem, gives the 
exact energies and HPS lower bounds for comparison with 
the energies to be obtained from the solution of the integral 
equation, and discusses the numerical solution of the inte
gral equation. Section III presents a method, based on work 
of Mysovskih, 3 for rigorously bounding the truncation error 
incurred by the numerical solution procedure. Estimates of 
the roundoff error are also given. Section IV presents nu
merical results and discusses their significance. 

II. APPLICATION OF THE METHOD TO THE MODEL 
PROBLEM 

The general form of the identical particle integral equa
tion in one dimension is [from Ref. 1, Eqs. (3.28)-(3.30)] 

f(p) = ;~: a,j J~x K~~)(p,p')J;(p') dp', (2.1) 

where 

=(b-a)rfi~X)[~3(P+2P') ]rfiY)[ - ~3(2P+P')]' 
(2.2) 

4 (tn-tj) 

V 3(b - a) (E -2 tn - tJ ' 
(2.3) 

and X is S or A depending on whether the symmetric or 
antisymmetric sector of the problem is under consideration 

"'Work done in partial fulfillment of the requirements for the M.S. degree, 

(see Sec. lItE of Ref. 1). Here p is the third Jacobi coordi
nate [Ref. 1, Eq. (2.4)], b and a are the well size and core size, 
respectively, E is the energy eigenvalue of the Schrodinger 
equation, and the rfi ~X) and ti are, respectively, eigenfunc
tions and eigenvalues of the two-particle internal Hamilton
ian. For the model problem that Hamiltonian is [Ref. 1, Eq. 
(2.10)] 

2fz2 a2 

H(2p) = - -3 -a" + v (r), (2.4) 
m r-

where the two-body potential V is 0 for a < 1 rl < b, and 00 

otherwise. Here r represents the interparticle separation. 
Normalized even eigenfunctions of H(2p) are 

----sm , a<,r<,b, 1 . [mr(r - a) ] 

Vb - a (b -a) 

1 . [wrr(r + a) ] sIn , 
Vb - a (b - a) 

- b<,r<, - a, 

0, otherwise. 
(2.5) 

The odd functions are the same except that the sign of the 

\ 
\ 
\~ 
\~ 
\~ 

............. \\ 
..... \u1 

.......... ~\9 

,~ 

'If<' 
\ k 

\ ? , \\ 

\ u1 
'\P 

\ 
\ 

FIG. 1. The kernel is nonvanishing only within the shaded regions. The 
dimensionless variables used in the figure are defined in Eq. (2.7). 
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second functional form is changed. The eigenvalues are giv
en by 

(2.6) 

and are the same for both even and odd eigenfunctions with 
the same index n. It is evident from Eq. (2.5) that the kernel 
K?? is nonzero only when the absolute values of the argu
ments of both rP ~X) and rP Y) lie between a and b. The four 
regions in whichK~7)(p, p') is nonzero are depicted in Fig. 1 
for the case where b la = 2.5. 

The following change of variables brings Eqs. (2.1)
(2.3) to dimensionless form: Define 

g= V3pla, 

1} = V3p'la, (3 = b la, y = 1/«(3 -1), (2.7) 

and 

Ai) = V3/(a, j a). 

Then the explicit functional forms of the kernel in the four 
regions are 

K ~rl) = - S(X) sin[ i~1T (g + 21} - 3) ] 

X sin[j~1T (2g + 1} - 3) ] , 

K~7·2) = sin[i~1T (g + 21} - 3) ] sin[j~1T (2g + 1} + 3) ] , 

(2.8) 

K~r3)= -S(X)sin[i~1T(g+21}+3) ] 

XSin[j~1T (2g + 1} +3) ] , 

K~7,4) = sin[ i~1T (g +21} +3) ] sin[j~1T (2g + 1} -3) ] , 

FIG. 2. The kernel K ;.~.P) is nonzero within the regions shown above and is 
zero outside these regions. 
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where 

S(X) = {+1, 
-1, 

if X = S (symmetric problem), 

if X = A (antisymmetric problem). 
(2.9) 

The integral equation can now be written 

A n - I 1 J= A (X) A 

f.( g) = j~l A/j _ oc K /j (g,1})!/1}) d1}, 

where 

A/j 3(E - 2€n - €.) 

The symmetries 

i~r')( - g, -1}) = i ~r·l)( g,1}), 

i~r2)( - g, -1}) = i~7,4)( g,1})' 

ilr3
)( - g, - 1}) = i ~rl)( g,1}), 

ilr 4
)( - g, -1}) = il7,2)( g,1}) 

(2.10) 

(2.11 ) 

(2.12) 

of the kernel imply that the eigenfunctions can all be classi
fied as either even or odd. Define 

! ?)( g) = ! [i; ( g) + i; ( - g ) ] , 
and (2.13) 

!?)(g)=Hi;(g)-i;(-5)] (i= l,oo.,n-l), 

which will satisfy Eq. (2.10) whenever the set [ i; ( g) I does. 
Thus, only the right half-plane need be considered in solving 
the problem; the left half-plane can be filled in by symmetry. 
The integral equation can then be reduced to an equation in 
the first quadrant of the g-1} plane: 

!?)( 5) = ;t: A:
j 
1'" KlY)( g,1})!/P)(1}) d1}, (2.14) 

where 

(2.15) 

Here Pis either e or 0; the plus sign is associated with!/e) and 
the minus with!/O). The regions in which the kernel is nonze
ro will then consist of region 1 (truncated) and the reflection 
of region 4 together with reflected pieces of regions 1 and 3 
(see Fig. 2). Thus, the upper limit on the integral in Eq. (2.14) 
can be taken to be 3(3. 

In the first approximation we keep only the first even 
(odd) term in the sum in Eq. (2.14) in order to get bounds on 
the eigenvalues of the symmetric (antisymmetric) problem. 
Equation (2.14) then becomes 

r3
(3 

A!(P)(5) = Jo K(x.P)(g,1})!(P)(1})d1}. (2.16) 

From Eqs. (2.3), (2.6), and (2.7) with i = j = 1 and n = 2 it 
can be seen that the energy lower bound is related to the 
eigenvalue A by 

2fz2r 
EL = (4YA + 9) 2 

3m(b - a) 
(2.17) 

For comparison, we need the energy eigenvalues and 
the multiplicities of the exact problem, and the HPS lower 
bound to the ground state energy. The exact energies are 
given by 
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(2.18) 

[Eq. (4) of Ref. 2]. The energies for which k = / are nonde
generate, and those for which k =/=-1 are doubly degenerate. 
This will be of interest later when we examine the perfor
mance of the method in finding lower bounds to excited 
states. The HPS bound EHPs is just three times the lowest 
eigenvalues of H(2P)' i.e., EHPs = 3€1' 

In order to facilitate comparison of the lower bounds 
with the exact ground state energy, we multiply all three by 
3m(b -2a)2/4ff2fz2 to obtain the dimensionless forms 

E=k2+kl+/2, (2. 19a) 

EL =!(1 - rf(4rlL + 9), (2.19b) 

(2. 19c) 

for the exact energy, the present lower bound, and the HPS 
lower bound, respectively. 

The eigenvalue IL can be found by using a numerical 
integration rule to write Eq. (2.16) as a matrix equation and 
then diagonalizing the matrix. Written in the discrete form, 
Eq. (2.16) is 

AC, f (Pl( t) = I c;cjK (X,Pl( t, 5j)cj f (Pl( 5j)' (2.20) 

Here the c~ are the constants prescribed by the numerical 
integration rule. Now define 

gr1 = cJ (Pl( sJ, 
K(X.Pl = cc.K(X,Pl( f:-. f:-.) 

IJ I} ~I'~)' 

Then Eq. (2.20) becomes 

IL g(Pl = '" K (X,Plg(Pl 
I L,- I) l' 

J 

(2.21) 

(2.22) 

(2.23) 

The eigenvalues IL ofEq. (2.23) can then be used as approxi
mations to the eigenvalues ofEq. (2.16), from which we ob
tain the lower bounds (2. 19b). The eigenfunctions g}Pl can 
be used to obtain approximations to the eigenfunctions of 
Eq. (2.16). 

The numerical integration rule used was Simpson's 
rule. In order to satisfy the hypotheses used to derive the 
error formula for Simpson's rule it is necessary to adjust the 
parameters so that evaluation points are located at the ver
tices of the regions where the kernel is nonzero. This is due to 
the fact that the derivatives of the kernel are discontinuous at 
the boundary, and the fourth derivative of the kernel appears 
in the error formula. This must be kept in mind if rigorous 
error bounds are desired. 

III. ERROR BOUNDS 

If we are to maintain our claim that the lower bounds 
we obtained for the energies of the model problem are rigor
ous, it is necessary to bound the truncation and roundoff 
error introduced by the numerical solution procedure. 
Bounds on the truncation error were obtained via a method 
developed by Mysovskih3

; roundoff error was estimated by 
using a difference table. 

Mysovskih's method is based on a theorem ofWeyl 
which gives estimates of the differences of the eigenvalues of 
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two operators. For the case of interest here, where the opera
tors are defined on different Hilbert spaces, it is necessary to 
use Weyl's theorem twice to get the bounds needed. We will 
not present a derivation of the error bounds here, but will 
merely state the theorem upon which the method is based 
and describe the way in which its use results in the trunca
tion error bounds. 

Theorem 3.1 (Wey/ 's theorem): LetB and A = B + Cbe 
completely continuous, self-adjoint operators in a Hilbert 
space X. Let the negative eigenvalues of A be enumerated in 
nondecreasing order: 

(3.1) 

and let the positive eigenvalues be enumerated in nonin
creasing order: 

(3.2) 

Here a multiple eigenvalue is repeated a number of times 
equal to its multiplicity. (Note that A completely continuous 
implies that zero is the only possible accumulation point of 
the spectrum.) Let the eigenvalues of B be enumerated in the 
same manner. Then 

IlL jA. -) -IL y-_.) I <llcll, 

and 

IlL y, + 1 -IL Y' +) I < Ilcll, 

where 

Ilcll = sup Ilcxll . 
«,x Ilxll 

(3.3) 

(3.4) 

(3.5) 

Application of the numerical integration rule to the sec
ond iterated kernel (which has as eigenvalues the squares of 
the eigenvalues of the kernel) results in 

Klx,y) = B (x, y) + €(x, y), 

where 
II 

B(x,y)= I ciK(x'Yk)K(Yk'Y)' 
k ~ I 

(3.6) 

(3.7) 

and €(x, y) is the error term for the numerical integration 
rule. The ci are the constants prescribed by the numerical 
integration rule, and theYk (k = 1, ... ,n) are the points at 
which the integrand is evaluated in computing the numerical 
approximation to the integral in K lx, y). Both Band € are L2 
kernels, so Weyl's theorem can be applied to obtain 

I [lLj±l]2 _lj±ll<II€II, (3.8) 

where the 1) ± 1 are eigenvalues of B. Now B is a degenerate 
kerneL Its eigenvalues can be shown to be the same as those 
of the matrix r whose elements are defined by 

r ik = CiCk f K (Yi' y) K (y, yd dy. (3.9) 

I t is also possible to show3 that the matrix r is related to the 
matrix L which approximates the kernel (according to the 
numerical integration rule) by 

r= L 2 + E, (3.10) 

where 

(3.11 ) 
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and 

Lik=ChK(Y;'Yk)' (3.12) 

Thus, we can apply Weyl's theorem again to obtain bounds 
on the differences between the eigenvalues of rand L 2: 

11;±l- [i;±lPI<IIEII, (3.13) 

where the i j ± ) (the eigenvalues of L ) are the approxima
tions to the exact eigenvalues A j ±). 

Now combine the results of the two applications of 
Weyl's theorem. Some manipulation of the inequalities then 
yields 

1,1 j ±) - i j ±) I 

" IIEII + liE II (3.14) 
'" lip)1 + I [ij±)]2 - (IIEII + liE lI)j 1/2 ' 

subject to the condition that 

(3.15) 

In order to obtain the inequality (3.14) it is necessary to 
assume that the signs of A j ± ) and i j ± ) are the same, since 
only their squares appear in Eqs. (3.8) and (3.13). 

To implement this method for computing error bounds 
we must first obtain bounds on the norms IIEII and liE II [see 
Eqs. (3.6) and (3.11)]. Since Simpson's rule was used to ap
proximate the kernel of the integral equation (2.16), the 
E(X, y) which appears in Eq. (3.6) is the Simpson's rule error 
term: 

E(X,y) = 
(t - s)h y(4)(y';x,y) 

180 

for some y'E[S,t], where 

f(y';x, y) = K (x, y')K (y', y), 

h is the step size, and the integration limits are 

s = 0, t = 3{3. 

(3.16) 

(3.17) 

(3.18) 

As an upper bound on the magnitude of E(X, y) we use 

TABLE I. Main results. Beta is the ratio of well size to core size, K MAX is the size of the matrix kernel, the lower bounds are for the ground state, and the 
truncation error is given as a percent of the energy lower bound. 

Small Large 
step step Energy Hall-Post Truncation 

Beta K MAX size size lower bound Lower bound error (%) 

2.1 67 0.0500 0.1000 0.0249 0.0124 1.7 X 10" 
2.2 67 0.1000 0.1000 0.0836 0.0417 1.2x 10" 
2.3 73 0.0500 0.1000 0.1603 0.0799 8.1 X 10,2 

2.4 73 0.1000 0.1000 0.2458 0.1224 5.8X 10.2 

2.5 37 0.1250 0.2500 0.3346 0.1667 1.8 
2.5 73 0.0625 0.1250 0.3345 0.1667 1.1 X 10" 
2.5 61 0.1250 0.1250 0.3345 0.1667 1.1 X 10" 
2.5 31 0.2500 0.2500 0.3345 0.1667 1.8 
2.6 49 0.1000 0.2000 0.4234 0.2109 5.4x 10" 
2.7 79 0.1000 0.1500 0.5105 0.2543 1.3 X 10" 
2.8 57 0.1000 0.2000 0.5947 0.2963 3.3X 10" 
2.9 77 0.1000 0.1500 0.6756 0.3366 8.1 X 10.2 

3.0 61 0.1000 0.2000 0.7527 0.3750 2.IX 10" 
3.1 77 0.1000 0.1500 0.8260 0.4116 5.4 X 10.2 

3.2 77 0.1000 0.1500 0.8957 0.4463 4.5 X 10.2 

3.4 75 0.1000 0.1500 1.0243 0.5104 3.1 X 10.2 

3.6 81 0.1000 0.2000 1.1398 0.5680 7.0X 10.2 

3.8 85 0.1000 0.2000 1.2434 0.6199 5.2X 10.2 

4.0 61 0.2000 0.2000 1.3366 0.6667 3.8X 10.2 

4.2 69 0.1000 0.2000 1.4203 0.7090 2.9X 10.2 

4.4 67 0.2000 0.2000 1.4959 0.7474 2.3X 10.2 

4.6 79 0.1000 0.2000 1.5640 0.7824 1.8 X 10.2 

4.8 73 0.2000 0.2000 1.6256 0.8144 1.4 X 10.2 

5.0 61 0.2500 0.2500 1.6812 0.8438 2.8X 10.2 

5.2 79 0.2000 0.2000 1.7319 0.8707 9.3 X 10.3 

5.4 85 0.1000 0.2000 1.7778 0.8957 7.7XIO· 3 

5.6 85 0.2000 0.2000 1.8197 0.9187 6.3X 10.3 

5.8 91 0.1500 0.2000 1.8579 0.9401 5.7X 10.3 

6.0 73 0.2500 0.2500 1.8926 0.9600 1.1 X 10.2 

6.5 79 0.2500 0.2500 1.9681 1.0041 7.3x 10.3 

7.0 85 0.2500 0.2500 2.0300 1.0417 5.0X 10.3 

7.5 67 0.2500 0.5000 2.0818 1.0740 S.9X 10.2 

8.0 49 0.5000 0.5000 2.1254 1.1020 4.2X 10.2 

8.5 65 0.2500 0.5000 2.1633 1.1267 3.4x 10.2 

9.0 55 0.5000 0.5000 2.1958 1.1484 2.4 X 10.2 

9.5 71 0.2500 0.5000 2.2247 1.1678 2.0X 10.2 

10.0 61 0.5000 0.5000 2.2500 1.1852 1.5 X 10.2 

15.0 91 0.5000 0.5000 2.4047 1.2934 2.6X 10.3 

15.0 181 0.2500 0.2500 2.4047 1.2934 1.7x 10.4 

20.0 121 0.5000 0.5000 2.4793 1.3463 7.6X 10.4 
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(3.19) 

Of course, in the computer program used to compute the 
error bounds the maximum can only be taken over a discrete 
set of values, but we assume that the result is quite close to 
the actual maximum since the function/is relatively 
smooth. The lower bounds program allows two different 
step sizes for different regions, but in order to limit complica
tions the truncation error program uses the larger step size as 
h in Eq. (3.19). The norm of E(X, y) is bounded by the Hil
bert-Schmidt norm of the matrix representing 10: 

111011 ~ [ f f 1 E(X, y) 12 dx dY] 1/2 

~ [~~ c~cJ IE(Yi'Yj) 12] 1/2, (3.20) 

and the norm of the matrix E is bounded in similar fashion. 
The roundoff error was estimated by constructing dif

ference tables from the ground state energy lower bounds for 
three different sets of equally spaced values of /3. From these 
tables we estimate that the roundoff error in the ground state 
energies is less than 2X 10-4

• For a discussion of the use of 
difference tables to estimate roundoff error see Hamming.4 

IV. NUMERICAL RESULTS AND DISCUSSION 

This final section presents some of the more significant 
numerical results together with some discussion of the inter
pretation and implications of the numbers. In addition, a few 
methods for improvement of the results will be pointed out. 
Before listing our table of results, we will make some com
ments on the cases we chose to solve. 

The lower bounds and truncation errors were comput
ed for values of /3 ranging from 2.1 to 20. This should cover 
the spectrum of range-to-core radius ratios used in most real
istic nuclear and molecular potentials as well as give a fairly 
complete picture of the dependence of the bounds on /3. It 
was necessary to have the lower limit above 2.0 since the 
exact energy [Eq. (2.18)] diverges at that point. 

For two values of/3(15 and 2.5), two or four, respective
ly, different partitions of the interval of integration were 
tried in order to get a feeling for the effect on the eigenvalues 
and on the truncation error bounds. In addition, for 20 of the 
cases two different step sizes were used in the partition. 

T ABLE II. Excited state lower bounds and exact energies. 

~: State 2.1 20 Exact 

0.02488 1.6812 2.4793 3 
2 0.03100 1.9253 3.0196 7 
3 0.03100 2.1620 3.5912 7 
4 0.03100 2.2140 3.8655 12 
5 0.03392 2.3401 3.8728 13 
6 0.03546 2.4772 3.9637 13 
7 0.03546 2.4772 3.9922 19 
8 0.03546 2.4991 4.0009 19 
9 0.03627 2.5024 4.0010 21 

10 0.03671 2.5098 4.0043 21 

1090 J. Math. Phys., Vol. 21, No.5, May 1980 

>-

'" 0: 
UJ 
Z 
UJ 

30 

25 

20 

I 5 

10 

05 

.----------
... -

~ENT LOWER BOUND 

~~ __ ~~ __ ~-J __ ~ __ ~·~~ __ ~ __ 4 

2.0 30 40 50 60 TO 8.0 90 100 150 200 

BETA 

FIG. 3. A comparison of the present HPS lower bounds with the exact 
ground state energy. (The energy is given in dimensionless units.) 

The most significant numerical results are presented in 
Table I. The first column gives the value of /3 for each case. 
K MAX is the order of the approximating matrix and is a mea
sure of the fineness of the mesh used for that case. The next 
two columns give the step sizes used in the partition. The 
lowest energy obtained from the eigenvalues of the matrix 
approximation to the kernel [via Eq. (2. 19b)] follows in the 
next column. The HPS lower bounds are provided for com
parison in the sixth column, and the last column contains the 
upper bounds to the truncation error for each case. The exact 
ground state energy is 3. 

A graphical comparison of the ground state energy low
er bounds, the HPS lower bounds, and the exact ground state 
energy is shown in Fig. 3 for /3 in the range from 2.1 to 20. 
The most striking feature is the fact that both bounds are 
quite poor near /3 = 2 and show a gradual improvement with 
increasing /3. From Eq. (2.19c) we see that in the limit as 
/3--00 (y--O) the HPS bound approaches a value of 1.5, 
which is just half of the exact energy. The present lower 
bound is somewhat better than this, but it is clear that there 
is still considerable room for improvement. The ratio of the 
energy lower bound to the HPS bound varies from about 2.0 
at/3 = 2.1 to about 1.8 at/3 = 20. It is not clear whether this 
ratio will continue to decrease with increasing /3, but it is a 
question of some interest as it suggests the possibility that the 
bounds eventually will begin to decrease with increasing /3. 

From the truncation error bounds given in Table I and 
the graph of the energy lower bounds versus /3 in Fig. 3 it is 
evident that the effect of truncation on the energy lower 
bounds is small compared with the effect due to the fact that 
only one term was kept in the sum in Eq. (2.14). Even in the 
worst case (/3 = 2.5 with K MAX = 37) the truncation error 
bound was only about 6.2% (or 0.7% of the exact energy), 
whereas the total error for that case was about 88.8% of the 
exact energy. In the case with the least total error (/3 = 20) 
that error was sti1117.4% of the exact energy. Clearly, it 
would be interesting to see the computation done with more 
terms kept in the sum in Eq. (2.14) in order to see how rapid
ly the lower bound improves as additional terms are includ
ed. One might observe that there is a general trend for the 
truncation error bounds to decrease with increasing /3. This 
is not just a result of giving the truncation error bounds as a 
percent of the energy lower bounds, but would be seen in a 
list of absolute truncation error bounds as well. 
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Now, we will look briefly at the performance of the 
method in computing lower bounds to excited states. As one 
might expect, the results of the method deteriorate as one 
proceeds to higher states since information about the higher 
states was discarded in truncating the two-particle Hamilto
nians. This can be seen from Table II, which shows the first 
ten lower bounds and the first ten exact energies for three 
particular values of (3. 

Because the bounds resulting from this first order test of 
the method on a potential with an infinite hard core are only 
moderately better than those from the HPS method, it may 
be of interest to look into some of the options available for 
improvement. One option, which has already been indicat
ed, is to keep more terms in the sum in Eq. (2.14). Such an 
approach would require the diagonalization of larger matri
ces, but since the truncation error was so small in the cases 
we investigated, it would be possible to limit that size by 
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using a coarser mesh. Then, presumably, one could strike a 
balance such that the truncation error and the error due to 
the approximation in Eq. (2.14) are of similar magnitude. 

A somewhat different approach would be to use the 
present method either to obtain rough bounds for use in 
Temple's formula, 5 or as the initial approximation in a re
cently developed alternative to Temple's formula. 6 

'R.N. Hill, J. Math. Phys. 21,1070 (1980). 
2R.N. Hill, J. Math. Phys. 21, 1083 (1980). 
'I.P. Mysovskih, Am. Math. Soc. Trans. 35, 237 (1964). 
"R.W. Hamming, Numerical Methods/or Scientists and Engineers, 2nd ed. 
(McGraw-Hili, New York, 1973), Chap. 10. 

'G. Temple, Proc. R. Soc. (London) Ser. A 119, 276 (1928). 
"R.N. Hill, submitted to J. Math. Phys. 
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The reformulation of the one-dimensional three-body problems with boundary condition and 
delta function interactions, based on the Sommerfeld-Maluzhinetz transformation, is 
presented. The argumentation is carried out as exemplified by two models-the exactly soluble 
model of two identical particles interacting through delta potential and each of which interacts 
with a third one through boundary condition interactions, and a model of two identical particles 
and a fixed wall, all interactions being of the delta function type. The problems are reduced to 
those of solving coupled systems of functional equations for the Sommerfeld transforms of the 
wavefunction. The functional properties of the transforms are then used to derive expressions 
relating them to the half off-shell extensions of the elastic and exchange probability amplitudes as 
defined in the Faddeev-Lovelace approach. 

I. INTRODUCTION 

The number of analytically solvable three-body models 
is very scarce. 1-9 In most papers dealing with this subject use 
is made of the analogy between the one-dimensional three
particle Schrodinger equation in the center-of-mass system 
and the mathematical problems of diffraction of time har
monic waves by plane obstacles spreading out to infinity. In 
the last field, the most fruitful methods leading to closed 
form solution are found, namely the integral transform 
methods supplemented by function theoretic techniques. 

The Fourier transformation accompanied by the Wie
ner-Hopftechnique is oflimited use in solving three-body 
problems. Lieb and Koppe2 employed this method to solve a 
simple model of the breakup ofa pair of particles with delta
function potential. A more complicated model with one two
body delta potential and one hard-core interaction is at
tempted by the above technique by Jost. 1 The problem is 
reduced to that of solving the difference equation later 
solved by Albeviero.5 

The model of three colinear particles of arbitrary 
masses with interactions described by the boundary 
conditions 

alJl --+ ailJl = 0, for Xi = 0, 
aXi 

(1) 

where Xi is the distance between the particlesj and k, is 
described by McGuire and Hurst6 and independently by the 
author.7

•
s The problem is mathematically identical to the 

problem of diffraction of the plane or surface waves by an 
impedance wedge, this analogy originated with Nussenz
weig.3 In Ref. 6 Williams' method 10 is applied, whereas in 
Refs. 7,8 the author adopted directly the solution of Maluz
hinetz. 11-13 In both cases, the solution is represented by inte
grals of the Sommerfeld type. 

The more "realistic" model of three particles with delta 
function potentials is much more difficult to handle than the 
boundary condition model, the exception being the models 
of three identical particles that are solvable in both cases by 

elementary methods.4
•
14 Gaudin and Derrida9 have reduced 

the problem of the bound state of three particles with delta 
function potentials to a system of difference equations and 
solved it exactly for the nontrivial case of equal masses and 
two nonzero interactions of equal strength. 

This paper treats the reformulation of the problems of 
three colinear particles with boundary condition and delta 
function interactions, based on the Sommerfeld-Maluzhin
etz transformation. Some of Maluzhinetz results concerning 
the properties of the above transformation are reviewed in 
Sec. 2. In Sec. 3 we discuss briefly the model system of two 
identical particles interacting via the delta potential, each of 
which interacts with the third one via the impedance-type 
potential, Eq. (1). For that case, the system of functional 
equations to which the problem is reduced, with help of the 
Sommerfeld-Maluzhinetz transformation, decouples into 
the system of Maluzhinetz equations for the impedance 
wedge and is thus solvable by this method. In Sec. 4, we 
study the system of two identical particles and one infinitely 
heavy particle; all interactions being delta potentials. By the 
application of the symmetry of the system, a part of the wave 
function is extracted that cannot be calculat~d by elemen
tary methods. The nontrivial subproblem is then reduced to 
two systems of functional equations for the Sommerfeld 
transforms. 

Section 5 illustrates the significance of the Sommer
feld-Maluzhinetz transformation as applied to one-dimen
sional three-body problems with zero range interactions, ir
respective to its eventual significance as the method for 
solving the Schroedinger equation exactly. As illustrated by 
the above mentioned models, it is shown here that strikingly 
simple relations exist between the Sommerfeld transforms of 
the wave function and the half-off-shell extensions of the 
probability amplitudes of reactions resulting from the scat
tering of a particle off a bound state. The properties of these 
last functions. which are usually studied on the ground of the 
Faddeev-Lovelace equations, can thus be deduced from the 
function-theoretic properties demanded for the Sommerfeld 
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transforms of the wave function. 

II. THE SOMMERFELD-MALUZHINETZ 
TRANSFORMATION 

Maluzhinetzl
1-13 has shown that the Helmholtz 

equation 

[~~(r~) + ~~ + k 2 ]p(r,q;) =0, 
r Jr Jr r Jq; 2 

with the following mixed or impedance boundary 
conditions: 

(2) 

[~ ~ + ik sine ± ]P(r,q;) = 0, for q; = ± 4>, 
r Jq; 

(3) 

and with the scattering conditions at infinity II can be solved 
in a closed form by representing the solution in the form 
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P (r,q; ) = -21 . f e - ikr COSZs(z + q;)dz, 
m Jr 

(4) 

where r is known as the Sommerfeld contourl5 and consists 
of two curves symmetric with respect to the origin in the 
complex z plane, Fig. 1. 

The necessary and sufficient condition for vanishing of 
the Sommerfeld integral is that the transform be an even 
function of z. The above statement is true for the class of 
functions s(z) for which s(z) = 0 I exp[(1 - a)IIm zl] J with 
a > 0, for I Imz I ~ 00 • For the corresponding class of origi
nalfunctions (4), we then have: P (r,q; ) = r _ 0 0 [r a-I] see 
Ref. 16. The solutions of physical interest are contained in 
this class. The conditions (3) together with the above men
tioned conditions of vanishing of the Sommerfeld integral 
imply the following system of equations: 

(sinz ± sine ± )s(z ± 4» 

- ( - sin z ± sine ± )s( - z ± 4» = 0. (5) 

In addition, [s(z) - (z - q;o) - 1] is said to be regular in the 
strip IRe zl < 4>, this condition corresponds to the scattering 
condition of incidence of the plane or surface wave 
exp I - ikr cos (q; - q;o) J, where q;o is real and I q;o I < 4> or 
q;o = ± (4) - e ± ) . 

The function s(z) can be factorized as follows: 

s(z) = u(z)F(z)IF(q;o), (6) 

where u(z) satisfies the equations 

U(Z ± 4» - u( - z ± 4» = 0, (7) 

and has a simple pole at z = q;o with residue equal to one. 
The functionF (z) is the so-called principal solution ofEq. (5) 
with no poles and no zeros in the strip IRe zl < 4>. Its loga
rithmic derivative satisfies the system of inhomogeneous 
functional equations with constant coefficients, which Ma
luzhinetz solved by applying the Fourier transformation. Fi
nally, F (z) is expressed as a product off our special meromor
phic functions defined by Maluzhinetz12.1J (also see 
Appendix in Ref. 17). 

The Sommerfeld integral 

F(r) = _1_. f e-ikrcosz!(z) dz, (8) 
2m Jr 

where IF(r) I < Mr- 1 + aebr ,M,a,b > 0, has the unique in
version in the class of odd functions that are regular on rand 
inside its loops, except possibly for infinitely distant points, 
and that also satisfy in those regions the inequality 
I!(z) I <M exp [(1 - a1 )Im Izl ] for some a1 > 0. For 
Re[ - ik cos z] > b, this function has the following 
representation 16: 

J(z) = !ik sin z 100 

F(r)eikrcOSZdr, 

and for that function a1 = a. 

(9) 

A similar pair of transforms was in fact applied to the 
wedge problem by Senior l8

, who started by taking the La
place transformation of the Helmholtz equation with respect 
to the radial variable, then followed this by a number of 
successive transformations. The integral of a type similar to 
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Eq. (9) was applied also by Gaudin and Derrida9 with cos z 
in the exponent replaced by sin z. 

The asymptotic form of the Sommerfeld integral (4) for 
large values ofthe radial variable may be found by deforming 
the original contour into two paths of the steepest descent, 
shown in Fig. 1. The sum of residues at the poles within the 
region terminated by the original contour and the steepest 
descent paths corresponds to the sum of the incident and 
rescattered waves and to the outgoing surface waves. The 
integrals along the SD paths, calculated by the saddle point 
method, give in the first approximation the circular outgoing 
wave, for k 2> 0, with angle dependent coefficients propor
tional to [s(tp + 1T) - s(tp - 1T)]. 

As shown previously7,g the solution of the diffraction 
problem (2), (3) continued analytically in the k V E vari
able is at the same time also the solution of the quantum
mechanical problem of three colinear particles with two
body interactions of type similar to Eq. (1), with the total 
energy in the center of mass system equal to E. 

III. THE BOUNDARY CONDITION MODEL WITH ONE 
DELTA· TYPE INTERACTION 

The one-dimensional potential vex) = - 2go(x) is 
equivalent to the following junction condition imposed on 
the solution of the Schroedinger equation for two free 
particles: 

rI/(O +) - t/!/(O -) = - 2g t/! (0), t/! (0 +) = t/! (0 -) . (10) 

If we decompose the wave function into its symmetric and 
anti symmetric parts 

(11) 

we see that the functions t/! ± satisfy the following boundary 
conditions: 

t/! (0) = 0, t/! + (0 +) + gt/! + (0 +) = 0 . (12) 

When proceeding to the three-particle system with del
ta function potentials, we find that when each line of the two
body interaction is an axis of symmetry of the total system, 
the problem can be decomposed by a method similar to that 
described above into "subproblems" with hard-core or im
pedance boundary conditions. The only three-body model of 
the desired symmetry is the model of three identical parti
cles, for which the solution may be found by simple meth
ods.4 A less trivial model for which the solution can easily be 
constructed from the known solution for the boundary con
dition model, described in Sec. II, is the model of two identi
cal particles interacting via a delta-function potential and 
each of which interacts with the third particle via the imped
ance-type potential. We describe this below. We define the 
coordinates of the three-body system in the usual way as 
follows: 

(13) 
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mkkj - mjkk 
pj = -[2--...::.(----'---)-]]-IZ' 

mjmk mj + mk 

mj(kj + kk) - (mj + mk)k j 
q,' = 

[2mj(mj + mk)(m] + mz + m3)r12 
' 

where i,j,k is any cyclic permutation of the numbers 1,2 and 
3, and rj ,kj are the position and momentum coordinates re
spectively in the center of mass system. 

Now let m 2 = m3 = m . The model under consider
ation satisfies the following Schroedinger equation: 

-.1 tJI (s,t) = E tJI (s,t ), 

a 
-tJl(sz,tz)+a tJI(sz,t2 ) =0, for S2 =0, 
aS2 

~ tJI (s] = 0 + ,t]) - ~ tJI (s] = 0 - ,t]) 
aS I as] 

= - 2g tJI(s] ,t]), 

tJI(s] =O+,t])= tJI(s] =O-,t]), 

(14) 

where (s,t) denotes one of the orthogonally equivalent co
ordinate systems (sj>tJ . The initial ordering of particles is 
assumed to be (1 2 3) or (1 3 2). For positive a and g, the 
interactions are then purely attractive. The coordinate sys
tems and the regions where the wave function is different 
from zero are shown in Fig. 2. 

We also define the position and momentum polar co
ordinates by the equalities: 

s] = r sin tp, p] = VE sin t/! , 

t] = r cos tp, q] = VE cos t/!. (15) 

The lines S2 = 0 and S3 = 0 correspond to the lines tp = f/> 
and tp = - f/>, respectively, with 

f/> = arctan [2m :] m] r12 

(16) 

It is also convenient to introduce the following complex pa
rameters7,,: 

FIG. 2. The three-body coordinate systems for the symmetrical boundary 
condition model with one <'i-function potential. 
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- ia - ig e = arctan , {; = arctan 12 ' (17) 
(E + a 2)1!2 (E + gl)1 

Y E + a 2 = YE cos e, Y E + gl = YE cos {; , 

a = {VE sin e, g = {VE sin (;. (18) 

In the above expressions the square root refers to the 
branch with the positive imaginary part and the arctan de
notes the principal branch of the arctangent function. The 
energy E for the scattering problem may range from 
mine - a 2 

, - i) to plus infinity. The discussion in Refs. 7 
and 8 concerning the behavior of the functions e (E) can be 
transferred here with a few changes. The incident wave is of 
the form exp [ - iE l!2r cos(<p - <Po)] , where <Po is real and 
such that 0 < I <Po I < f/J, which corresponds to the collision of 
three free particles, or <Po = ± (f/J - e), which corre
sponds to the initial situations in which particles (1,3) or 
(1,2) are bounded. Finally, particle 1 may scatter off the 
bound pair (2,3) and this corresponds to the incident wave 
exp [-iE1!2rcos(l<p I-{;)]. 

The boundary conditions (14) can now be written as 
follows: 

- - + tV E sin e IJI (r,<p ) = 0 , [ 
1 a - ] 
r alP 

for <p = ± f/J, 

IJI (r,<p = 0 + ) = IJI (r,<p = 0 ~ ) 

~~IJI(r,<p = 0+) - ~~IJI(r,<p = O~) 
r a <p r alP 

= - 2tVE sin {; IJI (r,<p = 0) . (19) 

Let us express the solution IJI (r,<p ) in the sectors 
- f/J < <p < 0 and 0 < <p < f/J in the form of the Sommerfeld 

transforms: 

IJI (r,<p ) = -2
1 

. i e - IVE r COSZs 1 (z + <p )dz, 
1T1 r 

for - f/J < <p < 0 . 

IJI (r,<p ) = -2
1 

. i e ~ lYE r coszS2 (z + <p )dz, 
1T1 r 

for 0 < <p < f/J . (20) 

The boundary conditions (19) combined with the fact that 
the vanishing of the Sommerfeld integral is equivalent to the 
vanishing of the odd part of the transform imply the follow
ing system of functional equations: 

(sin z + sine )S2 (z + f/J) 

= ( - sin z + sine )S2 ( - Z + f/J); 

SI (z) - SI ( - z) = S2 (z) - S2 ( - z) ; 

(sinz +sin{;)[sl(z)-s2(-z)] 

(21) 

(22) 

=(- sinz + sin{;)[sl(-z)-s2(z)]; (23) 

(sinz - sin e)sl (z - f/J) 

= (- sin z - sin e)s 1 ( - Z - f/J) . (24) 

According to the incident wave conditions imposed on the 
functions IJI (r,<p), the functionss l (z) ands2 (z) are to beregu
lar in the strips - f/J < Re z < 0 and 0 < Re z < f/J, respec
tively, except for the first order pole of one of them atz = <Po 
with the residuum equal to one, or except for the first order 
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pole of $1 (z) at z = - {; and of S2 (z) at z = (;, both residua 
being equal to one. 

By adding and subtracting from each other Eqs. (21) 
and (24), we can separate the system (21)-(24) into two pairs 
of the simultaneous Maluzhinetz equations of type (5) for 
the functions [s 1 (z) ± S2 ( - z)] , corresponding to the 
wedge problem of angle f/J, rotated with respect to the prob
lem (3) by - f/J 12. Making use then ofMaluzhinetz solution 
and also taking into account the regularity conditions im
posed on thefunctions S 1 (z) and S2 (z) , we obtain the follow
ing results: 

1T sin 1T<po I f/J 

2f/J cos 1Tzlf/J - cos 1T<Polf/J 

[ 
_ F(z + f/J 12,f/J 12,{;,e) 

X + ----'-----'---=---'-::-

F( + <Po + f/J 12,f/J 12,{;,e) 

+ , F(z + f/J 12,f/J 12, - i oo,e) ] 

F( + <Po + f/J 12,f/J 12, - ioo ,e) 

1T sin 1T<P 0 I f/J 

2f/J cos 1T zlf/J - cos 1T<Polf/J 

X [± F( - z + f/J 12,f/J 12,{;,e) 
F(T<po + f/J 12,f/J 12,{;,e) 

+ , F ( - z + f/J 12, f/J 12, - i 00 , e) ] 
F(T<po + f/J 12,f/J 12, - ioo,e) 

(25) 

where the upper signs correspond to Rc<po > 0 and the lower 
ones to Rc<po < O. 

For the case of the incident symmetric "surface" wave, 
we find 

sin 1T {; I f/J 
SI (z) = 1Tlf/J ----....:::.....---

cos 1T zl f/J - cos 1T {; I f/J 
X F (z + f/J 12, f/J 12,{;,e ) , 

F( - (; + f/J 12,f/J 12,{;,e) 

sin 1T {; I f/J 
S2 (z) = - 1Tlf/J -----"---

cos 1T zlf/J - cos 1T (; If/J 
F( - z + f/J 12,f/J 12,{;,e) X , 
F( - (; + f/J 12,f/J 12,{;,e) 

(26) 

In the above expressionsF(z,f/J,e + ,e ~ ) denotes theprinci
pal solution ofEqs. (5). The rather formal expression 
F(z,f/J, - i oo,e ~ ) denotes the principal solution of Eqs. (5) 
with the upper sign equation replaced by s(z + f/J) 
= s( - z + f/J) and corresponding to the boundary condi

tion of a hard core (see Refs. 7 and 8.) 
Following the procedure carried out in the papers cited 

above the scattering probability amplitudes and then the 
cross sections can be calculated from the asymptotic form of 
the solution for r -- 00. Alternatively, we can calculate them 
from the off-shell amplitudes that are studied in Sec. V and 
expressed there in terms of the functions SI (z) and S2 (z) . We 
only remark here that contrary to the boundary condition 
model where only the moduli of the Maluzhinetz special 
functions were involved, not all of the cross sections are now 
expressible by elementary functions. The origin of this fact 
lies in the additive structure of Eqs, (25). The verification of 
the flux conservation rules is, however, no more difficult to 
show than in the previous case. 
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It is interesting that the model solved by Lieb and 
Koppe2 with help of the Wiener-Hopf method can also be 
treated by the method described above. Those authors stud
ied the simplified model of the stripping reaction described 
by the following Schroedinger equation: 

(
Jz 

az ) - + - + E 'f/(x,y) 
Jx2 Jy2 

= - 2C8(y)H (x)'f/ (x,y), (27) 

where H (x) is the Heaviside function. Only the case corre
sponding to the symmetric incident wave exp [ - C Iy I 
- i(E + C 2)I12X] was considered. Equation (27) has the 

same symmetry as the model described above, namely one 
axis of symmetry agreeing with the line of the delta-function 
interaction. Following the procedure outlined above, we can 
express the solution of Eq. (27) for an arbitrary incident 
wave as the Sommerfeld integral with the transform com
posed of Maluzhinetz solutions for 2<P = 1T. We have veri
fied that both methods give the same results for the elastic 
and break-up cross sections. 

IV. THE MODEL OF TWO IDENTICAL PARTICLES 
INTERACTING WITH A FIXED WALL THROUGH DELTA 
FUNCTION POTENTIALS 

Let m I = 00 ,m2 = m 3 = m . According to definitions 
(13) and (16) we have 

S2 = -t3' t2 =S3, P2 = -Q3' Q2 =P3' <P=1T/4. 

We consider the following Schroedinger equation: 

[ -.d - 2g18(sl) - 2g8(S2) - 2g8(S3)] 'f/(s,t) 

= E 'f/ (s,t ) . 

(28) 

(29) 

For simplicity we study only the case in which all interac
tions are attractive, i.e., gl > 0 and g > O. Similar consider
ations may however be performed for the model of the same 
symmetry with g I < 0 and g > O. 

The coordinate systems and the lines of interactions of 
the model under study are shown in Fig. 3. In order to apply 
the symmetry of the system with respect to the line s I = 0 we 

FIG. 3. The coordinate systems and the lines of interaction for the delta 
potential model with m, = 00 , m, = m, . 
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FI G. 4. Boundary condition problems for the functions '/I + and '/I.. . The 
symbol" J" denotes the jump of the normal derivative on the lines 
S, = ± t, . 

write 

1 
'f/+(SI,tl)_-['f/(Sptl) ± 'f/(-SI,tl)], (30) 

~ 2 

with the analogous decomposition of the initial state func
tion. The problems corresponding to the "upper parts" of 
the functions are demonstrated in Fig, 4. The solution 'f/ ~ 
can be easily constructed by adding the appropriate number 
ofrescattering terms to the incident wave in such a way that 
all the boundary conditions will be fulfilled. Using the dif
fraction theory language we say that the geometric optics 
approximation is in that case exact, The essential question is 
to find the solution 'f/ t- • We decompose it further as 
follows: 

The problem demonstrated in Fig. 4(a) is then reduced to 
two separate problems in the quarter-plane. It is convenient 
to formulate them in terms of the polar coordinates defined 
as follows: 

SI = r sin (cp + 1T/4) , tl = r cos (cp + 1T/4). (32) 

In the region - 1T/4 < cp < 1T/4 the functions 'f/ + + and 
'f/ + ~ are solutions of the Helmholtz equation with the fol
lowing conditions: 

~~ JT/ ( ) 0 Y', ~ r,cp = , 
r a cp -

'f/ + _ (r,cp) = 0 for cp = 1T/4, 
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J.- ~I[/ + ± (r,<p = ° +) - J.- ~I[/ + ± (r,<p = ° -) 
r alP _ r alP 

= - 2i V E sin 01[/ + + (r,<p = 0) , 

1[/ + ± (r,<p = ° +) = 1[/ + ± (r,<p = ° -) 
J.- ~I[/ + ± (r,<p) + lYE sin OJ 1[/ + ± (r,<p) 
r a <p 

= ° for <p = - 1T/4. (33) 

The parameters 0 and OJ have the same meaning as In tnt: 

previous cases, i.e., 

-igJ 
OJ = Arctan . 

(E + ~)1I2 
- ig 

0= Arctan , 
(E + gz)J12 

(34) 

For E < - gz the parameter 0 is a real number in the inter
val ( - 1T/2,0); for - gz <E <0 we have Re 0 = - 1T/2, 
ImO < ° and for E > 0, i.e., above the break-up threshold, 0 
is purely imaginary with 1m 0 < 0. The same goes for the 
function OJ (E) (ifgis replaced by gJ). The initial state func
tions in the quarter-plane 1<p1 < 1T/4 are 

tPin = exp [ - lVE r cos (<p - CPo)] 

for CPo real, Icpo I < 1T/4 (three incident particles), 

tPin = exp [ - lYE r cos (cp - OJ + 1T/4)] 

(particles 2 and 3 bounded), or 

tPin = exp [ - lYE r cos ( I cP I - 0)] 

(particles 1 and 2 or 2 and 3 bounded). 
In the above expressions we have omitted the normal

ization factors and the factors resulting from the symmetri
zation of the total initial state function. 

Let us express the functions 1[/ + _ and 1[/ + _ in the 
sectors - 1T/4 < cP < ° and ° < cP < 1T/4 in the form of the 
Sommerfeld transforms 

1[/ + ± (r,<p ) 

= -. exp(-lYE rcosz)sJ±(z+ <p)dz, 1 I -
2m y 

for - 1T/4 < cP <0, 

1[/ + ± (r,<p ) 

= -. exp( - tV E r cosz) sl (z + cp) dz , II -
2m y 

forO< cp <1T/4. (35) 

The scattering conditions require that sJ± (z) and sl (z) be 
regular in the strips - 1T/4 < Re z < ° and ° < Re z < 1T/4 
respectively except for the first order pole of one of them 
with the residuum equal to N, where N is the normalization 
constant. Here we shall set N = 1. For the case in which a 
"surface" wave comes from infinity along the line <p = 0, 
both pairs of functions S J± (z) and sl (z) have first order poles 
of equal residua at z = - 0 and z = 0 respectively. As be
fore we demand that the wave function be bounded for 
r -+ 0, this condition being a sufficient one for the total parti
cle flux through an infinitely small circle with the center at 
r = ° to remain finite. The above condition implies that 
S J± (z) and sl (z) tend to finite values for 11m zl -+ 00. The 
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boundary conditions (33) imply the following two systems of 
functional equations: 

(sin z - sin OJ )sJ± (z - 1T/4) 

= (- sinz - sin OJ)sJ±( -z - 1T/4), 

(sinz + sinO)[sJ±(z)-s2±(-z)] 

= (- sinz + sin O)[sJ±( -z) -sl(z)], 

sJ± (z) - sJ± ( - z) = S2± (z) - sl ( - z) , 

sl (z + 1T/4) = =F sl ( - z + 1T/4). 

(36) 

(37) 

(38) 

(39) 

In the above equations the upper and lower signs go togeth
er. Unlike the system of equations considered in Sec. III, the 
above systems of equations cannot be decoupled into the 
system of Maluzhinetz equations. More advanced methods 
of the theory of functions are needed in order to solve them 
analytically, Not undertaking this task here, we shall note 
that each of the systems given by Eqs. (36)-(39) can be re
duced to one difference equation of the second order, which 
is similar to the type of difference equations studied by Jost! 
and Alberviero5 and as that studied by Gaudin and Derrida/ 
and solved by the authors completely. The problem consid
ered in this paper is however more complicated due to the 
presence of two, instead of one, different parameters charac
terizing interactions. 

For OJ = ° and for OJ = -_. i 00, which corresponds to 
the Neumann and Dirichlet boundary conditions, respec
tively on the line cp =- 1T/4 in the problems (33), Eq. (36)
(39) are solvable by elementary methods. We shall give here 
the explicit forms of the functions Sit (z) and sl (z) for 
0 1 = - i 00, this corresponding to replacing Eq. (36) by the 
equation sJ± (z - 1T/4) = SI± ( .- Z - 1T/4). With the help 
of these functions one can construct the "trivial" part 
1[/ __ (r,<p) of the total solution 1[/ (r,<p). In the coordinate sys
tem defined by (32) these functions present the Sommerfeld 
transforms of the symmetric and antisymmetric parts of 
1[/ _ (r,<p) with respect to the line tl = ° [see Fig. 4(b)]. For 
0 1 = - i 00 , we find 

SI-(Z)=! [F(z)+G(z)], S2-(Z)=! [G(z)-F(-z)], 

where 

-4 sin 4cpo 
G(z) = -----

cos 4z - cos 4cpo ' 

-4 sin 4cpo 
F(z)=----

cos 4z - cos 4cpo 
X (sinz- sinO) (cosz+ sinO) 

(sin <Po ± sin 0) (cos <Po + sin 0) , 

for Re CPo ;;0, and 

G(z) =0, F(z)= 2cosO(cosO- sinO) (40) 
(sinz+ sinO)(cosz- sine)' 

for the incident surface wave; 

st (z) = ! [fez) + fez - 1T/2)] , 

st (z) = ! [fez - 1T/2) - f( - z)], 
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where 

fez) = 
- 2 sin 2qJo sinz - sin e 

cos 2z - cos2qJo sin CPo ± sin e 
2 sin 2qJo sin z - sin e 

cos 2z + cos 2qJo cos CPo + sin e ' 
and 

fez) = __ 2_c_os_e __ 
sinz + sin e 

for the incident surface wave. 

for RecpoSO 

(41) 

V. THE RELATIONS BETWEEN THE HALF-OFF-SHELL 
PROBABILITY AMPLITUDES AND THE SOMMERFELD
MALUZHINETZ TRANSFORMS OF THE WAVE 
FUNCTION 

Here we show that the half off-the-energy shell exten
sions of the probability amplitudes of the elastic and ex
change processes for the three-body models studied in the 
previous sections are connected in a simple way with the 
Sommerfeld transforms of the wave function. The method is, 
in principle, the same as that employed in Ref. 17 for the 
exactly soluble boundary condition model, with the differ
ence that we make use here exclusively of the functional 
properties determining the transforms without refering to 
any analytic solutions. 

The half-off-shell amplitudes under consideration pre
sent the unknown functions of the Faddeev-Lovelace equa
tions. 19 The numerical study of those equations for the delta 
potential model was carried out by Dodd.20 Dodd21 and Ma
jumdar22 studied those equations analytically for the exactly 
soluble model of three identical particles. The analytical 
structure of the one-dimensional Faddeev equations for a 
slightly more general class of interactions was also studied 
by Brayshaw and Peierls.2l Although we do not touch here 
on the problems dealing with the structure of the Faddeev
Lovelace equations themselves, we believe that the introduc
tion of the complex polar momentum variable as defined 
below, which uniformizes the square root functions occur
ring in the kernel of the above equations, may be helpful in 
clarifying some of those problems. 

The two-body t matrices for the interactions of interest 
are of the one-term separable form 

(p' j t (z) jp) = !(p')r(z)f(p), (42) 

where p is the momentum variable defined by Eq. (l3), z is 
the complex energy parameter, r(z) is the two-body propaga
tor, andf(p) = - CPb(P)(p2 + Eb ) is the form factor of the 
bound state with the eigenfunction CPb and eigenenergy Eb . 

For the delta potential, Eqs. (10) 

f(p) = - (2g3 hr)l!2 , (43) 

r(z) = _ _1_ tV; , (44) 

2~ g+/Vz 
and for the impedance interactions described by the bound-

ary conditions ¢'(O) ± a ¢(O) = 0 with a> 0, we have l4 

f(p) = - i (ahr)1/2( ±p + ia), (45) 

(46) 

We consider the functions hjl(q;,q,;E + iO), which are the 
solutions of the following Faddeev-Lovelace equations: 

h)/(q;,qi;E + iO) = b)/(q;,qi;E + iO) 

3 fOO 
+ k~1 _ c.c dq" bjk(qj,q";E + iO) 

Xrk(E + iO - q,,2)h ki (q",qi;E + iO), 
(47) 

where i,j,k = 1,2,3;qi are defined by Eq. (l3), 

bjk(qj,qk;E + iO) = (qj,jl(E + iO - Ho) - Ilk,qk > 
X (1 - Ojk ) . (48) 

Ii) denotes the form factor vector of the pair i = (j,k), i.e., 
J:(p;} = (iJpi) ,Ho is the kinetic energy operator, and E is 
the total energy of the three-body syetem. Equations (47) are 
considered to be "half-on the energy shell" in the meaning 
that 

E = q~ - Eb,i , (49) 

where Eb,i denotes the bound-state energy of a pair i, As is 
well known the half-off-shell amplitudes h)/ are related in the 
following way to the scattering wave function: 

hji(q;,qi;E + iO) 

= (qj,jl(E+iO-Ho)-I(Vi + Vk)\l/Ii,q), (50) 

where II/Ii,q,) is the vector of the scattering wave function 
corresponding to the initial state vector jq;i,qi) and normal
ized to a unit current density of incident particles and V V , I' k 

are the operators ofinteraction of the pair i and k, respective
ly, In the following, the part + iO at the energy variable is 
dropped, We shall use Eq. (50) as a starting point to derive 
the expressions relating the amplitudes hji to the Sommer
feld transforms of the polar coordinate representation of the 
state vector jl/l"qi) . At the beginning we give some prelimi
nary results that enable us to treat the models under consid
eration in a uniform way. 

Let 1/1 (r,q; ) be the scattering solution of the Helmholtz 
equation in the angular region Iq; I < <1>, where <1> < 1T, satisfy
ing the conditions as given by Eq. (19) where eventually two 
different parameters e + and e _ may appear for q; = <I> 
and cP = - <1>, respectively. 24 Let S I (z) and S2 (z) denote the 
Sommerfeld transforms of the solution as defined by Eq. 
(20). The transforms satisfy the system of equations (21)
(24) with e + appearing in Eq. (21) and e _ appearing in 
Eq. (24). The operators of the interactions corresponding to 
imposing the junction or the boundary conditions on the 
lines cP = 0, q; = ± <I> are denoted by V", = 0 and V", = ± <P , 

respectively. Making use of the inversion formula (9) of the 
Sommerfeld integral and then of the functional equations 
satisfied by the functions S I (z) and S2 (z) , we obtain the fol
lowing result: 

f<P dm (00 dr re'VEr cos (z + "') V~ = 0 IT, (r,m ) __ . ,. (00 ~ ·'-E 
_ <p T' Jo r Y' T' - 2i sm ~ Jo dr e'Y r cos ZI/I (r,q; = 0) 
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(51) 

valid for the values ofz contained in the region inside the loops of the Sommerfeld contour and such that the integral in (51) 
converges. With the similar restrictions imposed on z + tP and z - tP, respectively, we also obtain 

f'" dcp (OC r dr elY E ~ co, (z + 11') VII' = '" 1/1 (r,cp ) 
- '" Jo 

= _ (OC drl/l(r,cp=tP)[(.J....~_iYEsine+)e,YErCaS(z+<P)] 
Jo r a cp II' = '" 

sin (z + tP) + sin e + 
. [S2 (z + 2tP) - S2 ( - z)] = - 2 S2 ( - z) 

sm (z + tP) 
(52) 

and 

J
'" dcp ('" r dr el

'./ E r cos (z + 11') VII' = _ '" 1/1 (r,cp ) 
- '" Jo 

(00 dr I/I(r,cp = _ tP) [(.J....~ + iYE sin e _ )eIYErCaS(z+CP)] 
Jo r a cp 'P = - '" 

sin (z - tP) - sin e _ 
. [sl(z-2tP)-sl(-z)]= -2sl{-z). 

sm (z - tP) 
(53) 

In the left-hand side equalities of (52) and (53), we have applied the rules of action of the distributions V'P = ± '" as derived in 
Ref. 14. Before passing to the calculation of the amplitudes, we define also the "off-shell" momentum polar coordinate TJ by 
the following equalities: 

q = YE cos TJ, Y E - q2 = YE sin TJ . (54) 

The domain D of the TJ variable is determined as follows: 

D = {(TJ: -1T/2 <ReTJ <1T/2 ,lmTJ>O) u (1T/2 <ReTJ < 31T/2,ImTJ <O)}, for E>O, 

D = {TJ:O < ReTJ < 1T}, for E < 0 . 

The region D is mapped by the transformation (54) onto the cut plane q on which 1m Y E - q2 > O. 
Let us consider now the scattering off the bound state in the model system described in Sec. III. Applying the Eqs. (15), 

(18), (51) and (52), and well as the functional equations for SI (z) and S2 (z) , we find: 

h1,(q',qJ= (q',31(E-Ho)-I(VI + V2)11/I"q) 

I a d ( . ) d d -;P353- iQ'/3(V V)'Tf ( ) iN ( )1/2 Joc 1 Joo Joc 
= - - P3 - p, -fa 2 '2 S) I) e . I + 2 'l'j,q, S),!) 

21T 1T- oc P3 - E + q - 00 - 00 

=N(!!...)I/ZYE-q'2 +iaJ'" JOC d dt -IYE-q"S,-,qt,{V +V)'Tf ( t) 
I ... / S 3 3 e I 2 'I' j,q, S 3' 3 

1T 2 V E _ q,2 - 00 - 00 

=N.(!!...)1/2 sinTJ'- sin e J'" d i'" d iYErCas('P+"'-"")(V V)'U ( ) 
I , cp r rei + 2 '1', q r,cp 

1T 2 sm TJ' - '" 0 ' , 

(
a )112 sin TJ' - sin e = - - N, . [SI(tP-TJ')-S2(tP-TJ')+S2(-tP+TJ')] 
1T sm TJ' 

_ (a )1!2N sin TJ' - sin e (.m. ') 
- - - , . SI - 'P + TJ , 

1T sm TJ' 
(55) 

wherei = 1,2,3 and the normalization constantsN, areNI = (g/21T)1I2 ,Nz = N3 = (a/1T)I!2 ,and the coordinate TJ' is related 
to q' according to (54). In fact, the Sommerfeld transforms should also be supplied by the index determining the initial 
situation in scattering that, as we recall, determines the regularity conditions imposed on those functions. We, however, drop 
off such an index. 

In a similar manner, we calculate the amplitude h2;(q' ,qJ with the help of (51 ) and (53) and the functional equations (21)
(24): 

h2,(q',qJ= (q',21(E-Ho)-I(VI + Vz)1I/I"q) = .,. 

= (!!...)I!2N, sin TJ' ~ sin e ('" r dr f'" dcp etVErcas (.,,' + II' - "')(V
I 
+ V2)I/I,q (r,cp) 

1T 2 sm TJ' Jo - '" ' , 
_ (!!...) 1I2N sin TJ' - sin e [ (' .m.) (,.m.) ( , .m.)] 
- , . SI TJ - 'P - S2 TJ - 'P - SI - TJ + 'P 

1T sin TJ' 
_ (a)1I2N sinr!, - sine ( , .m.) 
- - - , • S2 - TJ + 'P • 

1T sm TJ' 
(56) 
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The calculation of the amplitudes hl;(q',q;) is, in short, as follows: 

hli(q',q;) = (q,11(E-Ho)-I(V2 + V3)ICft;,q) 

(
2g3)112 iN foo f"" -

= - V I dS I dtl exp (tv E - q21s 1 I - iq 't l )(V2 + V3)Cft;,q,(Sj>f;) 
1T 2 E_q2 --00-00 

= - ~ N; ~ dq:; rdrexp[{V' E r cos (rp + 1]' - 1T)] V2 Cft(r,rp) (
2 )1/2 . (; { 1<1> 100 

-

1T sm 1] 0 0 

+ [<1> drp fe r dr exp [{V'E r cos (1T + rp - 1]')] V3 Cft (r,q:;)} 

(2g) 112 sin (; 
- - -, -, N; [SI (1]' - 17) - S2( - 1]' + 1T)]. 

1T sm 1] 
(57) 

In order to obtain the physical probability amplitudes weput1]' = - eor1]' = e + 17, whichcorrespondstoq' = (E + a 2)112 
and q' = - (E + a 2

)1I2, respectively, in Eqs. (55) and (56), and 1]' = - (; or 1]' = (; + 1T in Eq, (57). The formal resem
blance of the expressions for the amplitudes hji for different i and the samej is lost if one takes into account the different 
regularity conditions imposed on the Sommerfeld transforms for different values of i. For instance the functional equation 
(24) implies thats l (- l/> - e)mustvanishifs i (z) is regular for - l/><Rez<Oandthats l (-l/> - e) = - cos e /2 sin e 
if SI (z) - (z + l/> - e) - I is regular in the same strip. The above, in turn, implies that h31 (lq31, - Iql I) = h32 (lq31, Iq21) 
= 0, whereas h33 (lq31, Iq31) = - (i/1T)lq31 = - (i/1T)(E + a 2

)1!2 as demanded by the impenetrability ofinteractions ter
minating the region of motion of particles (see Fig. 2). 

The amplitude TO; (p',q';q;) of the break-up process can be calculated with help of the Faddeev-Lovelace equation 
relating this amplitude to the amplitudes hji 19 

3 

TOi(p',q';q;) = (p',q'I(V1 + V2 + V)Cft;,q,> = L fk(P'k) Tk(E + iO - q,2)hki (q'k,q;) , 
k~l 

where P'7 + q'; = E and p' ,q' denotes any of the orthogonally equivalent systems P';. q'i for i = 1,2,3. 

(58) 

It is convenient to consider Eq. (58) in terms of the momentum polar coordinate t/J defined by (15) and the off-shell 
coordinate 1]. In the energy region in which the dissociation is possible, we have 0 < q2 < E, which corresponds according to 
(54) to 1] E (0,1T). Taking this into account and comparing the definitions (15) and (54), we find that q;, q' 2' and q' 3 in (58) 
correspond in passing to the polar coordinates to 1]' = It/JI, 1]' = t/J - l/> + 17, and 1]' = - t/J - l/> + 17, respectively. 
Expressing the formfactors and propagators as given by (43)-{ 46) as trigonometric functions of 1]' and of the parameters e 
and (;, and making use of Eqs. (55)-{57) and also of the functional equations for SI (z) and S2 (z), we can reduce Eq. (58) to the 
following form: 

(59) 

as expected from the asymptotic form of the Sommerfeld integral for r -+ 00 .12 

According to these results as well to the results of Sec. III, we find that similarly as for the boundary condition model17 the 
half-off-shell elastic and exchange amplitudes for the model under consideration can be expressed in terms of Maluzhinetz 
special functions,25 

Let us go now to the delta potential model studied in the previous section, namely to the system with m 1 = 00, m 2 = m 3 , 

V2 = V3 • The amplitudes have the following symmetry properties: 

h22 (q',q) = h33 (q',q) , h23 (q',q) = h32(q',q) , 

h13 (q',q) = h12 (q',q) , h31 (q',q) = h21 (q',q). 

Owing to the the symmetricity of the potentials, we get 

hji ( - q',q) = hji(q', - q) . 

Let us define the following combinations of the amplitudes 

1100 

hvv(q',q) = +[h22 (q',q) + h32 (q',q)] = ~ [h33 (q',q) + h23 (q',q)] , 

h1u(q',q) = h13 (q',q) = h12(q',q) , 

hut (q',q) = h2t (q',q) = h3t (q',q) , 

h l (q',q) = + [hji(q',q) ± hji( - q',q)] , i,j = 1,v, 
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Making use of Eq. (50), we can easily verify that the amplitudes h l (q',q;) are expressible in the following way by the 
combinations 4/1 + ± (5,1) of the wave function as defined by (30) and (31): 

h v7(q',qJ = (q',2/(E - Ho) -I(VI + V3 ) /4/1 + ±,qiJ = (q',3/(E - Ho) -I(VI + V2) /4/1 + ± ,qi';)' (62) 

hiT (q',qJ = (q',l/(E - Ho) -1(V2 + V3 ) 14/1 + ±,qi';)' (63) 

where we takeqi = (E + .f)1I2 , for i = v; andq; = - (E + gl )112, for i = 1; the above choice corresponding to the directions 
of the incident wave in the first quarter-plane in the (s,t) plane (Fig. 3). Equations (62) and (63) may be transformed further 
with help of methods similar to those applied in the previous case if the symmetry properties of the functions 4/1 + ± are also 
taken into account. For instance, Eq. (62) may be written as follows: 

huT (q',q,) = -' ..L dp2 2 '2 ds2dt2 exp [-ip2 S2 -iq't2](VI + V3)1[I+ ±,q,,; N (2 3)112 foo 1 foo foo 
21T 1T - 00 P2 - E + q - 00 - 00 

= - ' ds2dtz exp I V E - q'2 IS21 - iq'tz (VI + V3 )1[I + ± (S2,ts ) (2~)1I2 iN foo foo [" / ] 
1T 2Y E _ q'Z - 00 - 00 

= _ Ni (2g) 112 si~ e, { (n- drp (00 r dr eiV£, cos ('I' + '1')( VI + V
3

) 1[1 + ± (r,rp ) 
1T 2 sm 17 Jo Jo 

+ in- drp i oo 
r dr eiVErcos ('I' - '1')(VI + V3 )1[I + ± (r,rp )} , (64) 

where we have used the same polar coordinates as in Sec. IV, i.e., S2 = - r sin rp, Iz = - r cos rp, For convenience, the 
indices q"i determining the initial state of scattering of the function 1[1 + ± (r,rp) have been dropped. Since 1[1 + ± (r,rp) are 
symmetric with respect to the line SI = 0, i.e., to the line rp = - 1T/4, rp = 3ff/4, and since 

1[1 + ± (r,rp) = ± 1[1 + ± (r,rp + 1T) , (65) 

we see that the calculation of the integrals in (64) can be reduced to the calculation of the integrals over the angular regions 
- 1T/4 <rp < Oand a <rp < 1T/4 in which the functions 1[1 + ± are solutions ofEqs. (33). By Eqs. (51) and (53) as applied to the 

Sommerfeld transforms s I± (z) and sl defined in Sec, IV, and by the functional equations (36)-(39), we obtain the following 
results: 

h uT(q',q,) = - ~ (..L)1I2 s~n e [SI± (- "I') - sz± (17') ± Sl± (r7' - 1T) + sl ( -17' + 1T)], 
2 21T sm 17' 

(66) 

where, as before, 17' is related to q' according to (54). 

(g )112 (g )112 
The normalization constants are N1 = 2: and N v = 21T 

Performing similar considerations for the amplitude h ir (q',q;) as defined by (63), we obtain 

(
g )112 sine 

h/f(q',qJ= - _1 N;-, _1, [SI±(17' - 1T/4)±S1±(-TJ'+31T/4)] , 
21T Sill 17 

(67) 

We recall that aU the information concerning the initial state of the scattering process is contained in the functions Sl± (z) and 
sl (z). For i = v, we demand that [SI± (z) - (.t + e) -I ] be regular for - 1T/4 < Rez < Oand [sl (z) - (z - e)- I ] be regular 
for a < Re z < 1T /4, whereas for i = 1 the functions sl (z) are to be regular for a < Re z < 1T /4 and [s I± (z) 
- (z - e l + 1T/4) -I] are to be regular for - 1T/4 < Re z < O. 

The on-shell values of (66) and (67) are obtained by putting "I' = - e or 17' = e + 1T in (66) and 17' = - e I or 
17' = e l + 1T in (67), the expressions for each of those two values being related to each other according to the symmetry 
properties of the amplitudes, 

For completeness sake, we note that in the decomposition (61), we omitted the fol1owing combination of amplitudes: 

h22(q',q)-h23(q',q)= (q',21(E-Ho)-I(VI + VJII1[I2,q) -11[I3,q»' (68) 

The above combination corresponds to that part of the wave function which, in the (s,t) plane representation, is anti symmetric 
with respect to the line SI = 0 , i.e., to the function 4/1_ (s,t) that corresponds to the "trivial" part of the scattering problem 
(see Sec. IV and Fig. 3). By subtracting Eq. (47) as written for the functions h22 and h33 and making use ofthe symmetry 
properties of the Born factors, we find that the amplitude (68) is the solution of one independent Faddeev equation. In a 
similar way to that described above, the amplitude (68) can be further decomposed into its symmetric and antisymmetric parts 
and related to their Sommerfeld transforms as given by (40) and (41). 

VI. CONCLUSIONS 

In this paper we presented some results of the application of the Sommerfeld-Maluzhinetz transformation, as known in 
the wave diffraction theory, to the one-dimensional three-body problems with zero-range interactions. By this approach, the 
three-body problem reduces to the problem of solving a system of functional equations for the Sommerfeld transforms of the 
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wave function. In the case of the boundary condition model, and also the related symmetric boundary condition model with a 
two-body delta potential, the functional equations may be solved by the application of Maluzhinetz methods. However, for 
more complicated models such as the delta potential model considered in Sec. IV (the author's main interest), we have to look 
for more advanced function-theoretic methods. Putting aside the questions of solvability of functional equations, it is shown 
that the applied approach is attractive for the close connections of the Sommerfeld transforms of the wave function with the 
off-shell extensions of the elements of the three-body scattering matrices. The above connections show (in an indirect way) 
that the reformulation of the Schroedinger equation through the Sommerfeld transformation can be also considered as the 
reformulation ofthe Faddeev-Lovelace equations. Knowledge of the Sommerfeld transforms of the wave functions provides 
directly all the information expected from the solution of the quantum-mechanical three-body problem; namely, the probabil
ity amplitudes for all possible scattering processes as well as the discrete spectrum of the Schroedinger equation. The binding 
energies of the three-body bound states may be found by investigating those poles of the half-off-shell amplitudes whose 
position is independent of the final momentum coordinate. Also, the matrix elements of the time delay operator may be 
expressed in terms of the Sommerfeld transforms by the application of the connections of those elements with the S-matrix 
elements and their energy derivatives. 26 In all likelihood more could be said about the quantities mentioned above by relying 
solely on the functional properties demanded by the Sommerfeld transforms without the necessity of referring to the analytic 
solutions. 
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The spectrum of a quantum mechanical Hamiltonian with SU(N) symmetry is studied in the 
limit N ----+ 00. A complete description is given for the states which transform according to (i) the 
scalar representation (singlet states) and (ii) the adjoint representation of SU(N) ("adjoint" 
states). The eigenvalues of the singlet states are equally spaced with a finite gap w(g) as N ----+00. 
The spectrum of the adjoint states is equally spaced asymptotically for large excitations with the 
same gap w(g). The first excitation of the adjoint states is lower than the first singlet excitation. 
An accidental degeneracy appears which is removed by 1/N corrections. We compute explicitly 
this splitting for the singlet states. In this formulation 1/ N 2 plays a role similar to fl so that all 
computed quantities are related to the corresponding classical system. All the quantities which 
enter in the calculation of the spectrum are analytic near g = 0 with the same radius of 
convergence. 

I. INTRODUCTION 

The topology of graphs emerges as an important con
cept for Strong Interactions. In fact it has been suggested 1

.
2 

that already the planar amplitudes should describe the main 
dynamical features. Let us recall some of these indications. 
For a SU(N) gauge theory, in the limit N----+ 00, the Feynman 
graphs are arranged into sets which have explicitly the same 
topology of the quantum dual string with quarks at its ends. 1 

This suggests that the color confinement may take place al
ready at the planar level. This hope is actually realized in the 
special case of two space-time dimensions. 3 A second indica
tion of the relevance of the planar amplitudes is given by the 
recent calculation4 of hard processes in Q.e.D.: At any given 
order of perturbation theory the leading contribution is giv
en, in the axial gauge, by sets of planar graphs. Finally, the 
analogy of planar amplitudes with exchange degenerate 
Regge poles suggests a way to sums all the terms of the topo
logical expansion with Gribov's Regge Field Theory, thus 
leading to a unified picture6 of various attempts in the study 
of strong interactions. 

Due to these promising features one would like to devel
op nonperturbative methods for dealing with the large N 
limit ofSU(N) gauge theory. This has been done3 only in the 
special case of two space-time dimensions where in the axial 
gauge, the topology of diagrams is trivial. In order to learn 
some methods which could be applied in general, attempts 
have been made to study the limit N----+oo ofSU(N) symmet
ric scalar theories, defined by a Lagrangian of the form 

if = Tr (!J/1 ip{)l'ip - (N Ig) V «(gIN) ip 2» 
ip being a Hermitian N XN matrix. 

A preliminary problem was the study of the multiplicity 
of graphs 7-9 (zero space-time dimension). A lesson one 
learns here is that, since 1/N2 plays a role similar to fl, the 
planar amplitudes can be studied in terms of equations of the 
classical type. 

The second step is the study of quantum mechanical 
systems with SU(N) symmetry. The ground state energy has 
been computed9 and again one finds that only classical equa
tions are involved. This calculation however does not in-

volve the full structure ofSU(N) since the "angular varia
bles" ofSU(N) enter in a trivial way. 

In this paper we want to continue the analysis of the 
quantum mechanical system and study the spectrum of non
singlet states, where the full structure ofSU(N) is involved. 
Actually we will limit ourselves to study the spectrum of 
states which belong to the adjoint representation ofSU(N), 
but the method we develop can be applied, in principle, to 
higher representations. Essentially the problem is to make a 
partial wave expansion with respect to SU(N) in order to 
reduce the Schrodinger equation to a simpler "radial" form. 
For singlet states one obtains a separable equation,9 equiv
alent to that describing N noninteracting fermions in a com
mon anharmonic potential. For N----+oo the spectrum is then 
equally spaced with a finite gap w(g) which can be interpret
ed as the frequency of the classical orbit at the Fermi energy. 
An accidential degeneracy appears which is removed by the 
first 1/ N correction: The splitting is again expressed in terms 
of classical quantities. 

For the adjoint representation, the reduced equation is 
actually given by a system of coupled differential equations 
which are not separable. We find however that 1/N 2 is a 
natural expansion parameter, since the nonseparable part 
can be treated as a perturbation, where the leading term re
duces to the singlet state equation. For large N the spectrum 
of the adjoint states is then given by ordinary perturbation 
theory of degenerate eigenvalues. This problem can be cast 
in the form of a singular integral equation whose eigenvalues 
give directl y the spectrum of the adjoint states up to 0 (1/ N). 
The result of this analysis is that the gaps of these states with 
the ground state are finite as N- 00 and the first excited state 
of the adjoint representation is lower than the first excited 
singlet state. For large excitations, the adjoint states become 
equally spaced with the same gap w(g) of the singlet states. 
The results we present here are for the potential V (u 2) 
= !u 2 + u 4 but the general structure of the spectrum is the 

same provided that the classical system has only periodic 
orbits. 

After defining in Sec. 2 our SU(N) quantum mechanical 
system, we discuss the full spectrum of the singlet states (Sec. 
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3) and of the adjoint representation (Sec. 4). Sec. 5 contains 
the summary and some comments. 

2. THE QUANTUM MECHANICAL SYSTEM 

We want to study the spectrum of the Hamiltonian 

H = TrGr + ~q; 2 + (gIN) q; 4), (2.1) 

where q; is a Hermitian N XN matrix and Tr(!1T 2) is the ki
netic energy, namely 

(2.2) 

H is an operator in the Hilbert space L2 of square integrable 
functions with respect to the invariant volume element. 
[dq; ] = II dq;jj IT(2i) -Idq;ijdq;j,. The Hamiltonian is invar
iant under the SU(N) transformations q;_Uq;ut. This im
plies that to every energy level there corresponds a unitary 
irreducible representation ofSU(N)/ZN • The most natural 
choice of coordinates to study the Schroedinger equation for 
the Hamiltonian (2.1) is therefore given by the "polar" re
presentation of q; 

q; =UA Ut, (2.3) 

where A = diag[AI , ... ,AN] and Ubelongs to the coset space 
SU (N )/H, H being the stability subgroup of A under SU (N). 
Except for a set of measure zero, H is the Cartan subgroup of 
diagonal unitary matrices with determinant one. The kinetic 
energy (2.2), i.e., the Laplace operator, can be easily ob
tained in polar coordinates starting from the line element 

.'II 

ds2 = Trdq; 2 = L dA 7 + L (Aj - Aj)2 I(UtdU)ij 12 (2.4) 
iJ 

and it is given by 

- V;A) ~ (J~J2 V(A) 

+ L (Aj _..1.)-2 Mij (~), 
j<j J{fa 

(2.5) 

where V(A) = II jd (Aj - Aj)andMIj isasetofnoncommut
ing differential operators with respect to the angular coordi
nates {fa (a = 1,00', N 2 

- N) which parametrize the coset 
space SU(N)/H. For N = 2, MI2 is the ordinary total angu
lar momentum squared. We shall not need an explicit char
acterization of the parameters {fa , since all our calculations 
will be coordinate-free. 

The invariant volume element [dq;] is given by 
[dq;] = V(A )2dAI ... dAN·[dU], where [dU] is the invariant 
volume element over the coset space SU(N)/H. Since in the 
following we shall integrate over H-invariant functions, 
[dU] will be extended to the invariant volume over SU(N). 

3. SINGLET STATES 

The wave functions for SU(N)-invariant states are given 
by 

(3.1) 

where ¢ is totally symmetric under permutation of the eigen
values Aj. From (2.5) the angular part in the kinetic term 
vanishes thus simplifying the Schrodinger equation which 
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turns out to be separable9 

i (-~ (~)2 + ~A 7 + ~A i) cP(A) = EscP(A), (3.2) 
I 2 JA j 2 N 

where 

cP (A) = V(A )¢(A). (3.3) 

Since cP is totally antisymmetric, the problem is reduced to 
finding the energy levels for a system of N noninteracting 
ferrnions in the anharmonic potential !A. 2 + g/ N A 4. Let 
en (g) be the nth energy level of the anharmonic oscillator 
!(p2 + x 2) + gx4 and Un (g,x) the corresponding 
eigenfunction. 

The ground state is obtained by filling up the first N 
levels 

cPo (A ) = 1 detllun(gIN, AJIIf 
v'N! 

with ground state energy Eo (g,N) given by 
N 

(3.4) 

Eo (g,N) = L ej(gIN). (3.5) 
I 

The leading term of the liN expansion of (3.5) 

Eo(g,N) = N 2 €o(g) + 'T/o(g) + o (liN 2) (3.6) 

was obtained in Ref. (9) by the semiclassical method. For 
latter convenience we rederive their result. For large N the 
leading term in (3.6) is given by the eigenvalues en (gIN) with 
large n for which we can apply the semiclassical 
approximation 

(lI21T) f dx v' 2en (gIN) - x 2 - 2gx4/N = n - ! 

(n = 1,2, ... ). (3.7) 

It follows that 

N 
en (gIN)=- n «n - !)gIN), 

g 

where n (g1 is obtained by inverting the equation 

(3.8) 

g = (lI21T) f dx v' 2n (g) - x 2 - 2x4. (3.9) 

The sum in Eq. (3.5) can be approximated with an integral 
(via Euler-MacLaurin expansion) yielding 

Eo(g,N)~ iN dn (N Ig) n (ngIN) 

= (N 2/g2) r n (g') dg'. (3.10) 

Considering the first singlet excitation, we have 

EI (g,N) = Eo (g,N) + e.'V+I (gIN) - eN (gIN) (3.11) 

obtained by exciting the last level of our N-fermion system. It 
follows from Eq. (3.8) 

dn(g)_ 
EI (g,N) - Eo (g,N)=--=w(g). (3.12) 

dg 

Notice that w(g) is just the frequency of the classical orbit in 
the anharmonic potential at the Fermi energy eN (gIN): 

w(g) = {(1/21T)g> dx(2n (g) - x 2 _ 2x4) -1!2} -I. 

(3.13) 
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TABLE I. 1/ N fine structure of singlet states 
(1)(1000) = 18.37130; (1)'(1000) = .00612; N = 5, g = 1000 

{k,ql E\ k.q\ - Eo (Eq. 3.19) Exact value '5 (Eq. 3.15) 

{ l,°l 18.37130 18.35163 

{2,01 37.96497 37.85734 

{I,ll 35.52023 35.38035 

!3,Oj 58.78101 58.39384 
(2,11 55.11390 54.88606 
( 1,21 51.44685 50.83442 

A general singlet state is characterized by a set of integers 

O<ql <qz <"'<q" I<kl <kz <···<kr (3.14) 

E1q,kj(g,N)=Eo + I (eN+k, -eN_ q) 
I 

=:::fBO + w(g) I(k; + q;), (3.15) 
I 

which shows that the singlet spectrum is equally spaced with 
a gap given by the classical frequency w(g) and a degeneracy 
given by the partitions of w(g) -I (E - Eo) into integers sat
isfying the inequalities (3.14). This degeneracy is "acciden
tal" and it is broken by the 1/ N corrections. 

To calculate higher order corrections in the 1/ N expan
sion of the energy gaps, one has to calculate higher order 
WKB approximations to the eigenvalues en (g). The first 
nonleading term is given by 

en (gIN) = (N Ig) n «n - DgIN) + !(gIN) e~) 

+ o (gIN). (3.16) 
(nglN -constant), 

where e~Z) is obtained through the well-known relation 10 

e(2) = __ 1_ w(j) (~)2 j dx (I + 12xl) 
n 12 dn J 2rr 

xV W - Xl - 2x4 In~n(g) (g = (n - DgIN) 
(3.17) 

which gives 

en(gIN)~(N Ig) n (g) +..!.. ~ ['_I_w(g) -zw'(ff) 
2 N 12 

- w(j) + 3gW'(ff)]. (3.18) 

Equation (3.15) is thus modified into the following expres
sion which exhibits the splitting of degenerate singlet levels 

rIg 
- Eo = w(g) I (k; + q;) + - - w'(g) 

i~1 2 N 
r 

X I (ki +qJ(ki -qi -1). (3.19) 
i= 1 

Notice that the correction is of order lINinstead of liN 2 as 
expected (except for the first, nondegenerate excited state). 
This may be understood as a consequence of the accidental 
degeneracy and it does not spoil the correct liN 2 expansion 
of Green functions, since levels with liN corrections appear 
in pairs with opposite sign (E1q.k j and EI k -I.q + I j ). The ei-
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genvalue formula (3.19) gives a good approximation to the 
eigenvalues of H even for N small. See Table I for a numeri
cal example with N = 5. 

To calculate the 1/ N 2 correction one should consider 
the third order WKB term. 10 From the expression of the 
general k th term in the WKB expansion of en (g), only the 
function n (g) and its derivatives appear (see for instance Eq. 
3.18). This fact entails that all the terms in the liN expan
sion have a singularity in the complex g plane where n (g) is 
singular, namely at g = gc = - 2 1/2/3rr.9 (Notice that 
w(gc) = 0, i.e., the classical motion has infinite period, 
which corresponds to the instanton of the anharmonic 
oscillator.) 

Since en (gIN) is non analytic ing = 0 (at fixed N), one 
. • .. II 

infers that the liN expanSIOn IS an asymptottc expansion 
with coefficients which have the same radius of convergence 
ing. 

4. STATES BELONGING TO THE ADJOINT 
REPRESENTATION 

The spectrum for non singlet states involves the angular 
operators My in Eq. 2.6. For N> 2, My are noncommuting 
operators, thus the partial wave decomposition of the Schro
dinger equation becomes highly nontrivial. For the adjoint 
representation, however, the angular dependence of the 
wave function can be explicity written down and the Schroe
dinger equation can be reduced to radial variables. 

A. Wave function angular dependence 

Let us first express the angular dependence of the gener
al wave function for the adjoint representation. In this sub
section we shall prove that the general form IJIA (q;) of a 
N Z 

- 1 multiplet is given by 
N 

IJIA(q;)= I Tr(Cq;n-l)tPn(Ap .. ·,AN)' (4.1) 
n=2 

where tPn (A) are symmetric functions of the eigenvalues of 
the matrix q;, and C is any traceless matrix which gives the 
N l 

- 1 multiplicity. In Eq. (4.1) the angular dependence is 
explicit in the factor Tr(Cq; n -I). 

Let us come to the proofofEq. (4.1). A general element 
eij(q;) of the N 2 -1 multiplet must transform according to 

VESU(N), (4.2) 

and the general linear combination of eij is then given by 

IJIAq;) = Tr(Ce (q; ». TrC = O. (4.3) 

For the special case of q; = A (diagonal), Eq. (4.2) implies 
that also e (A ) is diagonal: 

eij(A) = Oij Xi(A I , ... ,A..v). (4.4) 

Going into polar coordinates for q;, we may write Eq. (4.3) in 
the form 

N 

IJIAcp) = I (UtCU)kk%k(AI, .. ·,AN)' q; = UA ut. 
k=1 

(4.5) 
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Introducing 1/In(AI ,···,AN) with 
N 

Xk(,1)= I Az- 1 1/In(,1) 
n=1 

(4.6) 

we obtain the result in Eq. (4.1). Notice that 1/11 is not inde
pendent of 1/12 , .. ·,1/IN; by TrC = 0, however, 1/11 does not con
tribute to 1/1 A (q:;). The fact that 1/In (A) are symmetric func
tions is a consequence ofEq. (4.4). In fact under a 
permutation P of the eigenvalues we have 

(4.7) 

B. Radial Schr()dinger equation 

Let us consider the Schrodinger equation for the adjoint 
states characterized by Eq. (4.1) 

(-1.1 + V(gIN,q:;)-E)IJIA(q:;)=O, (4.8) 

where the potential is given in 2.1 and is invariant with re
spect to SU(N). We shall now reduce Eq. (4.8) to a system of 
coupled equations in the unknown functions 1/In (A). For the 
kinetic term we have 

8 8 
.1IJ1A = I ---- IJIA 

ij aq:;ii 8q:;ji 

nt2 {Trcq:;n- 1 .11/1n +1/In .1TrCq:;n-1 

+2 ~TrCq:;n-1 a1/ln} (4.9) 
8cpij aq:;ji 

and we have to extract the explicit angular dependence. The 
first term is simple, since only the radial part of the Laplace 
operator is involved in.11/1n (A ). For the second term we have 

n --2 
.1 TrCq:; n - I = 2 I (n - h - 2) Trq:; h TrCq:; n - h - J. 

h~O 

The last term is evaluated as follows: 

a1/l,,0) = ± a1/ln a,1k a1"p, 

aq:;ij k,p ~ I aA k a1"p aq:;ij 

Introducting the Vandermonde matrix 

Vpk (A ):==0,1 f - I, 

we have 

a,1, 
= p I(V1hp ' 

aTp 

and finally 

(4.10) 

(4.12) 

(4.13) 

a a·', N a·', 
_,,_ TrCop n I _'f/_" = (n -1) I (UtCU)kk A k -I _'f/_n . 

dep'j aq:;ji k = I a,1 k 

Schrodinger equation is then reduced to the form 
.'Ii 

I (UtCU)kkAk [1/1] = 0, 
I. I 

where 

(4.14) 

(4.15) 

,\ 

A,,[1/I]- I {A'k I [-1Li + V(gIN,A)-E] 1/In(,1) 
n =- 2 
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Since ~(U tCUhk = TrC = 0, the most general solution of 
Eq. (4.15) is given by 

AI [1/1] = A2 [1/1] = ... = AN [1/1]. (4.17) 

A more convenient form of these N - 1 equations is given by 
N 

I A k [1/I]V· l
kn (A)=0, n=2,3, ... ,N, (4.18) 

k ~c 1 

which explicitly reads 

[- ~.1 + V (gIN,A ) -E] 1/1,,(,1) 

N (a ) = m~2 Gnm A, a,1 1/Im(A), (4.19) 

where 

G (A~) = ~.'. rnA m- n - 2 + (m _ 1) Am. 2 mn , a,1 k~1 k k 

X V- I (A ) ~} (4.20) kn a,1
k 

(it is understood that the first term in the bracket is absent 
for m <n +2). 

Even in the simplest case (N = 2) the reduced (radial) 
Schrodinger equation is nonseparable, unlike the singlet 
case. 

c. Perturbation theory in 1 IN 

We have just shown that the Schrodinger equation 
(4.19)-(4.20) for the adjont states is nonseparable. We can 
overcome this difficulty by treating the operator G n,m as a 
perturbation in liN. In fact, while the ground state energy 
Eo (g,N) grows like N 2, we are able to prove that the gaps for 
the adjoint states remain finite as N- 00 . For this reason, to 
leading order in II N, the spectrum of the states IJI A (cp ) can be 
obtained by perturbation theory of degenerate levels starting 
from the unperturbed states 

,'Ii 

IJI~O)=r/I,(,1) I an Tr(Cq:;nl), (4.21 ) 
II 2 

where all the radial wave functions 1/In (A ) are proportional to 
the same wavefunction r/l, (A ) of any singlet state, with ener
gy E,. In fact the left-hand side of Eq. (4.9) vanishes for 
1/In = 1/Is, E = E,. To first order in liN 2 the spectrum is then 
obtained by diagonalizing the expectation value of the Ha
miltonian with respect to the N - 1 parameters an' The ex
pectation value is calculated in the appendix; it holds: 

( IJI ~l) IH IIJI <Jl > = E' -l-.l ~n.n· allan' c V'nn, 
s'2~ -(;71' ( IJI ~O)! IJI ~o» 

where 
n -- 2 fI' -- 2. 

~n,fI' allan' ;;.v' nn' 

,r"n' = I I (1/1, I ! Trq:; n r + r' - 2 Trep n' . r' + r- 2 

r --- () r' --=- 0 

_ (liN) Trq:; n + n4111/1,), 

(4.22) 

!J) nn' = (1/1, I! Trq:; n +n' 2 -- (11 N)Trq:; n- I Trq:; n' _. I 111/1,). 
(4.23) 

Now we have to compute the asymptotic behavior ofA'- and 
fdJ for N large and prove that E A - E, is finite. For simplic
ity, we take for tPs the ground state lJIo (Eq. 3.4). A~ and ,9} 

are given in terms of expectation values of Trq:; 2p and 
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TnI' P Trcp q over Slater-Fock wave functions. The expecta
tion value of Trcp 2p is given by 

('flo ITrcp 2P I 'flo) 
N f= N "';:1 ~ 00 dx x 2Pu,,(g/N,x)2= II (nlx

2P
ln), (4.24) 

where u" (g/N,x) are the anharmonic oscillator eigenfunc
tions considered in Sec. 3. The leading contribution in N 
comes from large n terms, which can be estimated by the 
semiclassical approximation 12 

1 L1'(e,,) 
(nlx2Pln)~ -- dt x~ (e",t), 

T(e,,) 0 

(4.25) 

where e" = e" (g/N)~Nfl (ng/N)/g is the nth eigenvalue 
andfl (g) was introduced in Eq. (3.9). T(e,,) andxcl(e",t) are 
the period and the trajectory of the classical motion at the 
energy e". We find then 

(nlx2pln)~ ~ J: dx x 2p V 2eN - x2 - 2gx4/N. (4.26) 
dn j 2fT 

By scaling the variable x as suggested by Eq. (4.26), we find 

(nlx2Pln)~(;y wOO 

X J: dx x 2p (2fl 00 _ x 2 _ 2x4) ~ 1121 ' 
j 2fT g~ nglN 

(4.27) 

which shows that this matrix element scales as N P times a 
function of n/ N. Finally we obtain 

('fIoITrcp2PI'fIo)~ iN dn (nlx2p /n) 

~(;y+ If !};X2P 

X V 2fl (g) - x2 - 2x4. (4.28) 

The calculation of the leading behavior of the ground 
state expectation value of the product Trcp P Trcp q can be 
reduced to the previous case. In fact we have 

(Trcp "Trcp q) 
N 00 

= (TrcpP) (Trcpq) + I I 
,,~I m~N+I 

(nlxPlm) (mlxqln). 

(4.29) 

For p and q even, the first term is of order N(1/2)(P + q) +2 [by 
Eq. (4.28)]. The correlation term in Eq. (4.29) is non leading 
in N, as follows from elementary inequalities: 

I "tl m ~~ + I (nlxP/m) (mlxqln) I 

<"tl I m ~Z+ I (nlxP/m) (mlxqln) I 
< f V (n/x2P /n>(n/x 2q /n) 

n=l 

<~"tl (nlx
2P

ln) m~1 (mlx
2q

lm) 

= 0 (N 1!2(P + q) + I). (4.30) 

Presumably one can do better and prove that the correla
tions are of order N(1/2)(P + q') as for the pure harmonic oscil-
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lator. In fact the matrix elements (n Ix Plm) vanish very rap
idly for large In - ml so that the sum in Eq, (4,29) is 
restricted to a narrow strip near n - m - N. 

In conclusion we have that the leading contributions in 
N to vV' and fiJ come from the terms containing traces of 
even powers of cp and the correlation terms can be neglected: 

n - 2 n' - 2 

jy'n,,' - I I (Trcpn. r+ r' ~ 2) (Trcp ,,' - r' + r 2 ) 
r---=Or'=O 

= 0 (N (1/2)(" + "'», 

g; ",,' _ (Trcp" + "'2) _ (liN) (Trcp" , . I) (Trcpn' -I) 

= o (N(1I2)(" + n'J), (4.31) 

Actually this asymptotic form, proven for the ground state 
expectation values, holds for any wave function tP, ' 

The asymptotic estimate (4.31) greatly simplifies the 
structure of the expectation value of the Hamiltonian and 
shows that the gaps for the adjoint states are finite as N~ 00, 

D. Diagonalization of the secular determinant 

Now we can proceed to the actual calculation of the 
spectrum of the adjoint representation. Let us start from the 
states which are built perturbatively over the gound state. 
From Eqs, (4.28)-(31) we have 

(
N)(1/2)(n'j n') f dx 

jV"n' = - - a(g,x) 
g fT 

f dy (x" .. I - yn - I )(x", I _ yn' .. I) 
X - a-(g,y) ()" 

fT x-y-
(4,32) 

g; nn' = (;r /2
)(n + n') (f ~ a-(g,x) xn + ,,' ~ 2 

- ~ f ~ a-(g,x) x" - I f;- a-(g,y) y", - 1), (4,33) 

where we have introduced 

a(g,X) = V 2fl (g) - X
2 - 2x4 () (2fl (g) - X

2 - 2x4
). (4,33) 

The sums over n.n' in Eq, (4.22) can now be performed ex
plicitly by introducing the function 

/Ii 

f(x)= I (N /g)"l2a "X'" I , (4.34) 
n =--=- 2 

We obtain 

('fI~O)1H I 'fI~O» 1 
('fI~O)I'fI~O» ~Eo + ,W'[f]-Eo + 2 

X S(dx/fT)a-(g,x)J(dY/fT)a-(g,y)[(J(x) -f(y»/(x - y)p 

S(dx/fT)a(g,X)/,(X)2 - (lIg)(J(dx/fT) u(g,x)/,(x»2 
(4.35) 

(we can assume a" to be real, without losing in generality). 
Before solving the variational problem forW'Tf], let us ob
serve that a variational estimate of the first level can be easily 
obtained by puttingf(x) = x; we obtain 

EA I - Eo < [OV:[PW:g:2]:2f (dx/fT) u(g,x)[PW:x:2]] 
(1I2)g2 

(4.36) 
7 f3 fl (g')dg' - 3gfl (g) 

For example the asymptotic behavior for g~ 00 is simply 
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TABLE II. The energy levels for the adjoint representation for various values of g (leading trajectory in Fig. 1). 

g n EA(n.ol 

2 1 2.1281936 
2 4.6201131 
3 7.0716122 
4 9.5258038 
5 11.9798556 

50 5.7594935 
2 12.7149752 
3 19.5129917 
4 26.3232060 
5 33.1326773 

200 9.0832498 
2 20.0835820 
3 30.8279452 
4 41.5923818 
5 52.3555793 

1000 15.4894625 
2 34.2712440 
3 52.6107716 
4 70.9851687 
5 89.3574010 

E, (",,,: numerical results from Ref. 13. 

given by 

E - E <; 5r (114)16/3 9113 = 1.55440 gIn. (4.37) 
A I 0 489 1/31T3 

[Notice that this estimate is already sufficient to conclude 
that E. I is lower than the first singlet excited state, e.g., 
w(g) -1.83534 g 1/3 for g-+oo.J 

To calculate the energy levels in the adjoint representa
tion we have now to solve the variational problem oJY'[fJ 
= 0, where the variation is with respect to the parameters 

an' or, equivalently, with respect tof(x). Althoughf(x) is a 
polynomial of degree N - I, in the limit N-+oo we can effec
tively considerf(x) as a general analytic function. A property 
of the functional »1"[J] which simplifies the problem is the 
following: 

r[J + constant] = »1"[J]. (4.38) 

Let us consider the modified variational problem 
o,WTf] = 0, where 

cWTfl = ..!.-
2 

X S (dX/1T) a(g,x) S (dY/1T) a(g,y) [(f(x) -f(y»/(x - y)]2. 

S (dX/1T) O'(g,x)f(xf 
(4.39) 

We can always choose an additive constant in order to have 
S dx O'(g,x)f(x) = O. Actually this property is always satisfied 
by the (non constant) eigenfunctions of JY[J], since JY[J] is 
a Hermitian quadratic form andf = 1 is the first eigenfunc
tion. Hence the critical values (eigenvalues) of »1" coincide 
with those of JY (except for the eigenvalue zero of JY which 
is not in the spectrum of »1"). The variation with respect to 
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(n + 1 )w(g) + q(g) 

2.1636227 
4.6176809 w(g) = 2.4540582 
7.0717391 
9.5257973 q(g) = - 2.7444937 

11.9798555 

5.8946344 
12.7041452 w(g) = 6.8095108 
19.5136560 
26.3231668 q(g) = - 7.7243871 
33.1326775 

9.3025234 
20.0657875 w(g)= 10.763264 
30.8290517 
41.5923159 q(g) = - 12.224005 
52.3555801 

15.8679888 
34.2403381 w(g)= 18.3723493 
52.6126875 
70.9850368 q(g) = - 20.8767099 
89.3573861 

f(x) leads to the following singular integral equation 

fa dy a(g,y) f(x) - fey) = €f(x), (4.40) 
_ a 1T (x _ y)2 

the limits of integration being given by 

a = !( - 1 + V 1 + 16n (g) )112. ( 4.41) 

It was shown in Ref. 13 how one can reduce Eq. (4.40) to a 
more manageable form, namely 

- ..!.- a(g,x) ~ fa j(y) dy + q(g,x)j(x) = €j(x), 
1T dx -a y-x 

(4.42) 

wherej(x) = a(g,x)f(x), with boundary conditions 
j( ± a) = 0, and 

1 d fa a(g,y) 
q(g,x)=-- --dy. 

1T dx -ay-X 
(4.43) 

The "potential" q(g,x) is negative and bounded from below 
for every g»O. Actually, it can be easily proven that q(g,x) is 
analytic in g with the same nearest singularity gc of w(g). 
This entails that also the eigenvalues of Eq. (4.42) are anal
tyicfor igi < - gc· 

Equation (4.42) can be studied by standard methods l4 

and we find that the spectrum is discrete with an asymptotic 
behavior 

En = (n + l)w(g) + q(g) + 0 (lin), (4.44) 

where 

1 fa q(g) = -; w(g) _ a a(g,x) -I q(g,x)dx, (4.45) 

and w(g) is the frequency defined by Eq. (3.13). Notice that 
this is the semiclassical estimate for the Hamiltonian 
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2 I. 5 6 7 L1 E/w(9) 
III III (2) (3) (5) 171 (11) (15) 

FIG. I The full spectrum of the adjoint representation up ofO(I/N):41E is 
the gap from the ground state; the arrows indicate the singlet eigenvalue 
over which the trajectory is built by perturbation theory in l/N. The num
bers in parenthesis denote the multiplicity of the singlet state and of the 
originating trajectory. 

%(x,p) = u(g,x)1P1 + q(g,x); q(g) is the time average of the 
potential q(g,x) on any orbit of %. %(x,p) is the symbol of 
the operator of Eq. 4.42 up to subdominant terms of order 
IP 1- I. In the limit g.-Q we have w(g~ 1, q(g>--: - 1 ~nd 
€n--n, which is the obvious result for the N 2-dlmenSl?nal 
harmonic oscillator. The asymptotic formula (4.44) gives a 
good approximation (5 to 8-figure accuracy depending on g) 
for n;::: 5, while it violates the bound (4.36) for n = 1. To 
explore the low lying states, we made a numerical cal~ula
tion directly on Eq. (4.40). Some results are reported In Ta
ble II. For more details see Ref. 13. 

The full spectrum of the adjoint states is now obtained 
by making the same calculation starting from any singlet 
excited state tPs with energy Es = Eo 
(g,N) + sw(g) + 0 (liN). Since the leading behavior of 
JIl1f] is not changed by the substitution t/Jo --tPs' the only 
difference is in the unperturbed eigenvalue Es , and we obtain 

EA(n,s)(g,N) = Eo (g,N) + sw(g) + €n(g) + O(N -I). 
(4.46) 

In particular for n large an accidental degeneracy appears, 
due to the asymptotic behavior (4.44). 

We conclude this section by recalling that a singular 
integral equation similar to Eq. (4.40) was found by 't Hooft

3 

in the study of the mass spectrum for two-dimensional 
SU(N) gauge theory in the planar limit. In that case howev
er, the potential q(g,x) was singular and consequently a loga
rithmic correction to the asymptotic eigenvalue formula 
appeared. 

5. SUMMARY 

We have studied the spectrum ofa SU(N) symmetric 
quantum mechanical system in the limit N-- oo . For the 
states invariant under SU(N) we find, in this limit, an equally 
spaced spectrum 

Es - Eo = sw(g) + 0 (N -I), s = 1,2,···. (5.l) 

For s>2 there is an accidental degeneracy given by the parti
tion of s into integers 

s= i (k; +q;) (5.2) 
i= 1 
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such that O';;;ql <q2 < ... < qr; I.;;;k l < k2 < ... < k r· This de
generacy is splitted by the liN correction given in Eq. (3.19). 
The fact that the first correction of(5.I) is of order liN does 
not spoil the correct lIN 2 expansion for the Green's func
tion since the splitting appears with opposite sign. 

We have computed also the spectrum ofthe states 
which transform as the adjoint representation ofSU(N) 
which involves the angular variables ofSU(N) in a nontrivial 
way. For N-- 00 the spectrum is equally spaced only for high 
excitation and we find (N-- (0) 

EA(n.s) = Es + (n + I)w(g) + q(g) + O(n -I), n = 1,2, ... 

(Es = Eo + sw(g), s = 0,1,2,..·), (5.3) 

which shows that each N 2 
- 1 multiplet of the adjoint state 

have the same accidental degeneracy of the corresponding 
singlets with energy Es' This degeneracy is removed by liN 
corrections. The spectrum of EA (n,s) is given in Table II and 
presented in Fig. 1 which show that the asymptotic regime in 
n is quite precocious: In the drawing the trajectories are in
distinguishable from the straight line even for n = 1. Equa
tion (5.3) and Fig. 1 show that the eigenvalues EA (n,s) with 
equal n + s are almost degenerate. Since w(g) + q(g) < 0 for 
any g positive we find 

(5.4) 

which shows that the first adjoint state excitation is lower 
than the first singlet excitation. For g = 0 these two states 
become degenerate since w(O) = - q(O) = 1. 

Before concluding let us observe that the first two com
puted terms of the liN expansion for the singlet gaps are 
given by the WKB function w(g) (Eq. 3.13) whose perturba
tive expansion in g has a radius of convergence given by 
Igl < - gc = 21/2/Jrr. It is very tempting to conjecture that 
all the coefficients of the liN expansion have the same radius 
of convergence in g; in fact that liN expansion was cast in 
the form of a WKB expansion involving w(g) and its deriva
tives. Similarly we found that the leading liN term of the 
gaps for the adjoint states have the same radius of conver
gence: The "potential" in Eq. (4.44) becomes singular at 
g = g c' This would entail that the liN expansion is an as
ymptotic expansion 11 in order to reproduce the singularity 
of the eigenvalues at g = 0 for N fixed. 

APPENDIX 

In this appendix we compute the expectation value of 
the Hamiltonian on the unperturbed state 

N 

1JI~)(<p) = tPs(A) L an Tr(C<p n - I), (AI) 
n=2 

with the norm 

1I1JI~)112 =~. anan, f V(A)2dA [dU] tPs(A)2 

X TrC<p n -I TrCt <p n' -I, (A2) 

where V (A ) is the Vandermonde determinant, dA is the inte
gration over the eigenvalues Al ,. .. ,4 N of <p and [d U] is the 
Haar measure over SU(N). The gradient of IJI~O) is given by 
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where Vkp (A) is the Vandermonde matrix in Eq. (4.12). This 
allows the calculate the kinetic energy density (notice that tPs 
is taken to be real) 

1 Jtft (0) JIji (0) _I_A ___ A_ 
2 iJ Jcp ij Jcpji 

= ~ I an an' {Trccp n -I TrCtcp n' -I I (JtPs )2 
2 n,n' k JA. k 

+~ I Vk-;,I [(n' -1) TrCcpn-1 Trctcpn'+P-3 
2 k,p 

+ (n _ 1) TrC t cp n' - 1 TrCcp n +p - 3] JVl; 
JA. k 

+ :~~ :,~ ~ Tr( Ccp n - r + r' - 2 C t cp n' - r' + r - 2) tP; }, 

(A4) 

The kinetic energy is obtained by integrating the density 
over V2(A. )dA. [dUl. The integration over SU(N) can be read
ily performed by introducing the polar coordinates 
cp = UA ut and using the identities 

f[dU] (utCU)u (utctU)jj 

= (N 2 -1) -I TrctC(Oij _ ~). 

f[dU] (UtCU)ij (UtCtU)ji 

(AS) 

(A6) 

which follow from the orthogonality relation ofSU(N). The 
expectation value of the kinetic energy is then given by 
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XTrcpn'-r'+r-2 _ ~ Trcpn+n'-4]} , (A7) 

where 

Wnn, _Trcp n + n' -2 _ ~ Trcpn -I Trcp n' -- I. (A8) 
N 

The norm of tft~) is also given in terms of Wnn , : 

II tft~0)112 = ~ an an' f V (A. )2 dA. Vl; Wnn ,. (A9) 
n,n 

The final expression in Eq. (4.22) is obtained by integrating 
by parts the first integral in Eq. (A 7) and using the fact that 
tPs is an eigenstate of the Hamiltonian with eigenvalue E,. 
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On the local structure of the Euclidean Dirac fielda
) 
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(Received 28 November 1978) 

A simple Green's formula for the Euclidean Dirac operator in Schwinger's real formalism allows 
us to study some localization properties of the Euclidean Dirac field, A rather complete analysis 
follows of the connection between the Grassmann structure of the Euclidean field and the 
Clifford structure of the field at sharp time, analyzed in terms of its independent degrees of 
freedom. 

1. INTRODUCTION 
The use of methods of Euclidean quantum field theory 

has already provided deep technical results and insights in 
the theory of interacting Dirac fields (Refs. 1-6 are a first 
guide to the existing literature without, of course, any pre
tension of completeness). In this note we wish to add a few 
comments on the conceptual structure of the theory ofEu
clidean Dirac fields. 

Our aim is to contribute to the understanding of the 
mathematical structure of the methods offunctional integra
tion in QFf, for a long time a precious heuristic instru
menC·8 (for a recent review see Ref. 9) whose deep math
ematical soundness and relevance to a rigorous approach to 
QFf we have begun to understand since the work of Segal 
and Nelson. ID." 

In this note we concentrate on the local (Markov) struc
ture of the Euclidean Dirac field and on the problem of im
bedding the sharp time Minkowski theory into the Euclid
ean scheme. 

2. NOTATION AND BASIC DEFINITIONS 

We find it expedient to use, throughout this paper, the 
eight-component real formalism suggested by Schwinger for 
the Dirac field in four space-time dimensions. 12 

In our opinion it is in this real setting that the algebraic 
structure of the theory becomes most transparent. 

Referring to Refs. 12 and 13 for the proof of the equiv
alence of Schwinger's formalism to the ordinary one, here we 
merely recall the basic notations. 

The Dirac algebra is described here in terms of the 8 X 8 
Hermitian matrices a h a 2, a], a, (real) and as, a 6, a 7 (imagi
nary) satisfying the anticommutation relations 

[a;,ajJ = 2tJij' i,j= 1, ... ,7. 

In this formalism the Dirac equation reads, in terms of 
the eight-component real field 'P, 

i ~'P = (uop + Mas)'P (p = ~ V, u = (a p a 2,a3») , 
Jxo I 

while the canonical anticommutation relations are 

"'Research supported by Consiglio Nazionale delle Ricerche. 

The matrix a, appears, as we shall see in the following, 
in the description of time reversal, while a6 and a, are needed 
in the construction of the charge matrix. 

In these notations the two-point Wightman function for 
the free field is 

W(x- )= _1_Jd] E(p) + uop + Mas 
y (21T)J p 2E (p) 

xexpi[p,(x - y) - E(p)(xO - yO)] 

[E(p) = y' p2 + M2]. 

Analytical continuation to the Schwinger points 

XO = - ix., yO = - iy" x.>y. 

leads to the Wightman function at imaginary times 

rr(x _ y) = _l_J -ip. + uop + Mas 
(21T)' p2 + M 2 

X expip·(x - y) d "p 

(p.x = PIXI + ... + p,x,). 

It is only after a matrix transformation on the spinor 
indices generated by the matrix 

T= expi(1T14)(l + a,), 

according to the scheme 

Sab(X - y) = I T"u,Tbb' rru'I>'(X - y), 
a',b' 

that we get a manifestly Euclidean covariant two-point 
function 

S( ) - i Jd4 a·p+Mas ( ) x - y - -- p expip· x _. y 
(21T)4 p2 + M 2 

(a.p = alP, + ... + a4P4)' 
which we will call the two-point Schwinger function and will 
take as the basic object of our discussion. 

S is the Green's functions of the Euclidean Dirac 
operator 

D = - (a·J + iMa,). 

Notice that S is real and is antisymmetric in the sense 
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that 

2. THE LOCAL STRUCTURE 

In the theory of the free Euclidean scalar field 1o ,14 the 
fact that the two-point Schwinger function 

S ( ) - 1 f expip(x - y) d 4 
8 x -y--- 'P 

(21T)4 p2 + m2 

is the kernel of the scalar product in the Sobolev Hilbert 
space oW'-1 of the real tempered distributions with Fourier 
transform inL 2[d 'p/(P2 + m2)] and the Hafnian form l5 of the 
many point functions immediately point to the relevant 
functional integration theory, that of the unit Gaussian pro
cess over JY'-l' 

The fact that ff-l contains elements strictly localized 
on each x. = constant plane is the root of the possibility, 
through the imbedding theory, of reconstructing the sharp 
time Minkowski fields from the Euclidean ones. 

As we wish to stay as close as possible to this line of 
thought also in the Euclidean Dirac case, we must confront 
ourselves with the difficulty that the best we can do along 
this line is to consider S as the kernel of an antisymmetric 
bilinear form on the Sobolev Hilbert space JY'-112 of the eight 
component real tempered distributions with Fourier trans
forms in L 2[d"p/(P2 + M2)I!2]. 

This perspective leads to the mathematically as yet un
explored (with the notable exceptions of Refs. 6 and 16), but 
heuristically widely used theory of the unit Pfaffian process 
over the simplectic space I ff_ I12,S I as the relevant function
al integration scheme. 

Here we wish to concentrate on the following problem: 
how to reconstruct the sharp time Minkowski fields from the 
Euclidean scheme in spite of the fact that JY'-112 does not 
contain elements localized on x, = constant planes. 

Our main tool is a Green'~ formula for the Euclidean 
Dirac operator D. 

Let 0' be a smooth suface dividing JR' into two open 
disjoint regions A" A_. At each point ZEO' choose the positive 
normal n(z) as the one pointing, say, towards A,. Then, for 
every choice of FEe o(A,), GEe o(A-) the value at F, G of 
the bilinear form generated by the two-point Schwinger 
function can be written as 

S(F,G) = I dO'(z) (D-IF)(z)a.n(z)(D-1G)(z). 

Namely, S correlates FEe t(A,), and GEe t(A_) only 
through the values on 0' of the solutions of the inhomoge
neous problems for D having F and G, respectively, as 
sources. 

In particular, if 0' is any x, = constant plane, say 
x, = 0, and F (G) is localized in x, > 0 ( < 0), then 

S (F,G) = (fo,a.go) L'(d'x)' 

where we have set 

j~(x) = (D -IF)(x,O), go(x) = (D -IG )(x,O). 
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Thus motivated, we introduce the real Hilbert spaces 

ff + = I/EL~(d3x):/(x)=(D-IF)(x,O)I-

with 

supp F~ I XElR':X,SO J J 

[where the closure is in the L 2(d lX) norm]. 

After checking that JY' ± are mutually orthogonal in 
L 2(d lX) we set 

oW' = JY, ffi JY_. 

We will agree to say that functions in JY, (o-W'_) are 
localized on the upper (lower) face of the x. = 0 plane. 

This convention, obviously motivated by the definitions 
on JY ± ' is also coherent with the fact that the time reversal 
operator 

1':jEJY' ----+1'1 = ad 
exchanges ff, with cnc_: 

1 EJY' ± -='?1' IEJY' "F' 

l' is a symmetric orthogonal operator on the real Hilbert 
space JY: 

l' = 1'T, 1'T l' = 1'1'T = 1. 

The projection P ± onto JY ± are easily seen to be 

P ± = (1 ± kr)/2, 

where k is the antisymmetric orthogonal operator on ,}Y', 

anticommuting with l' 

k T = _ k, k 2 = - 1, k1' + 1'k = 0, 

best described in terms of its action on Fourier transforms as 
multiplication by 

k () . (l'P + Ma, 
P = I (p2 + M 2) 1'/2 . 

Observe that kP ± = + 1'P r . 

It is convenient to define an antisymmetric bilinear 
form s on JY' by the position 

s(J,g) = < J,kg) L '(d 'X), J,gEJY'. 

In terms of the objects just introduced we can summa
rized the discussion up to this point into the following pre
Markov property for the Euclidean Dirac field: given any 
x, = 0' plane, we have exhibited a canonical prescription to 
construct 

(i) a simplectic space I cWO,s I of functions on the x. = 0' 

plane; 

(ii) a map from functions F localized above the plane 
x, = 0' into functionsj~ localized on its upper face; 

(iii) a map from functions G localized below the plane 
into functions g(7 localized on its lower face; such that, for 
any such F and G: 

S(F,G) = sifa,gu)' 

More generally, if 0'1 < 0'2 and F is localized above the 
plane x. = 0'2 and G is localized below the plane x, = 0', 
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where p is the operator described by its action on Fourier 
transforms as multiplication by 

pep) = (p2 + M2)'12. 

3. Q SPACE FOR THE DIRAC FIELD 

As for second quantization, the triple I df",k, 'T J lends 
itself very nicely to the Fock realization of the sharp time 
field and to the analysis of its degree offreedom. 

After introducing the orthogonal projectors 

A ± = (1 Of'ik )/2 

inL Z(d lX) (which are not any more reality preserving), Fock 
space is constructed as 

00 

.'7= Ell F@n, 
n~O 

where F is the range of A •. 

The vacuum state is no = (1,0,0,.··) while the field oper
ators are constructed through the real linear map 

/~~IJI(f) = C(AJ) +A (AJ), 

where C and A are creation and annihilation operators. 

Observe that the two point function can be written as 

= H (J,g)r - i( J,kg)Y1 J. 

Together with this conventional realization of the free 
field structure, we wish to suggest here an equivalent alterna
tive which, being closely related to the simplectic structure of 
df", as opposed to its orthogonal structure, is better suited to 
a comparison with the Euclidean theory. 

We start by observing that the fields IJI (f) split into two 
mutually anticommuting sets, those with/E.i¥'. and those 
with/~., and that, due to the simple observation that if/is, 
say, in df"., then 

1JI(f)no = - ilJl(k/)no, 

the vacuum, is cyclic under the fields of each of the two sets. 

Let us focus out attention on the dense set Y. in Y 
generated by the Wick polynomials of the fields 1JI(f) with 
/~. applied to no. 

Here we define Wick ordering by 

:C: =C, 

:IJI(/,): = 1JI(f,), 

: IJI (I.)IJI (h): = 1JI(1.)IJI(h) - Wo(f1/2)' 

: IJI (I.)···IJI (f,.): = IJI (f.): IJI (h)···1JI u;,): 
n - r (-I)JWo(l.,jj) 

j=2 

Call :.9'(~ (:.9'(df".) the Grassmann algebra over df" 
(df".) and denote its generators by !/J(f)JE£' (~.). 
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Define the linear map (henceforth ca11ed duality map) 

iiJ: : IJI (f1)···1JI ifn ):noEY. 

~2 .. nI2!/J(I.) ... !/Ju;, )E:.9' (dY'.). 

The point is that :.9' (dY'.) can be made into a Hilbert 
space L 2(dY' .• w,K) in such a way that iiJ can be lifted to a 
unitary transformation. 

Here I ~,w J is the unit Pfaffian process over the sim
plectic space I df".s l, namely w is the linear functional on the 
Grassmann algebra :.9' (cW) defined by 

w(I) = 1, 

Q)(!/J(/,)!/J(h»: = s(f"h), 
2k 

Q)(!/J(I.)···!/J(hk» = r (-l)Js(f, • .I;) 
j C~ 2 

Q)(!/J(fI)"'!/J(f2k +,» = 0. 

K is the antilinear map on :.9' (d¥) defined on the mono
mials as 
KJ..!/J(/')"'!/J(};') = J.. ·!/J(k/n )··'!/J(k/,). 

L 2(dY'.,Q),K) is the completion of ff (df".) in the scalar 
product 

( , >.j'(k):(.if,8i7)E:.9'(dY'.)X :.9'(dY'.) 

->(u«K.if)f)J ). 

The image of the field IJI under the duality transform is 
easily checked to be 

iiJ IJI (f)iiJ·1 

1 v2' (!/J(/) + at), /E.i¥'., 

i 
v2'(akj - !/J(k/», /EPt" •. 

Here the linear operator of functional derivation in the 
direction/is defined through its action on the monomials as: 

n a 
adCI.)···!/Ju;,) = J~' (1.,.1;) a!/J(.I;) !/J(I.)···!/J(fn) 

= f (-I)J+'(/J;)A-
j= I 

The foregoing decomposition of the dual image of the 
time zero Dirac operator into a multiplication part (nicely 
imbedded into the Euclidean scheme) and a differentiation 
part is the key to understanding how the Grassmann struc
ture of the Euclidean field goes into the Clifford structure of 
the time zero Minkowski field, an apparent difficulty sharp
ly focused in the lattice approximation of Ref. 17. 
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Quantum Inverse Method for two-dimensional ice and ferroelectric lattice 
models 
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The quantum inverse scattering transform method previously developed for continuum field 
theories is applied to the exactly soluble symmetric six-vertex (ice or ferroelectric) lattice model. 
Operators analogous to those which appear in the quantum inverse treatment of the nonlinear 
Schrodinger and sine-Gordon equations are constructed on the lattice by forming strings of 
vertices contracted over horizontal arrows. From the commutation relations for these operators, 
exact formulas for the eigenstates and eigenvalues of the transfer matrix are obtained without 
making an explicit ansatz for the wave functions. These results illustrate the connection between 
the quantum inverse method and the transfer matrix formalism for lattice models. 

The inverse scattering method was developed as a 
means of solving certain classical nonlinear field equations. I 
The possibility that this technique might be generalized to 
provide a method for solving quantum field theory was sug
gested by studies of the nonlinear Schrodinger equation. 2

.
3 

In its classical form, this equation had been solved via the 
2 X 2 matrix inverse problem of Zakharov and Shabat.4 The 
quantum nonlinear Schrodinger equation (also known as the 
delta-function gas) had also been solved by the Bethe ansatz 
of Lieb and Liniger. 5 The connection between these two 
methods was established by constructing quantum operators 
analogous to the classical Jost functions and scattering data 
of the Zakharov-Shabat eigenvalue problem. 3.6-8 An opera
tor B (k ) thus constructed was found to create the Bethe an
satz eigenstates of the delta-function gas. Recently, the 
quantum inverse method has been applied to the sine-Gor
don equation9 and shown to reproduce the results of the 
Bethe ansatz solution of the massive Thirring model. 10 The 
elegant formulation of this method by Faddeev, Skylanin, 
and Takhtajan 9 exhibits a striking connection with the trans
fer matrix formalism developed in the treatment of solvable 
lattice statistical models. II In this paper we explore this con
nection by applying the quantum inverse method to the ice 
and ferroelectric lattice models of Lieb and Baxter l2

,13 

which were originally solved by writing a Bethe ansatz for 
the eigenvectors of the transfer matrix. 14 

We find a very compact derivation of the known results 
by constructing operators on the lattice which are analogous 
to the A and B operators used in the quantum nonlinear 
Schrodinger6-R and sine-Gordon9 equations. This formula
tion illustrates a profound connection between the 2 X 2 ma
trix structure of the inverse scattering eigenvalue problem 
used in continuum field theories, and the matrix structure 
represented by the horizontal arrows of the lattice theory. 
The vertical arrows are associated with the operators of the 
field theory. The transfer matrix Tis related to theA opera
tor, while the B operator creates eigenstates of T. The path
ordered exponential expression which describes solutions of 
the eigenvalue problem in the inverse method arises on the 
lattice as a string of vertices contracted over horizontal indi-

ces. It is remarkable that the inverse method, which originat
ed in classical field theory, is so closely related (in its quan
tum field version) to the transfer matrix formalism for lattice 
models. 

The general ice or ferroelectric model (symmetric six
vertex model) is constructed by placing arrows on the bonds 
of a square lattice in all possible way which obey the "ice 
rule," i.e., that there are two arrows in and two arrows out at 
each vertex. It is a special case of the Baxter eight-vertex 
model 16 with Baxter's parameter d = O. This eliminates the 
two vertices with four arrows in or four arrows out. The 
symmetric model is then described by three vertex weights, 
a, b, and c in Baxter's notation. The elementary vertex can be 
written as 

4 

L (a, (3; A, f.l) = I Wi (7(;rPJ./l , (1) 
i= 1 

where cT, i = 1,2,3, are Pauli matrices, (74= 1, and the indi
ces a, (3 and A, f.l refer to horizontal and vertical arrows, 
respectively. The parameters Wi are related to the vertex 
weights by 

WI = W 2 = ~c, 

W 1 = !(a - b), 

W 4 = !(a + b), 

(2a) 

(2b) 

(2c) 

For our considerations, it is convenient to regard the vertex 
(I) as an explicit 2 X 2 matrix in the horizontal indices, each 
element of which is a spin operator in the space of vertical 
indices. Thus, we write 

(3) 

where (7 ± = H(7 I ± i(7 2) and the subscript n indicates that 
the (7-matrices act on the vertical arrow at site n. 

In the usual quantum inverse method for continuum 
field theories,6-9 one considers solutions to a linear problem 
of the form 

[~ +iQ ]1/1=0, (4) 
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where t/J is a two-component column vector, and Q (x) is a 
2 X 2 matrix, each element of which is a function of the field 
(e.g., nonlinear Schrodinger or sine-Gordon) at the point x. 
A solution ofEq. (4) can be written as a path-ordered 
exponential, 

t/J(y) = P exp { - i I: Q (x')dx' }t/J(X). (5) 

The observation which leads to the present application of the 
inverse method is that the path-ordered exponential in (5) 
has a precise analog in the lattice theory. It is a string of 
elementary vertices formed by contracting on the horizontal 
arrows, i.e., by multiplying matrices of the form (3) along 
adjacent sites in a row. 

For a lattice with N sites in a row, the quantities which 
correspond to the scattering data in the continuum inverse 
method are obtained by multiplying over the whole row, 
leaving the end arrows uncontracted, 

Y = L IL 2···L N • (6) 

Henceforth, we will adopt Baxter's parametrization of the 
vertex weights l4 (specialized to the six-vertex case), 

WI = W 2 = P sin277, 

W3 = P sin77 cosv, 

(7a) 

(7b) 

W 4 = P cOS77 sinv. (7c) 

For the discussion to follow, 77 is regarded as a real constant 
and v as a variable. (They are related to coupling constant 
and rapidity, respectively, in field theory. 10) Without loss of 
generality, we can take the overall normalizationp = l. 

The elements of Y given by (6) are the "scattering 
data" operators of the theory, 

Y(v) = (A (v) B (V») . 
C(v) D(v) 

The transfer matrix is just the trace of (8), 

T(v) = Tr .<Y-(v) = A (v) + D (v). 

Let us define the direct product of two matrices as 
follows: 

(8) 

(9) 

@"N" 
1lfllNI2 M12NII M"N") M®N= MIIN21 MIIN22 M12N21 M 12Nn 

M21NII M2IN12 M22NII M22NI2 . 

21N21 M21 Nn Mn N21 Mn N22 
(10) 

Here, each element is a product of operators, and must be 
written in the specified order. As in other applications of the 
quantum inverse method,6,9 we find that the direct products 
of two elementary vertices Ln (v) and Ln (v'), taken in differ
ent order, are related by a similarity transformation, 

L (v') ®L (v) = RL (v) ®L (v')R -I. 

Here R is a c-number matrix of the form 

where 

1116 

o 
f3 
a 

o 

o 
a 

f3 
o 
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(11) 

(12) 

sin(v - v') 
a(v,v') = ----.:'--~-

sin(v - v' - 277) 
(13a) 

f3 (v,v') = __ -_s_in....::(_277~)_ 
sin (v - v' - 277) 

(13b) 

Equation (11) may be verified by direct calculation. Forma
tion of the direct products in Eq. (11) may be visualized as 
the contraction of two vertices along a vertical arrow (repre
sented by an operator product in field theory). The matrix R 
in Eq. (12) is the same as one constructed for the sine-Gor
don theory by Faddeev, et al.9 It is also the d = 0 limit of a 
matrix constructed by Baxter, who used an equation of the 
form (11) in his derivation of commuting transfer matrices 
for the eight-vertex model. 14 

The fundamental relation (11) provides all the commu
tation relations needed to construct the eigenvectors of the 
transfer matrix and to calculate its eigenvalues. The scatter
ing data matrix Y(v), by its definition, Eq. (6), satisfies a 
similar equation, 

Y(v') ® Y(v) = R [Y(v) ® Y(v')]R -I, (14) 

which specifies the commutation relations among the opera
torsA, B, C, andD. Just as in the sine-Gordon case, Eq. (14) 
leads to the following results: 

[A (v), A (v')] = [ B (v), B (v'») = 0, (lSa) 

A (v)B (v') = _1_ B (v')A (v) _ f3 (v' ,v) B (v)A (v'), 
a(v',v) a(v',v) 

(1Sb) 

D (v)B (v') = _1_, B (v')D (v) + f3 (v,v') B (v)D (v'), 
a(v,v) a(v,v') 

(ISc) 

[A (v) + D (v), A (v') + D (v')] = O. (lSd) 

As in the usual Bethe ansatz formulation, 12, 13 the eigenstates 
of the transfer matrix T(v) = A (v) + D (u) are constructed 
upon one of the two direct product eigenstates, e.g., the state 
with all spins up, 

Ino) = li)I®li)2®,.·®li)N' (16) 

Notice that Ln, Eq. (3), when acting on an up spin at site n, 
becomes a triangular matrix, 

Lnli)n = (sin(V + 77) s~n277 (J-)Ii)n. (17) 
o sm(v -77) 

From (16), (17), and (6), we conclude that Ina) is an eigen
state of A (v) and D (v) separately, 

A (u)lno) = [sin(v + 77)] Nino), 

D (v)lno> = [sin(v - 77)] Nino>· 

(18a) 

(18b) 

Eigenstates of T(v) with n reversed arrows are constructed 
by applyingoperatorsB (Vi)' i = I, ... ,n [whereB (v) is defined 
by (3), (6), and (8)] to the state Ino), 

IVI'''''V n ) = fI B(vJlno>· (19) 
i= 1 

Conditions on the Vi'S emerge in the course of verifying that 
(19) isan eigenstate ofT (v). Using the relations (18) and (1 S), 
the following result can be shown: 

(20) 
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where 

A (v;v, •...• vn ) 

n [sin(V - v -211)] 
= [sin(v + l1)]N II . I 

i ~ , Slll(v - v;) 

. N IIn [Sin(V - Vi +211) ] - [Slll(v -11)] . . 
i~' Slll(v - vJ 

(21) 

To show (20). we write T(v) = A (v) + D (v) and commute A 
and D past all of the B operators in (19) using (l5b) and 
(15c). When such a procedure is carried out. for example. on 
A (v). it produces 2 n terms. One of these terms comes entirely 
from the first term in (I5b) and. along with the correspond
ing term from D (v). yields directly the right-hand side of (20) 
with the eigenvalue (21). The remaining terms involve states 
in which one of the vi's is replaced by v. and these terms must 
be made to cancel ifEq. (20) is to be satisfied. The first such 
term. where v, is replaced by v. is easily found to be 

f3(v.v,) {[Sin(V, + l1)]N IT 1 
a(v.v,) I ~ 2 a(vl.v,) 

- [sin(v, -l1)]N IT 1 }lv.v2 ••••• vn ). (22) 
1~2 a(v,.vl ) 

Other terms involving the states in which Vj is replaced by v. 
withj> 1. may also be calculated directly. but such acalcula
tion is unnecessary. From the symmetry of the state (19). 
which follows from the second commutator in (15a). we see 
that each of the remaining terms may be obtained from (22) 
simply by interchanging v, and vj • The requirement that all 
such terms vanish leads to the conditions 

[sin(vj -l1)]N IT [sin(vj - VI + 211)] 
I~ , 

17') 

= [sin(vj + l1)]N IT [sin(vj - VI -211)]. (23) 
{=, 
{ "/'j 

Equations (21) and (23) are the familiar transfer matrix ei
genvalues and periodic boundary conditions for the ice mod
els. '2.'3 Thus. we have constructed the eigenstates and eigen
values of the transfer matrix by a method which is 
considerably more transparent than the original Bethe an
satz treatment and which clearly demonstrates the connec
tion between soluble lattice models and the quantum inverse 
formalism. 

From the examples of the nonlinear Schr6dinger equa
tion. the sine-Gordon/massive Thirring model. and the ice 
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models discussed here. it is apparent that the quantum gen
eralization of the classical inverse scattering technique pro
vides an elegant formulation of exact results for soluble 
quantum field theories and lattice statistical models. Further 
refinement and extension of this method may provide addi
tional insight into the nature of conservation laws and exact 
integrability in quantum field theory. 
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The two-group integral transport equation in subcritical homogeneous isotropically scattering 
medium in arbitrary geometry is considered. A functional is constructed which is stationary for 
the solution to the integral equation. If the determinant of the transfer matrix is positive, then the 
solution gives the minimum of the functional. The applications to the cylindrical Milne problem 
is shown and examples of the numerical results of the extrapolation distances are presented. 

1. INTRODUCTION 

The extension of the Case method of elementary solu
tions for the multigroup and especially two-group transport 
theory has been the subject of a number of papers. 110 Most 
of them were devoted to the equations with the plane sym
metry where the H-matrix technique has been developed and 
successfully applied in so-called half-range problems. 6

-
8 In 

this technique solutions are superpositions of the elementary 
solutions with coefficients obtained in terms of the scalar 
products from the orthogonality relations on the basis of the 
completeness theorem. For practical calculations of these 
scalar products the numerical evaluation of the H matrix 
from a nonlinear integral equation is needed. 

In other geometries the transport equations, for which 
the transformations into planelike equations exist, can be 
treated in principle with the same method. There are two 
methods of the transformation: the replication propertylO, II 
or the transform function technique. 12.13 Nevertheless, these 
methods seem to be attractive from the numerical point of 
view in the limited number of "inner" problems, while in the 
"outer" serious numerical difficulties appear. 

For these reasons in the present work the extension of 
the classical variational method 14 for two-group transport 
equation is proposed. The basic equation is the integral 
transport equation in the homogeneous isotropically scatter
ing medium in the arbitrary geometry. 

For this equation it is possible to construct a functional 
which is stationary for the solution. However, the proof that 
this is also the extremum requires the assumption ofthe posi
tivity of the determinant of the transfer matrix C. If this if the 
case, then the convergence of the Ritz (or other known) 
method is guranteed. As the example of application the cy
lindrical Milne problem I 5.16 is considered in detail. It is 
shown that the extrapolation distances Ai depend in fact on 
certain integrals from the bounded part of the solutions. 
These integrals can be obtained as the combination of the 
minima of the variational functionals; it makes the method 
especially attractive when applied to calculate Ai' 

The method works with the sufficient accuracy for the 
range of R (the radius of the black cylinder) from about 0.1 
to 15. (in mean free path). The most interesting is the inter
mediate region of R ~ 1 while for R---+O or R-->- 00 there exist 
the asymptotic expansions. 16.17 Two numerical examples 
presented in the paper are for R = 1, and another one with 

R = 10 is for comparison with the results from the asymp
totic expansion. 

The plane or spherical geometry yields much more sim
ple matrix kernels of the integral equations, and one may 
expect that the corresponding calculations in these symme
tries can be performed with great numerical accuracy. 

2. THE INTEGRAL TRANSPORT EQUATION 

We write the two-group, stationary transport equation 
in homogeneous isotropic ally scattering medium in region V 
in the form: 

(0''1 + i)ifi(r,O) = C_1
_ f d O'tJi(r,O') + i](r,O), (l) 

41T 

where the angular flux 

- ( 1JI(I)(r,0») 
1JI (r,O) = 1JI (2)(r,O) ; 

with 1JI(i)(r,0), the angular flux in the ith energy group, de
pends on position rEVand velocity directional vector 0; 

is the total cross section matrix where a and 1 are th~ cross 
sections in the first and second group, respectively; C with 
nonnegative elements cU' i,j = 1,2, is the transfer matrix. It 
is assumed that C l2 'C21 #0 since if one of the off-diagonal 
terms vanishes the equations for each group are in fact un
coupled. Hence one can obtain the equation with the sym
metric transfer matrix by the transformation6 

/'.. ~ 

C' =ACA (2) 

with 

The vector q(r,O) denotes sources. 
Integration of( I) along the characteristics 14 leads to the 

integral equation for the flux 

nCr) = f d.n ifi (r,O), 

nCr) = ( PCii)(r) + l(r), 
where Pis the integral operator: 

(3) 
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with 

/V". ("- "-

(PCif)(r) = Jv dr' 9(r,r')Cn(r'), 

"- 1 1 "-
9 (r,r') = - Exp( -Ir - r'l)x(r,r'), 

41T Ir - r'12 

" (exP(OX) 0) 
Exp(x) = . 

o exp(x)' 

{

I, ifl r - s(r' - r);sE(O, 1) 1 C V, 

X (r,r') = 
0, otherwise. 

(4) 

The vectorl(r) is obtained from the boundary condition and 
the source vector q(r,O). Redefining n' = n - J, one gets 

(5) 

and now C f(r) corresponds to isot:opic sources in (1) with 
iii'(r,O), fd niii(r,O) = n'(r), instead of iii(r,O). 

If V = JR" then the straightforward integration gives 
for any r 

i " " dr' 9(r,r') = ~ - I. 
nl 

(6a) 

From (6a) and the positivity of .9 (r,r') it follows for VCJR 3 

(" " Jv dr' .9'(r,r') <~ - I, (6b) 

where the inequality here and in all matrix inequalities in the 
remaining part of the paper denotes the inequalities for the 
corresponding nonzero elements of the matrices on both 
sides. 

Since we want to consider also equations in one or two 
dimensions as well as in curvilinear geometries suppose that 
we change the variables from r to (x, rJ), where by x we denote 
k (k<;:;3) variables upon which the flux n depends, n = n(x), 
while rJ stands for the remaining 3 - k variables. 

Let us suppose further that 

dr = w(x)dxdrJ, w(x) > O. 

Now our equation of interest is of the foIlowing form: 

n(x) = (KCif)(x) + lex), XEV, 

(KCif)(x) = Iv dx' w(x')%(x,x')Cn(x'), 

where 

-/', , if " /'-.. f" .~ (x,x) = drJ .:J'(x;x,rJ). 

(7a) 

(7b) 

(8) 

For con venience we retain V to denote the region of x and the 
integration in (8) is over the whole range of rJ' in JR3 [(3 - k )
dimensional subspace]. 

The inequality (6) immediately gives 

Iv dyw(y)%(x,y)<i -I, (9) 

where equality holds only when V covers the k-dimenisional 
subspace in JR3. 

We consider Eq. (7)in the HilbertspaceL ~(V) with the 
scalar product ( I ) L ; 
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h,gEL~(V), (hlg)L = Iv dxw(x)(h(x)lg(x», (10) 

where ( I ) denotes a scalar product in JR2, and with the norm 

II IlL: 
hEL ~)(V), /lhilL = «hlh) L)1/2. 

First, let us assume thatlEL ;JV) and estimate the spectral 
""-

radius of KC in L ;" (V) 18; 

/'..."""- A/'.. 

IIKC lisp = lim (11(Kc),nIUl/m. 
In- "00 

From the definition 

IIKcnll L = [ Iv dx w(x) Iv dy w(y) Iv dz w(z) 

" "- " " ]In X ( .~·(x,y)Cn(Y)I%(x,z)Cn(z» . 

" .5V(x,y) is diagonal and positive. Let us denote 
A A "-

WII(X,y,z) = [%(x,y)] 1/2 [%(x,z)] 1!2Cn(y), 
A " A 

~2)(X,y,z) = [%(x,y)] 1!2[.5V(x,z)] I12Cn(z). 

The Holder inequality and (9) gives 
"'" "" (KCnIKCn)L 

= Iv dx w(x) IvdY w(y) IvdZ w(z)(~I)(x,y,Z)I~2)(X,y,z» 

< { Iv dx w(x) Iv dy w(y) Iv dzeu(z) 

X (~I)(x,y,z)I~I)(x,y,z»} 112 

X { Iv dx w(x) Iv dy w(y) Iv dz w(z) 

X (~2)(x,y,z)I~2)(x,y,z» } 
1/2 

= ( dx w(x) ( dy w(y) ( dz w(z) 
Jv Jv Jv 
X (wl)(x,y,Z)I~I)(X,y,z» 

= Iv dy w(y)( Iv dx w(x)%(x,y) 

X Iv dzw(Z)%(X,Z)Cn(Y)ICn(Y») 

< Iv dy w(y)(i- lCn(y)Ii - ICn(y» 

A " 

<112' - ICII IInII L, (11) 

where" " is the norm of 2 X 2 matrices introduced by the 
scalar product ( I ). 

Iteration for any natural m yields 

"'" and the conclusion is that /lKS( lisp is less or equal to the 
spectral radius of the matrix 2' - 1 C, the largest of absolute 
values of its eigenvalues which we denote after Ref. 7 by 
k BMS ' 

(12) 
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It is clear that in (12) we have equality only when V corre
sponds to the k-dimensional subspace in R3. In this paper we 
consider subcritical media so we assume kBMS <; 1 or ~s 
< I when in (12) is equality. For subcritical media IIKC II,p 
< I, and Eq. (7) has in L ;,,(V) one and only one solution iiJ 
which can be found as the series lR 

iiI = 7 + Kq + (KC)27 + .... 

3. THE VARIATIONAL THEOREM 

The vector fi; = CnJ ' n;EL ~(V), where iiJ is the solu
tion to (7) satisfies the equation adjoint to (7): 

A../'. _ 

ii = (KC)*ii + J*, (13) 
~A ~A ~ '_ ~ 

where (KC)* = CK is adjointtoKCinL ~,,(V) andJ* = Cf 
Let us introduce the functional 

/'.. /'... ~ ",......,-

J-f(ii) = !(Ciil(I -KC)ii)L - (Cfilf)L (14) 

and check whether it has the required properties. 
The first term in (14) can be also written as 

A. /'.. /".../"... A 

(iiIC(I - KC)ii) L since we have C symmetric. The opera-
A. '" """ tor C (I - KC) is self-adjoint inL ;,,(V), and from this fact it 

follows that 
A /"... A./'.. _ 

grad f/ii) = C [(I - KC)ii - j), (15) 

where grad f/ii) denotes the gradient of fiii) intro
duced in the usual wayl9. For instance, let F(n) be a 
functional 

iiEL ;,,(V), F(ii}:L ~(V)-RI; 

then for hEL ;,,(V): 

(grad F(ii}lh)L = ~F(ii + th)1 
dt /=0 

= lim F(ii + th) - F(n) . 
/-_0 t 

Equation (15) is obtained directly from the above definition. 
If dete #0, then the functional f /ii} is stationary only 

when ii = iif 

(16) 

Equation (16) is the necessary condition that iif be the point 
of extremum of ,1-/ii).19 Our next step is to investigate the 
sign of Llf/n) = fin) -- fAiiJ) to find whether fin) 
has in ii = iiI minimum or maximum. From the definition 
(14) 

./'...A.. AA. 

Llf/n) = ~(oii>IC (I - KC)Oiif ) L' (17) 

where 

fjiiJ = ii - iiJ' 

which means th.a~our",~estion is whether or not the scalar 
product (oii,IC(I - KC)oiiJ) L is always positive (or nega
tive) for all oiifEL ;',(V), oiif#O. 

Let us consider the first possibility. Due to the positive ma-
'" "'/'</'. 

trix kernt;,l of K the term (oiifICKCoiif ) L is always pos~ive. 
Thus detC > 0 is the necessary condi!i0n for minimum; Chas 
nonnegative elements and",with detC> 0 is positive definite; 
hence the first term ",(oiif I C8iij ) L in Ll)'>(n) is PJ?~ve. Let 
us assume that detC> 0 and try to estimate (iiICKCn) u 
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iiEL ;')(V). We repeat the steps leading to (II): 

(iiICKen) L 

= f dx w(x) f dy w(y)(t l )(x,y)lt2)(x,y» , 

where 
A '" tll(X,y) = [X(X,y») 1/2Cii(x), 
A A 

t2l(X,y) = [,.W"(x,y») I12Cii(y), 

(iiICKCii) L 

<; r dx w(x) r dy w(y)(g(l)(x,y)lfl)(x,y» 
Jv Jv 

<; f dx w(x)( f dy W(Y)%(X,Y)Cii(x)ICn(x») 

r A.A. A. 

<; )v dx w(x)(CI -I Cii(x)iii(x». (18) 

With C positive definite and symmetric, we can introduce in 
RZ a new scalar product [ I ]: 

u,wER2
, [ulw] = (Culw), 

in which the matrix i -leis symmetric: 
A /'.. A A/"..../".. A. 

[ulI - ICW) = (CuII - ICW) = [I -ICulw). 

Now the Rayleigh principle20 can be applied, 
/'.../'-.. /'.. A. /"".. 

(CI I Cii(x) I ii(x» = [I ICii(x)\ii(x)] 

<,kBMS [ii(x) I ii(x)] = k BMS (Cii(x) I ii(x» , (19) 

'" since k BMS denotes the largest eigenvalue of the matrix I- I 

X C. In case of subcritical media (19) gives 

(Ciilii) L;;' (cr- I Ciilii) Lt 

fiEL ~,( V), ii # O. (20) 

Finally (18), (19), and (20) yield 
/'. A,/'../'.. 

(Ciil ii) L > (CKCiil ii) L, 

iiEL;',(V), ii#O, (21) 

the inequality is sharp since either kBMS < 1 or there is the 
sharp inequality in (18). From (21) we conclude that the 
requirement detC> 0 appears to be also the sufficient condi
tion for the minimum. 

In the o)?posite case, i.e., detC < 0 the sign of 
(Ciil(I - KC)ii) L depends on iiEL ~(V). For instance, let us 
consider the subspace HI CL ;,,(V) generated by h, ER2, an 
eigenvector corresponding to the largest eigenvalue k BMS of 
the matrix i I C. The vector hEll, is of the form 

hex) = h (x)h1 , 

where h (x) is a scalar function. Using (18) and the definition 

of h, one obtains 
A._ /"".. /'.../'-..._ 

(Ch 1(1 - KC)h) I 
A._ _ /'..._ ~_ 

= (Ch ih)L - (Ch IKCh)L 

;;'(Chlh)L - Iv dxw(x)h 2(x)(Chl li-
IChl ) 

= (Chlh)L -ksMs(Chlh)L' (22) 

The elements of i-I C are nonnegative. From the Perron
Frobenius theorem2o it follows that there exists an h1 ERe 
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which is nonnegative. As Cis nonnegative, ciil is also non
negative, and 

(Ciilii)L = idxw(X)(Ciilliil )h 2(x»0. 

Finally from (22) 
........... - "" /"'.../"..-

(Ch 1(1 -- KC)h ) L >0, iiEll I · 

On the other hand, choosing another subspace H2 , 
ii'EH2' ii'(x) = h '(x)iiz , where h '(x) is a scalar function and 
iiz ERz is the eigenvector of C with the negative eigenvalue, 
one obtain ... immediately 

........... _ /'.... /'0..../"... _ _ 

(Ch '1(1 - KC)h ') L ~O, h 'Ell2 • 

These examples show that in case of detC < 0 none of the 
""""':".A.../"... /".,-""'. ~ 

operators C (J - KC) or - C (J - KC) is positive definite. 
The following theorem results from the above 

considerations: 
Theorem: If detC =1= 0 and Cis symmetric, then Eq. (7) is 

equivalent to the equation 

grad fiii) = 0, (23) 

wh9:e the functional fAii) is defined in (14). If, moreover, 
detC> 0 then the functional fAii) has minimum in ii = iif , 
wh9:e iif denotes the solution to (7) or (23). In case of 
detC < 0, f Aii) has no extremum J!l ii = iif" 

We turn again to the case detC> 0. Slightly changing 
the steps leading to (21), one can obtain the relation 

(Ciil(I - KC)ii) L ;.m2 (Ciilii) v iiEL ~(V), (24a) 

where in the subcritical media 

m 2 = 1 - kBMS + 0>0; 

o denotes the smallest eigenvalue of the matrix (i - I - S)C 
and Sis the diagonal matrix with elements 

Sii = :~f L dy w(y).5YAx,y), i = 1,2. 

/'. /'./'. 

The inequality (24a) means that the operator J - KC is self-
adjoint and positive definite21

•
22 in L ~ (V), but in the sense of 

the new scalar product [ I lL: 
ii,gEL;)V), [iilg]L = (Ciilg)L' 

The norm corresponding to [ I lL we denote by [I IlL: 
iiEL ;',(V). [Ih I h = ([iilii]L)I12. 

We now apply the known procedure for the self-adjoint and 
positive definite operators. 21 First, these properties and the 
fact that I - KC is bounded in L ~ (V) allows us to introduce 

in L ~J V) the third scalar prod uct I I I L : 
- - _ ........... ~ 

h,gEL ~,(V), I h Igl L = [h 1(1 - KC)g]v 

with the norm [I II L : 

iiEL:,(V), [liillL = ([iiliil L)1I2. 

The space L ~v (V) with the scalar product I I I L will be 
denoted as L;., (V). 

Using the new definitions, we can express (24a) in the 
shorter form: 

- 2 1 - -
hEL,v(V), -llhllL>[lhlh, m>O. (24b) 

m 
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The fixed elementlEL :, (V) defines a bounded function

al in L~(V): 

iiEL ~,,(V), rllii]L ~ [[11]L [liil]L 

~ [Vlh [liiII
L

. 

m 

From the Riesz theorem23 there exists iifEL ;,,(V) such that 
for all ii 

[lliih = [n>liiI L; (25) 

and the functionall'Aii) takes the form 

fAii) = H iiiiil L - [iiVh 

= Hiiliil L - [iiliif}L =!II ii - iifl];, - H liirllL 
(26) 

with iif being the solution to (7) or (23). In our case since the ..... /'./'-. 

domain of J - KC is the whole space L ~(V) t~e vector iif 
EL ~ (V). The new form of fAii) in the case detC > ° given in 
(26) is useful when the approximate methods are to be ap
plied. The space L ;',(V) is separable. Any minimization 
series 

jj<k), k = 1,2,···, for (I'Aii): 

lim fAjj<k) = inf ff(ii) = - H liifllL 
k~oo iioL:.(V) 

converges to iif in the norm [I I J L and from (24b) also in the 
norm [I I h .21.22 Let [qJk I be a basis in L:, (V). In the Ritz 
method one looks for the minimum in the form 

k I c/k )(0, k = 1,2,3,.··, 
i= 1 

and obtains immediately from (26) the system of linear 
equations 

k k) - - --I c/ ['Pi I 'Pi I L = [(1'Pi]L' j = 1,2,oo.,k. 
i= 1 

The fact that 1- KCis positive definite gurantees that the 
determinant of the matrix ([ (01q;; I L)' i,j = I,oo.,k, is differ
ent from zero. 

4. REMARK ON THE n-GROUP APPROXIMATION 

All results obtained in the previous section remain valid 
in the n-group approximation, n > 2, provided that the as
sumptions about the matrix Care fulfilled. In the two-group 

/'-. /'. 

case C can be symmetrized by the diagonal matrix A if only 
c 12 ·c 21 =1= 0. The fact that A is diagonal is essential since the 
symmetrization should preserve £" diagonal. Generally, in 
the case of n groups, n > 2, the symmetrization can be done 
only if the detailed balance exists24 and, moreover, is not 
violated by the discretization in energy. In the continuous 
dependence upon energy the detailed balance condition 
gives for the scattering kernel K (v,v') the relation 

mo(v',T)K (v,v') = mo(v,T)K (v',v), (27) 

where mo(v,T) denotes the Maxwellian with the tempera
ture T. This equality leads to the symmetrized kernelK (v,v'), 

K(v,v') = [mo(v,T)/mo(v,T)] 1/2K (v,v'). (28) 

We impose that the condition (27) remain valid after the 
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dis~etization in energy. A definition analogous to (28) gives 
us C, symmetric: 

C'=ACA 
where (.4\, = [mo(vj,TU,1/28u is the diagonal transforma
tion matrix. For n = 2, A is of the same form; however, the 
symmetrization can be performed automatically without the 
assumption of the detailed balance. The condition that C' is 
symmetric gives n(n - 1)/2 equations for n -1 elements of 
the diagonal matrix A (with the accuracy to the multiplica
tion factor). If n = 2, then these numbers are equal while if 

/'. 

n > 2 additional constraints for C must appear. 

Symmetry of C allows to construct the functional 
........ /""-.. A.A. ........ 

fAiT) the gradient of which is equal to C (I - KC)n - Cn 
andfiiT) is sJ.a~ona):~..in n = nf" To ensure the positive 
definitness of C (I - KC) in L ;" (V) one needs the positive 
definitness of the matrix Cin R". Note that in the two-group 
case the latter can be viewed as the requirement that the 
coupling parameter (c 12 'C21 )/(c II ·C22 ) is smaller than 1, 
which is true for most actual situations. 

5. EXAMPLE-MILNE PROBLEM IN CYLINDRICAL 
GEOMETRY 

As an example let us take the Milne problem in cylindri
cal geometry. 14--16 It corresponds to the situation when the 
infinite long cylindrical black (absolutely absorbing) body of 
radius R is immersed in the two-group infinite isotropically 
scattering medium. 

For the neutron flux n we have the following equa
tion l 4--16 

(29) 

where n = n(r), r denotes the distance from the axis of the 
cylinder, 

/'. 

.:f R(r,r') 

11" . r - r'l 

~J(r' R,)L" +(r' R')'" d
P
/ 

! [p2 _ (r - r')2] [(r - r')2 - p2] J- 112 L" dt Ko (t ).2: 

Ko (t) is the modified Bessel function of the second kind and 
u is the total cross section of the first group. Here distances 
are measured in the free path of the second group. 

In the limit R-O (without the black body) we denote 

(30a) 

and one can check (the technique is the same as for one group 
approximation 12,13) that the equation 

(1- £C)iio = 0 (30b) 

has solutions of the form 

1122 J, Math. Phys., Vol. 21, No, 5, May 1980 

(30c) 

where 10 (x) is the modified Bessel function and the Vj are 
zeros of the characteristic equation": 

detA(vJ = 0, 

where 

A (Vi) = f + Vi I.I ~ @0)C, 
1 J.l - Vi 

with () (p,) being the characteristic function of the interval 
( -1/ u, 1/ u), and the characteristic equation is obtained as 
the solvability condition of the equation for the vectors U (Vi) 

which now have the solutions 

- (- A 12 (VJ) 
U(v;) = , 

All (v,) 

In the subcritical case with k BMS < 1 there are one or 
two pairs of real zeros [ ± Vi J. The number of these pairs is 
denoted by K. If K = 2, the two components of U (v 2) (we 
choose V I > V 2 ) are of different signs,4.9 and the physical so
lution to (30) is 

no(r) = 10 (r/vi )U(vl ). (31) 

Now we return to the Milne problem with R #0. We 
look for the unbounded solution to (29) which behaves as 
(31) for large r (it corresponds to the sources at infinity). 

The Placzek lemmal5 allows us to treat the Milne prob
lem as the whole space problem with negative anisotropic 
cylindrical shell sources situated in r = R. Ifwe are interest
ed in the influence of these sources upon the solution at the 
asymptotically large distances from the cylinder, then these 
sources in turn can be substituted by the negative spatially 
distributed sources density of which is of the order 
o (e - (r - R ». Thus the asymptotic part of the correction 
n'''(r) - 10 (rivi )U (rl ) due to the presence of the absorber is 
the same as the asymptotic part 11':'(r) of the bounded solu
tion to the equation 

ns(r) = (Lns)(r) + 5(r), 

where s(r) represents the latter sources; 

n'''(r) = n~'(r) + 10 (r/vi )U(v l )· 

ii"'(r) and ~'(r) can be described as follows: 

[ii"'(r) - n(r)] er < OCJ, 

[11':'(r) - ns (r)]e' < 00. 

(32) 

(33) 

Similarly as in the one-group case (Ref. 13, Appendix 
C) one can obtain from the plane Green matrix') the cylindri
cal shell Green matrix G(r,ro) 

/'. K 1 - -
G(r,ro) = 2: U(v;) ® U(v i ) 

j= I vjN(vi ) 

(34) 
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where following Ref. 9 the notation 

__ (alb l a l b2) 
a®b= 

a2 b l a2 b2 

is used, N (v;) is the normalization integra~ r> 
= max(r,ro), r < = min(r,ro)' The matrix G (r,ro) is defined 

as the solution to the equation. 

G(r,ro) = r'" dr'r'2'(r,r')[CG(r',ro) )() 
-" 

+ (1/ro)8(r' - ro)I], 
-" -" -" 

where !t' (r,r') = !t'R (r,r') 1 R = o' The definition of G (r,r 0) 
gives for ns(r) 

n,(r) = 1'" dro roG(r,ro)Cscro)+S(r). 

Putting (34) in the above expression and utilizing the 
o (e - ')-like behavior of S(r) one finally obtains 

K 1 1'" ;Z::'(r) = I dro ro 
;= I v;N(v;) 0 

X (Clo(ro/v;)U (v;)lS(ro»Ko(r/v;)U (v;). 
(35) 

We have established the form of the solution to the 
Milne problem 

n(r)=Io(~)U(VI)+ i /3;Ko(~)U(v;)+o(e-'). 
VI 1= I V; 

(36) 

Usually the most interesting is the asymptotic part of the 
flux owing to the importance of the extrapolation distances 
A; ,4.13 

A; nUJ·'(R ) / dn(/)", (r) I ,i = 1,2. 
'I dr') r= R 

The remaining part of this section is devoted to the calcula
tion of A;. First observe that if we put 

nCr) = nl (r) + PI (r), 

where 

nl (r) = 10 (r/vi )U(vl ), 

then PI' the bounded part of the solution, obeys the inhomo-
geneous equation 

.A. .A. _ 

PI (r) = (LR CPI )(r) + II (r), (37a) 

with the source term 

1. (r) = [(1 - LR C)nd(r) = 0 (e - '). (37b) 

Now, following Marshak (Ref. 15, p. 211), we extend the 
definition of PI (r) and!t (r) to the region r<R 

PI (r) = LX dr' r' Y(r,r')Cpl (r'), r<R, 

(38) 
1.(r) =0, r<R, 

and Eq. (37) can be rewritten in the form 
/"'../".. ,.......,......... ......... -

PI (r) = (LCPI )(r) + [( - L Cft1 - K R )CPI ](r) + II (r), (39) 

where 
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-" -" r R -" .A. 

(L Cfi1CPI )(r) = )0 dr' r' !t'(r,r')Cpl (r'), 

-" .A. i 00 -" .A. 

(K R CPI )(r) = R dr r' % R (r,r')CpI (r'), 

-" 
and the matrix % R (r,r') is defined as 

4 r+r' 
1T Jr' _ R '1'" + (r' 2 

•• R ')'" 

-" X dp 
%(r,r') = I [p2 _ (r - r')2] [(r + r')2 _ p2] jl/2 

xlOO 

dt Ko(t)£, r>R, r'>R, 

0, r<R or r' <R. 

Similarly, as in the case of!t (r), one can check that 
.A. -"-" 

[( - L Cfi1 - KR)CPI ](r) = 0 (e - r); 

hence (39) can be viewed as the equation of type (32) with the 
same 0 (e - ') behavior of the source term 

/".. A......... _ 

[( - L Cfi1 - KR)CPI ](r) +;; (r). 
According to (39) and (35) we obtain formally 

PI(r)= I/3;Ko(r/v;)U(v;)+O(e· r
), (40) 

i= ] 

where 

- ......... /'.. /'.. ......... 
X [/1 (r) - (L Cft1CPI )(r) - (KR CPI )(r)]), (41) 

n;(r) = 10 (r/v;)U(v;). (42) 

Substituting the explicit definition of LCft), changing the or
der of integration, and using (30) and (38) yields the identity 

100 

dr r(n;{r)IC(LCft1CPI )(r» 

= 100 

dr r(CPI (r)I(LCft1Cn;)(r». 

Similarly 

100 

dr r(n;{r)IC (KR CPI )(r» 

= 100 

drr(CpI(r)I(~Cn;)(r». 
These results used in (41) give 

/3; = [1/(r;N(r;)] [ L" dr r(Cn;(r) 1 1. (r» 

+ 100 

dr r(CPI (r)I};(r» ], (43) 

where according to (37b), (38), and (42) the notation 

};(r) = [(I - LR C)n;](r) 
"'(01 .A..A._ 

= - [(L R + KR)Cn; ](r), r>R, 

};(r) = 0, r<R, 

is introduced. The source term); (r) corresponds to the ficti
tious Milne problem with n2 (r) as the unbounded part of the 
solution nz (r) + P2 (r), where the equation for pz is 
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TABLE I. The values of the extrapolation distances in two cases for R = I. 
The given results are exact in the sense of the numerical evaluation of the 
matrix elements of f - LR C. 

Case, 
references 

bO K 
0: 

'N 
'1: 

VI B 
U <;j 
oj '1: .... 
oj Q) 

V, ..c: (;j 
u a 
'" = Q) 

k UMS S -5 
'" 0: 
0 

C=detC U 

Extrapolation 
distances 

/31 

= /3, OJ 
'(3 '"0 

IE OJ 
'"0 

OJ '" 0 u y, u - .:: 
'" oj 

...l 
Y4 

I" 2 4 

2 

I. 9360 2.1568 

0.9164 

0.2580 

,1.=,1.1 

=,1., 

0.9554 

0.9611 

0.9617 

1.3566 

0.9356 

0.2469 

Al 

0.6996 0.9827 

0.7281 0.9730 

0.7311 0.9771 

0.7318 0.9777 

(44) 

The vectors PI' P2 and~ ,h belong to the Hilbert space 
L ;(R, 00 ) with the scalar product ( I ) L : 

ii,gEL ;(R, 00 ):(ii Ig) L = 1"0 dr r(ii (r)lg(r) 

and the scalar products [ I ]L and! IlL are introduced 
along the way of Sec. 3. Now we observe that 

I - -
(31 = N( ) ([nll!1 h + [PI I!I ]L) 

VI VI 

depends on the PI via the minimum of the functional 

/1(f)=HplplL - [pl~h 
in L ;(R, 00 ), 

where 

In the expression for (32 

1 - -
(32 = N( ) ([n21!1 h + [PII!2 ]L); 

V 2 V 2 

(45) 

there is the mixed term [Pllh]L From (37a), (44) and the 
A .A. 

symmetry of L Rein the scalar product [ I ]L it stems: 

[PI I h h = [P21 ~ h· 
Let us construct the functional /(1 +2) (f) corresponding to 
the equation obtained by adding (37a) and (44); 

/(1 +2) (ft) = H pi PlL - [pl~ + h ]L' 
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TABLE II. The comparison of the results of the extrapolation distance in 
case I for R = 10, obtained by the variational method and from the asymp
totic expansion (48). In the latter the following notation is used:)~ "" = p" 
A II) =,1. ([I) +PIIR,A (2) =,1. (I) +p,IR ',A (.;) =,1. (2) +p,logR IR '. 

Variational method Asymptotic expressions, 
Eq. (48) 

AlII) 0.7244 

/31 0.7490 

= A (I) 0.7507 
OJ 

'"0 '(3 
OJ 

IE '"0 Y2 
0.7513 OJ '" 0 u u - .:: 

'" A (2) 0.7518 oj 

...l 

Y4 0.7515 

A I;) 0.7517 

The symmetry of the mixed terms gives 

[Pllh]L = -/(1+2) +/1 +/2' 
where 

/(1 +2) = min /(1 +2) (f), 
PEL ;(R. 00) 

min /2(f), 
PEL ;(R, 00) 

/2(p)=HplplL - [plh]v 
and the expression for (32 is 

(32 = ;( ) ([n21~ ]L - }'(l +2) + /1 + /2)' 
V 2 V 2 

(46) 

The formulas (45) and (46) were utilized from comput
ing the extrapolation distances A i in a number of cases, 17 The 
Ritz method was used with the trial vectors of the form 

per) = i 7J;Ko(~)U(VI) + (YI) i l 

dv Ko(~) 
i~ I Vi Y2 () V 

+ (~:) f dv VKo(:). (47) 

suggested by the replication properti 3, 10 of the integral 
transport equations. The terms in (47) were included succes
sively and minimization was performed with respect to the 
coefficients tJ and Y present in the terms taken into account. 
Here in Table I as an example we show the values of Ai 
obtained in one case with K = I 6 and another with K = 2, 4 

both for R = 1. The n~er~a!)ntegration in the matrix ele
ments of the operator I - L R C with the trial functions and 
ni(r) were performed using the Kronrod-Gauss method. 25 

For comparison in the Table II we present also the re
sults of case 1 for R = 10, obtained by the variational meth
od and from the asymptotic expansion of the form l7 

A (R) = Po + PI /R + P2/R 2 

(48) 
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A homogeneous Hilbert (Riemann) problem (HHP) is introduced for carrying out the 
Kinnersley-Chitre transformations of the set V of all axially symmetric stationary vacuum 
spacetimes, and the spacetimes which are like the axially symmetric stationary ones except that 
both Killing vectors are spacelike. A proof, which is independent of the Kinnersley-Chitre 
formalism, establishes that the HHP transforms the potential (for certain closed self-dual 2 forms) 
Fo(x, t) of any given member of V into the potential F (x, t) of another member of V. Two 
illustrative examples involving the Minkowski space Fo(x, t) are given. The representation used 
for the Geroch group K, the singularities and gauge of the potentials, and possible applications of 
the HHP are discussed. 

1. INTRODUCTION 

Our principal objective in this paper is to introduce a 
homogeneous Hilbert (Riemann) problem I each of whose 
solutions gives the result of applying an element u of the 
Kinnersley-Chitre representation of the Geroch group K. 2-7 

The operand of u is a potential Fa which is determined up to a 
gauge transformation by a given axially symmetric station
ary vacuum metric go. The result F of the operation is also a 
potential from which a new axially symmetric stationary 
vacuum metric g can be computed. 

It is worth mentioning that our HHP (homogeneous 
Hilbert problem) is also applicable to those vacuum space
times which are like the axially symmetric stationary ones 
except that both Killing vectors are spacelike. We shall let V 
denote the set of all vacuum spacetimes for which there exist 
coordinates x I, x 2

, x', X4 such that the line element has the 
form (signature = +2) 

g,;Dx'Dxi + guhDx"oxb (i,) = 1,2) (a,b = 3,4), (1) 

where g'l and g"b depend at most on Xl, Xl, and where the 
2 X 2 matrix h whose elements are 

huh: = g"h (a,b = 3,4) (2) 

obeys the condition that d (det h) is not zero and is not a null 
1 form. x The axially symmetric stationary members of Vare 
among those which satisfy det h < O. This paper will explicit
ly cover the entire set V. 

There are eight reasons why we consider the HHP to be 
an attractive way of effecting the K-C (Kinnersley-Chitre) 
transformations,"-7 and we shall now take these up in an 
appropriate order beginning with some key features of our 
gauge and our group representation. 

(1) First the gauge of the potentials which are trans
formed by the HHP is elegantly defined in terms of their 
complex plane singularities. These potentials were originally 
introduced by K-C6 (with minor differences of notation and 
signature) as generating functions for part of their hierarchy 
of potentials. They are 2 X 2 complex matrix functions F (x I , 
x\ t) of the nonignorable coordinates x I, x 2 and a complex 

"Work supported in part by National Science Foundation Grants PHY 75· 
08750 and PHY 79·08627. 

variable t. As will be discussed in Sec. 3, we select a gauge so 
that for fixed x = (Xl ,x2

), F(x, t) is holomorphic9 in a neigh
borhood of t = 0, and 

F(X,t)(~ ~) 
is holomorphic in a neighborhood of t = (XJ (including (XJ). 10 

Further restrictions o/the gauge involve a minimization o/the 
number 0/ complex plane singularities and are discussed later 
in this Introduction. Regardless of the specific gauge, the 
property of F which is important from the viewpoint of its 
use in the HHP stems from its holomorphy at t = 0; we are 
referring here to the fact that llx is restricted to any given 
compact region o/the real plane, then there exists at least one 
smooth contour L surrounding the origin in the complex plane 
such that F is holomorphic on L + L+ where L. denotes the 
open set inside L. 

(2) The HHP employs strikingly simple representations 
K/. of the group K, one for each smooth contour L surround
ing the origin in the complex plane and symmetric with re
spect to the real axis. KL is the set of all 2 X 2 complex matrix 
analytic functions u(t) of a complex variable t such that 

detu(t) = 1, U(tfEU(t)=E, (3) 

E: = (0_ I ~), u(t f + : = h.c. of u(t *), (4) 

and such that u(t) is holomorphic on L, and 

C· I 

~)U(t)(~ ~), 
is holomorphic at t = (XJ. (We always use the Riemann 
sphere topology; holomorphy at a point means holomorphy 
in a neighborhood of the point, and holomorphy in or on a 
set means holomorphy at every point of the set. The condi
tion at t = (XJ derives from the gauge condition satisfied by F 
at t = (XJ and the requirement that FuF· i be holomorphic at 
t = (XJ; this is discussed in Sec. 4.) To effect a transformation 
of any given potential Fo(x, t) for any given u(t) in Ku we 
restrict x to a compact region Uc of the real plane such that 
Fo(x, t) is holomorphic on L + L+ for every x in Uc ' Then, for 
any fixed x in Uc ' we apply the HHP with Fo and u as input 
data. The output F potential is automatically also holomor
phic on L + L+/or every x in U,. 
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(3) The composition law of the group representation is 
simply the 2 X 2 matrix product 

u/t) = u2(t)u I(t), 

where u I' u2, and u3 , respectively, transform Fo' into F I , FI 
into F2, and Fo into F2• This is a nontrivial plus for the repre
sentation if we consider the fact that K is an infinite dimen
sional group.3 As regards the connection between the repre
sentation and the SU (1,1) symmetry I I of the field equation 
satisfied by the potential 'ef of Ernst, observe that Eq. (3) 
states that u(t) is a member ofSU (1,1) for every real value of 
t. 

(4) Another advantage of the group representation is 
that it is already exponentiated, i.e., we don't have to go 
through a process of discovering the one parameter group 
elements corresponding to a given generator every time we 
want to carry out a transformation. Also, each u(t) is easily 
factorized into convenient one parameter group representa
tions. For example, suppose uj is not identically zero (where 
u% is in the ath row and b th column). Then uj has at most a 
finite number of isolated zeros on L. We can, without loss of 
generality, subject L to an arbitrarily small deformation so as 
to avoid these zeros, whereupon we have the following on the 
newL: 

u(t) = G ~)ej ~)(~ 7), 
a = (ujyl(U! - 1), /3 = (ujyl(uj -1). 

If uj is identically zero, a like procedure is available with 
some other element playing the role of a divisor. 

(5) The residual gauge transformations are given by the 
simple mapping 

F(x, t )---.F(x, t )v(t), 

wherev(t ) is defined like u(t )exceptthat "holomorphyonL " 
is replaced by holomorphy at t = 0, and v(O) = I. For all 
choices of the guage, F(x, t) has singularities in the complex 
plane at the zeros ofl2 

A (x, t) : = [(1 - 2zt)2 ± (2tp)2]1/2, 

where 

p : = Ideth 1
1/2

, ±: = sgn( - deth); 

(5) 

(6) 

p and z are conjugate harmonic fields in the two dimensional 
(x I, x 2

) space. The zeros of A (x, t) are generally branch points 
of F (x, t ), and part of the definition of the gauge is a selection 
of an appropriate branch cut (one which avoids t = 0). In 
Sec. 4, we shall show that the gauge can be selected so that 
the only other t- singularities of F(x, t), if they exist at all, 
occur at the zeros of A (xo, t), where Xo is used as an initial 
point in the process of integrating the differential equation 
which defines F(x, t). For asymptotically flat axially sym
metric stationary spacetimes with x restricted to finite values 
in a neighborhood of p2 + Z2 = 0, we can select a gauge so 
that the only t singularities are at the zeros of A (x, t); that 
topic will be covered in a sequel to this paper. 

(6) We can now employ the well developed mathemat
ical apparatus of complex analysis to help us obtain new 
axially symmetric stationary solutions of the Einstein field 
equations. It should be mentioned that our HHP shares ~his 
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advantage (and the preceding five ones) with an equivalent 
linear integral equation of the Cauchy type, 13,14 which was 
previously discovered by the authors and which will be relat
ed to the HHP later in the Introduction. 

(7) We feel that the HHP has brought us close to prov
ing some informal conjectures made by various workers in 
the field. For example, if we are given any two axially sym
metric stationary members of V with corresponding poten
tials Fo and F, does a u always exist which transforms Fo into 
F? Work by Hoenselaers, Kinnersley, and Xanthopoulosl 5 

strongly indicates that such is the case if the members of V 
are both asymptotically flat. In Sec. 6, we shall use the HHP 
to point out that the more general question is equivalent to 
the problem as to whether there exists a u(t) such that 

F(x, t)u(t)Fo(x, t)-I, 

is holomorphic in a neighborhood of t = 00, which contains 
the zeros of A (x, t). The problem is thus reduced to a one in 
complex analysis, and it appears to us as if its solution is 
imminent. 

(8) The HHP has been extensively used in other fields, 
especially in particle physics. Moreover, our HHP appears to 
be a link between the group theoretical 2-7 and the recent soli
ton approaches l

6-19 to exact solution research, though the 
authors do not yet understand the details of this link. 

As regards these last remarks, the recent studies of ex
act solutions of the Einstein field equations for members of V 
have taken two principal paths. One is based on the program 
of using the symmetries of the field equations to generate all 
or at least a healthy chunk of the space-times from the 
known ones and, in particular, from Minkowski space. This 
is the idea initiated by Geroch, 2,3 who discovered K. The idea 
was then taken up by Kinnersley and Chitre,4-7 who con
structed a useful representation of the generators and set up 
viable methods for exponentiating them in many cases. 

The second approach, 16-19 with which the authors are 
less familiar, has been based on the application of soliton 
concepts and techniques. This approach has neglected the 
group aspect, but it has been clearly successful in relating the 
exact solution studies of general relativity to other fields of 
physics. 

In our own work, the group theoretical methods ofGer
och and K-C have been our starting point. However, our use 
of complex analysis and our introduction of an HHP seems 
to have brought us closer to a synthesis of the two ap
proaches. 

Now, let us consider some specifics. In a previous pa
per,13 we found that the K-C transformations can be effect
ed by solving a linear integral equation of the Cauchy type. 
This equation can be expressed in the form 

r ds F(s)u(s)Fo(syl = 0, (7) 
L s(s - t) 

subject to the boundary condition 

F (0) = iE : = i(O 1) 
-1 O' 

(8) 

The complex variable s lies on L, whereas t is within L. The 
member u(s) of KL depends only ons. Fo(s) andF(s) depend 
on x as well as on s, but we often suppress the dependence on 
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x when this can be done without danger of ambiguity. If has 
defined by Eq. (2) is given, F can be computed by solving a 
pair of linear differential equations subject to gauge condi
tions; K -C'· 7 derived an expression for the F potentials of the 
Zipoy-Voorhees metrics i.n this way. 

The F potentials can also be obtained as the solutions of 
Eqs. (7) and (8) for given u and Fo. In this way, the authors l3 

derived the F potential of the Kerr-NUT metric by applying 
the general B group (a subgroup of K) element u to a 
Schwarzschild Fo; this was an extension of prior work by K
K7 who used the same transformation (in their own repre
sentation) to derive the Ernst potential of the Kerr-NUT 
metric. In a similar extension of results due to Hoenselaers, 
Kinnersley, and Xanthopoulos, 15 the authors l4 derived the 
general expression20 for F corresponding to any given Fo and 
to a u(t) which has the form 

U(t)=(~ ti(t»), 
where the only singularities of /3 (t ) are N simple poles inside 
L. This result20 is apparently "isomorphic" to the N-soliton 
solution of Belinskii and Zakharov, 16 but we have not 
worked out the details. The Fwhere/3 (t ) has two poles at the 
origin of respective order one and two has also been derived 
by us as a special case of an electrovac generalization of our 
work. 14 

All of the F potentials which have been mentioned 
above can be used as input potentials for further transforma
tions. A definition of the F potential which does not presup
pose any knowledge of the K-C hierarchy ofpotentials5 will 
be given in Sec. 3, which will also include a discussion of the 
gauge conditions. 

It is clear that Eqs. (7) and (8) are equivalene l to the 
HHP 

X_ex) = X.(s)G (s), (9) 

where 

G(s): = FO<s)u(s)Fo(s)-I, F(s): =X.(s)Fo(s), (10) 

X.(O) = I = unit 2 X 2 matrix, (11) 

and where, for fixed X,22 

(1) X ± (s) are (respectively, for ±) the boundary val
ues onL of2 X 2 matrix functions X ± (t) which are continu
ous in L + L ± and holomorphic in L ± . (L. is the comple
ment of L + L.; as usual, we include 00 in L..) 

(2) The inverse of X ± (t) exists (respectively, for ±) at 
all t in L + L ± . 

In other words, X.1c is a fundamental solution of a HHP 
with component indices (0, 0); the boundary conditions at 
t = 0 and t = 00 pin down the solution uniquely. 

In connection with Eq. (7) or (9), there remain two exis
tence problems which have their counterparts in the K-C 
formalism (to which ours is equivalent). First, there is the 
question as to whether a solution which fits the boundary 
condition at t = 00 exists for all choices of}~ and u. In other 
words, are the component indices of the HHP for G (s) al
ways (0, O)? We shall have to accept this existence as a work
ing hypothesis, since we have no proof as yet. Likewise, we 
shall have to accept the statement that ax ± (t)/ ax i exist, are 
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continuous in L + L, ,and are holomorphic in L 4 (re
spectively, for ± ) as a working hypothesis. However, in Sec. 
6, we shall reduce these existence problems to ones which 
involve a simple u(t) and appear amenable to analysis. 

Our original derivation of Eq. (7) and therefore, of the 
equivalent HHP was an extremely long and cumbersome 
one based on the K -C representation of K. A second objective 
o/this paper is to supply a relatively short elegant derivation of 
Eq. (7) which does not presuppose the K-C formalism. Spe
cifically, in Sec. 4, we shall (granting the working hypotheses 
which were stated above) prove the following theorem: 

Theorem: The solution F (t) of Eqs. (9) to (11) is an F 
potential of a member of V (as defined in Sec. 3). The Ernst 
potential?&' and the metric components h of the members of 
V are computed from 23 

'(j~ = H44, h = - ReH, H = F(O), (12) 

where F (t): = aF (t)/ at; the remaining metric components 
can be determined from If or from h by methods which have 
been given, for example, by Ernst24 and by Kinnersley.24 

By proving the above theorem, we shall have obtained a 
simple derivation of our entire formalism in a relatively few 
simple strokes. Once again, we stress that the K-C formal
ism4

-
7 is equivalent to ours and that we originally derived) 3 

ours from theirs. The new derivation given in this paper is a 
convenient case of hindsight. That does not, however, dimin
ish its importance. 

As regards applications of the HHP, we shall give two 
simple ones in Sec. 5. We shall prove that the Minkowski 
space Fo is left unchanged if we apply that element of K 
which corresponds to 

u(t) = exp[y(t )£], 

where 

(13) 

y(t) = aCt )(~ ~ _)) (B-group generator), (14) 

and where aCt ) is holomorphic on L + L.. Then we shall 
obtain the general static W ey I metric F from the Minkowski 
space Fo by applying that element of K which corresponds to 

y(t)= S (t)(~ ~). (15) 

where S (t ) is holomorphic in L + L. These results are not 
sensational, since K_C6

.
7 have already obtained them in 

their representation. However, the brevity of the derivations 
using the HHP is startling and makes them worthwhile. As 
regards less trivial applications, these will have to be de
ferred for a sequel, and the same remark holds for the e1ec
trovac generalization of this paper; we are still not close to 
completing the details on those SUbjects. 

To be able to define the Fpotential ofa given member of 
V, it is first necessay to introduce the coefficient H of the first 
degree term in the power series expansion 

F(t)={l+Ht+···, {l:=i£. 

This 2 X 2 complex matrix field H is a simple generalization 
of the potential If of Ernst. In the next section, we shall 
define H and derive those equations which govern it and 
which we shall need in later sections. 
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2. THE H POTENTIAL 

The superscripts *, T, and t will, respectively, denote 
the complex conjugate, transpose, and Hermitian conjugate 
operations. The wedge symbol A will be omitted in exterior 
products of forms; thus, UJTJ and dUJ mean UJ A "I and d A UJ, 
respectively, for any p- form UJ and q- form "I. If p<Oq, the 
(q - p) form 25 obtained from a maximal contraction of UJ 
with "I is denoted by UJ I "I; two useful relations are given by 

UJITJ = UJ'TJ, if P = q = 1, 

A I(UJTJ) = UJ(AITJ) + (-1) q(A IUJ)TJ, 

if A is a 1 form. 
X will denote the column matrix whose elements are the 

covectors (I-forms) X3 and X4 of the two Killing vectors 
which characterize the given member of V under consider
ation in this section. Also, we let Wbe that self-dual 2-form 
which is defined by the equation 

-2dX= W+ W*. (16) 

Since the spacetime is a vacuum, 

dW=O. 

Therefore, 

5t' x. W = Xu I dW - d (Xu I W) = - d (Xu I W) = O. 

Therefore, there exists a complex matrix field H such that 

dH=XIW T. (17) 

Next, note that a definition of the matrix h which is 
equivalent to Eq. (2) is given by 

(18) 

Take the real part ofEq. (17), and use Eqs. (16), (18), and 

X,.Xb - =XaldXb +d(Xu'Xb)=O. 

It follows that 

d (ReH) = - dh. 

We choose the additive constant in ReH so that the integral 
of the above equation is 

ReH= -h. (19) 

Note that ReH is now symmetric. The additive constant in 
ImH will remain arbitrary until the details of a more specific 
problem suggest a good choice. 

We next derive a differential equation for H which is 
equivalent to the self-duality of W From Eqs. (1) and (2), 

X = h dx, dx: = e;:). 
Therefore, Eq. (16) implies that W + W* is a linear combi
nation of the 2-forms dx idx a (i = 1,2) (a = 3,4). Since Wis 
self-dual, it must also be equal to a linear combination of 
these 2-forms. Therefore, there exists a 2 X 2 one-form ma
trix K such that 

W=Kdx, Xul K=O. 

Upon inserting the above into Eq. (17) and using the fact that 

Xldx T = I: = unit 2X2 matrix, 

we obtain K = dH T; so 
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W=dHTdx. (20) 

We now apply the duality operator to the above expression. 
Let the covectors of the coordinate tetrad JIJx a (a = 1,2,3, 
4) be designated by Xu, and let 

p: = Jdeth J 1/2, e2r: = Jgllg22 - (g12)2J 1/2. (21) 

Then the duality operation on WiS25 

WI(XIX2X3X4e-2rp.l) = iW 

Upon substituting from Eq. (20) into the above, we get the 
relation which we are seeking, viz., 

_. p.lhE*dH = i dH, (22) 

where * is a two dimensional duality operator defined by 

*dXi: =dXil(X\X2e- 2r ). (23) 

If we select conjugate harmonic coordinates such that 

(24) 

then 

*dx l = + dx2
, *dx2 = dxl, (25) 

where, as will be our usual practice, the top and bottom signs 
refer to the cases deth < 0 and deth > 0, respectively. Observe 
that Eqs. (25) imply 

** = + 1, (26) 

(*a)(3 = - a(*(3) for any I-forms a and (3. (27) 

We shall next derive a number of useful relations from 
Eq. (22). Observe that the definition (21) ofp is equivalent to 
the equation 

hEh = +p2E. (28) 

We introduce the field z which is defined by 

iZE: = ~(H - H T), (29) 

and which is real according to Eq. (19). By taking the anti
symmetric part of the real part ofEq. (22) and by using Eqs. 
(19), (28), and (29), we obtain 

*dp = ±dz. (30) 

Furthermore, with the aid of Eqs. (19) and (29), we express 
Eq. (22) in the equivalent form 

2(z ±p*)dH = (H + Ht)fldH (fl: = i€). (31) 

Equation (31) will be called the self-duality relation; it will be 
the key starting point of our work in Sec. 3. To gain a better 
grasp of this equation and to help us deduce some useful 
relations from it, we define null coordinates X A and corre
sponding fields rA by 

XA:=XI+Ax2, A:=[sgn(deth)]1/2= ±1 or ±i; 
(32) 

rA:=z+Ap ifA= ±i, rA:=z-Ap ifA= ±l. 

From Eqs. (25), (26), and (30), observe that 

JrA/JxB = 0, if A =JB. 
(33) 

From Eqs. (33), it follows that the self-duality relation (31) is 
equivalent to the pair of equations 
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aH aH 
2rA -- = (H + Ht)I1 __ (no sum). (34) 

aXA aXA 

Multiply Eq. (34) on the left by (aH T I ax A )11, and take the 
antisymmetric part of the result; we get, with the aid of Eqs. 
(29) and (32), 

aH T aH 
--11 -- = ° (no sum). 
aXA aXA 

Upon using Eq. (29) to replace H Tin the above equation, we 
get the important result 

( 
aH )2 arA (aH ) --Il = -- --11 (no sum). 
aXA aXA aXA 

(35) 

Next, multiply Eq. (34) on the left by (aHt/ax _ A)1l to get a 
first expression; then get a second expression by sUbjecting 
the first one to Hermitian conjugation followed by the script 
substitution A- - A *. Take the difference of these two ex
pressions, and one gets 

aHt aH 
--Il- = 0 (no sum). (36) 
ax __ A aXA 

The above pair of equations is clearly equivalent to the pair 

dHtlldH = dHtll *dH = 0, (37) 

which could also have been obtained from Eq. (20) and the 
fact that the exterior product of any self-duaI2-form with its 
complex conjugate is zero. That completes all of the rela
tions involving H which we shall need in this paper. 

It is time to review the residual arbitrariness in the 2 X 2 
complex potential H (x). 

(1) We shall usually select x I , X2 so that Eqs. (24) hold. 
Then the line element of the two dimensional Riemannian 
space with the metric gij becomes 

e2r [(dxl)2 ± (dX2)2]. 

There remain the conformal coordinate transformations 
which preserve the above form. 

(38) 

(2) The exterior product of the Killing vectors has an 
arbitrary multiplicative constant, and the antisymmetric 
part of H has an arbitrary additive constant. Transforma
tions which are equivalent to changes in these constants are 

p_(expb )p, z-z + c, (39) 

where b, c are any real numbers. 

(3) H - H t = i Im(H + H 1) has an arbitrary additive 
constant. The corresponding transformation is 

H-Ht_H-Ht+2iB, (40) 

where B is any 2 X 2 real symmetric constant. 
(4) Finally, X can be subject to the SL(2, R )transforma

tions 

X_SX, detS = 1, dS = 0, 

which induce the mapping 

H_SHST. (41) 

Except in specific cases, there is no obvious advanta
geous way of using the above transformations when we con
sider only a single member of V. However, the situation is 
quite different for a pair of members. 
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To deal with that question, we first introduce the nota
tion V (fl), where fl = ± ,Jor that subset of V for which 

sgn( - deth) = fl. (42) 

For given fl, let V4 and V ~ be any two members of V (fl); 
primes will be used to distinguish fields in V ~ from fields in 
V4 · We shall now consider a theorem which is widely known, 
though we have no reference for it. This theorem is impor
tant, because the transformations of Vonto V which are in
duced by K leave p and z invariant. The theorem shows that 
this invariance involves no loss in generality in the sense that 
the in variance does not contradict the conjecture that all of 
V (fl) can be generated from one of its members by applying 
K. 

Theorem: For any given V4 and V ~ in V (fL), there exist a 
common coordinate system x = (Xl, X2) and choices of the 
additive constants in z' - z and lnp' - lnp such that, for all 
x, 

z'(x) = z(x), p'(x) = p(x), 

and such that the line elements both have the canonical form 
(38). (Therefore, the two dimensional duality operator * is 
the same for both spacetimes.) 

To prove the above theorem, we first select x and x' so 
that the line elements have the canonical form (38) and so 
that the coordinate ranges (connected open sets in the real 
plane) have a point Xo in common. We then use the transfor
mations (39) to make 

y'(xo) = y(xo), 
where y and y' denote mappings whose domains are U and 
U', respectively, and whose values are 

y(x): = (z(x), ± p(x», y'(x): = (z'(x), ± p'(x». 

We can restrict the domains U and U' so that the inverse 
mappings y I and (y')-I exist and have the same domain. 
Then 

(J: = (y'tloy 

is a coordinate transformation which maps U onto U'. We 
use this mapping to express all fields in V; as functions over 
the domain U, e.g., 

y : = y'o(J, ii: = HO(J. 

Now 
y'=y, 

which is essentially what we had to prove. 
As a postscript to the above proof, we can clearly select 

Xl = z and X2 = ± p as our coordinates for both space
times. This choice is not always advisable in specific solu
tions, but it is sometimes useful for general analysis. 

3. THE F POTENTIAL 

Recall that the self-duality relation (31) was derived 
from the statement that 

Wb = - dxodHob = d(dxaHab ) 

is self-dual. Inspection will reveal that Eq. (31) is in fact, 
equivalent to the statement that dxaHab is a potential for a 
closed self-dual 2-form, since all of the steps by which the 
former was derived from the latter are reversible. 

We shall now introduce a one parameter family of2 X 2 
matrix fields F (t ) for which dxo Fub (t) are also potentials for 
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closed self-dual 2-forms. From the operators which act on 
dH in the two sides of Eq. (31), we construct 

A (t): = I - 2t (z ± p*), 

A (t): = 1- t(H + Ht)n, 

(43) 

(44) 

whereupon Eq. (31) is expressible in the form 

t dH = A (t)T (t ), (45) 

(46) r(t): = tA (t)-ldH. 

The inverse of A (t) in the above equation is computed from 
Eqs. (26), (27), (43), and (5), which yield 

A(t)A(t)=A(t)2, A(t):= 1-2t(z+p*). (47) 

The integrability condition for the self-duality relation is ob
tained by taking the exterior derivative ofEq. (45), with the 
result 

dA (t)r(t) +A (t)dr(t) = O. 

However, from Eqs. (37), (44), and (45), 

dA (t )T(t) = - t dHnr(t) = - A (t )r(t )nr(t). 

Therefore, the final form for the integrability condition is 

dr(t) = r(t)nr(t). (48) 

However, this is the well known complete integrability condi
tion/or the differential equation 

dF(t) = r(t)nF(t), (49) 

whose sol utions are 2 X 2 nonsingular matrix fieldsF (t ). Ex
cept for some gauge conditions which will be discussed later, 
that is our definition of the F potential. 

To convince ourse! ves that dxa 
Fab (t ) is the potential for 

a closed self-dual 2-form, mUltiply Eq. (49) on the left by A (t) 
and use Eq. (45) to get 

A (t)dF(t) = tdHnF(t). (50) 

Then, from Eqs. (43), (44), (46), (49), and (50), 

2(z ± p*)dF(t) = (H + H t) ndF(t). (51) 

This is exactly the same self-duality relation as the one [Eq. 
(31)] which is satisfied by dH. 

For any given point Xo in the domain of H, the general 
solution ofEq. (49) is given by 

F(x,t) = Y(x,xo,t)F(xo,t), (52) 

whereF(xo,t) is the value of F(t) atx = xo, andY(x,xo,t) is 
that particular solution of Eq. (49) which satisfies 

(53) 

for all t. We shall discussF(xo, t) later, and Y(x,xo,t) now. 
As usual, we shall let Y (t ) denote that field whose values are 
Y(x,xo,t). 

It is important that we have a clear understanding of the 
domain and singularities of.7(t ). As regards the domain, we 
shall begin by considering only those charts such that H is a 
holomorphic function of the coordinates x = (Xl, x 2

) in the 
range U of each chart. Here U is a region (a connected 26 open 
set) in the real plane. To say that His holomorphic in U 
means that H has an extension [H] to a region [U] in 

C 2
: = C xC (C: = complex plane) 

such that [H] is holomorphic in [UJ, i.e., [H] is single valued 
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and has a Taylor series expansion about every point x = (x!, 
x 2

) of [U] such that the series converges to the function in at 
least one nonempty interval whose center is X.27 An interval 
in C n is the Cartesian product of any n open circular disks in 
C; these intervals are used in the conventional way to define 
the open sets in cn. 

We are interested in the dependence of Y (x,xo,t ) on Xo 

and tas well ason x. So we consider [U] X [U] X C, which is a 
region in C 5

• Some of the points in [U] X [U] X Care singular
ities of Y(t). This can be seen by inspecting the self-dual 
components ofEq. (49), which are given by [see Eqs. (33)] 

JF(t) = _ ~(rA -rtl ( JH n \17(t), r:=(2tY'. 
JXA 2 JX A r 

(54) 
It is clear that the matrix coefficient on the right side of the 
above equation has singularities only at (x, t) such that 

(r. - r)(r_ - r) = [rA (t W = 0, 
r ± : = r ± i or r ± , . 

Therefore, we expect all o/the singularities 0/ Y(t) to be 
contained in the set 0/ all (x,xo,t ) such that (rOA is the value of 
rA at x = xo) 

(r. - r)(r_ - r)(ro• - r)(ro- - r) = O. 

Let D 5 denote the set o/all (x,xo,t ) in [U] X [U] X Csuch that 

(r. - r)(r_ - r)(ro+ - r)(ro- - r)#O. 

Note that (x, y, t) is a member of D (5, if and only ifboth 
(x,x,t) and (y, y, t) are members of D (5,. 

It isD (5, which is theintendeddomain27 of Y(t), and we 
shall soon state a theorem concerning the existence of a solu
tion ofEq. (49) over this domain. However, the high dimen
sion of D (5) makes it hard to grasp relations in that space. 
Therefore we introduce the auxiliary spaces 

D 13): = set of all (x, t) such that x is in [U], 

t is in C, and (r. - r)(r_ - r) = [rA (x, t W #0; 

D ;2): = set of all x such that (x, t) is in D (3, (t = any 
point in C); 

D~I): = set of all t such that (x, t) is in D (3, (x = any 
point in [U]). 

Thus, D ~2) and D ~l) are subsets of [U] and C, respectively. 
Obvserve that D ~I) is simply C minus the pair of complex 
numbers 

t = (2r ± Y'. 
D~2) is [U] minus the pair of surfaces whose equations are 

r ± = r. 

We may regard C 2 as a four dimensional real manifold with 
the real and imaginary parts of x I , x 2 serving as coordinates; 
then the excluded surfaces are two dimensional. The follow
ing additional statements can be verified with ease: 

(1) D ~I), D ~21, D (3, andD 15, are, respectively, regions in 
C, C 2

, C 3 and C 5
• 

(2)D :2) is the set of all x in C 2 such that (x, x, t )is inD (5 '. 

(3)D (5, is the set of all (x, y,t )in C 5 such thatxandy are 
both inD,o 
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A disadvantage of the sets D ~l) and D?) is that they are 
multiply connected. We need simply connected versions of 
these domains for our applications. In principle, the simply 
connected domains may be constructed by first selecting an 
appropriate (five dimensional) hypersurface K (3, in the six 
dimensional real manifold D (3 '; then we may define 

SrJ,: = D (3) _ K(3" 

S ~2): = set of all x in D ~2) 

such that (x, t) is in S rJ >, 

S ~l): = set of all tin D ~l) 
such that (x, t) is in S (3,. 

The idea is to select K (3, so that the following conditions are 
fulfilled: 

(I) S;2) is a simply connected region in C 2. 

(2) S ~l) is a simple connected region in C (with the Rie
mann sphere topology). Specifically, 

Kx: =D~l)_S~l) 

is an arc which joins (2r+)-1 to (2r_yl. 

Actually, it is easier to select the complex plane cuts Kx first, 
and then to find K (3, from the condition 

K (3, = set of all (x, t) in D r3, such that t is in Kx . 

In practice, almost all applications which we have in mind 
involving only a limited set of values ofx and do not require 
any global knowledge of a specific K (3,. The concept is re
quired mostly for the development of the general theory. 

Now, letS (5) denote the set of all (x, y, t )in C 5 such that 
both x and yare in S)2). In the Appendix, we prove the 
following basic theorem28 which holds for any choice of the 
simply connected subregions: 

Theorem: (1) There exists exactly one (multiple valued) 
sol uti on :7 (t ) of Eq. (49) such that its domain is D (5, and 
such that the restriction of Y (t ) to any given S (5, has a 
unique branch which satisfies 

.:T(x, x, t) = I, (55) 

whenever (x, x, t )isinS (5 '. (2) For any given x, y, zinD (2, and 
for any given value of :7(x, y, t), there exist values of Y(x, z, 
t), ,:T(z, y, t), and Y(y, x, t) such that 

:7(x, y, t) = ,rex, z, t ):7(z, y, t), (56) 

[.:T(x, y, t)]-l = .'V(y, x, t). (57) 

The branch of ,r(t) for which Eq. (55) holds satisfies 
Eqs. (56) and (57) for all x, y, z in S ;2). (3) Y(t) is analytic in 
D's). 

The key point in the above theorem is the absence of any 
singularities in :7 (x, xa, t ) over the domain D (5" from which 
we have excluded (by definition) the zeros of 

7A (x, t )'7A (xa, t). 

Now, we investigate the character of the singularities at 
these zeros. 

Upon restricting U, we can select x 1 = z, x 2 = ± p, and 
this is what we choose to do. In the actual analysis of the 
singularities, we use null coordinates 
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as defined by Eq. (32). We shall let A = ± to cover both 
cases A = ± i and A = ± 1. 

Note tht Eq. (54) is, in effect, a linear homogeneous 
ordinary differential equation, with r _ A' ra+> ro-, and t play
ing the roles of parameters. r A = l' is a regular singular point 
of this equation. 29 Inspection of Eq. (35) shows that the ei
genvalues of the coefficient matrix 

_1 JH fl 
2 a ' rA 

on the right side ofEq. (54) are 

p = 0, -!. 
Therefore, if (x, xo) is in [U] X [U], and 
(r _ A - 1')(ro+ - 1')(ro - 1'h~O, we have 

:7(x, xo,t) =:7 o(x, Xo,/) + (rA - 1'yl/2 :71(x,xa,f), (58) 

where .r a and Y I are regular functions of rAin a neighbor
hood of r A = 1'. In view of the analyticity of Y as a function 
of (x, X O, t) in D (5" we can also say that for fixed (x, xa) in 
[U] X [U], Yo(t) and Y I(t) are regular functions of 1 in a 
neighborhood of l' = r A • 

In summary, there are branch points at the zeros of 
rA (x,t ) and l' A (xo, t ), and there are no other singularities over 
Ihedomain [U] X [U] X C. In view ofEqs. (55), (57), and (58), 
the branch points at rA = l' will be of index -!, while those 
at r OA = l' will be of index!. We have verified that this is the 
case for the Zipoy-Voorhees and the Kerr-NUT Y (t ). 3a 

We now return to the general soultion ofEq. (49) as 
given by Eq. (52), and we discuss the problem of selecting a 
"suitableF (xo, 1 )" with the aid of criteria which are indepen
dent of the particular member of V under discussion and 
which are independent of the choice ofxo' Such criteria are 
to be found in the relations 

dF(O) = d [F(O) - H] = 0, 

d [A (I )detF(t)] = 0, 

d [F(t) tflA (t )F(t)] = 0, 

(59) 

(60) 

(61) 

whereF(t) = aF(t )IJt and where it is to be understood that 

F(x,xo,t)t: = h.c. of F(x*,xt, t *). 

Equations (59) follow from Eq. (49) and the definitions (43) 
and (44) of A (t ) and A (t ). Equation (60) is derived from Eq. 
(49) by using the relations 

F(t)TflF(t)=fl[detF(/)], (62) 

(63) 

and Eq. (29). [Note that Eq. (62) holds if F (I) is replaced by 
any 2X2 matrix.] Equation (61) is deduced from Eq. (50) 
and the facts that fl and flA (I ) are Hermitian. 

We shall selectF(xa, t) so that the integrals ofEqs. (59) 
to (61) are simply 

F(O) = fl, F(O) = H, (64) 

A (I )detF(t) = - 1, (65) 

F(t) tflA (t )F(t) = fl. (66) 

Observe that Eqs. (65) and (66) are consistent with Eqs. (64) 
and the facts that 

fl 2 = I, A (0) = I, A (0): = 1. 
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Equations (64)-(66) are also consistent with the gauge con
ditions ofK_C.6

.
7 

We shall now prove that there exists at least one choice 
ofF (xo, t ) and ofthe additive imaginary symmetric constant 
in H - H T such that Eqs. (64)-(66) are true and such that 
F (xo, t) has no singularities except for the branch points of 
A (xo, t). We start by selecting the additive constant in 
H - H T so that H (Xo) is Hermitian at a particular point Xo 
which will remain fixed throughout the remainder of this 
proof [see Eq. (40)]. Then, we letA (t t l/2 denote that branch 
of the square root of A (t) which is holomorphic at t = 0 and 

z~ ±p~ 1=0: 

has the value A (0),1/2 = I. To compute this square root, we 
use Eqs. (5), (19), (28), (29), and (62) and the fact that 
tr(ht) = 0 to show that 

trA (t) = 2(1 - 2zt), detA (t) = A (t )2. (67) 

This enables us to construct the minimal polynomial of A (t), 
which gives us 

A(t)'1/2= [1-4tz+A(t)]I+t(H+Ht).Q. (68) 
A(t)(2(l-2tz+A(t»]1/2 

We claim that a choice which satisfies our criteria is the 
following assignment at anyone point Xo such thatpo 1= 0 and 

F(xo, t)=A(xo,t),1/2f}W(xo,t), pl=O, z~±p~I=O, A(XO'O) = 1 (69) 

(does not supply F(t) at xl=xo), 

(
21/2[1 -2tz +A (t) ],1/2 

wet): = o 

That Eqs. (64) to (66) are satisfied with this choice can be 
proven from the relations 

A (0) = -2z, 

:t (A (t)'1/2] = !(H + Ht)f}, when t = 0, 

f} [A (t)'1/2]t = A (t), 1/2n, 
w(t)t n wet) = n, detw(t) = 1, 

w(O) = I, W(O) = 0, 

which can be derived from Eqs. (5), (69), and (44) or (68). As 
regards singularities in the t-plane, observe that 
1 - 2tz + A (t) can vanish only if p = 0 and z = 1', and ob
serve that 1'A (t )-+(Z2 ±p2)1/2 as t-+oo. Therefore, it can be 
seen that our choice for F (xo, t ) has no singularities exceptfor 
a branch point of index - (l/2) at the zeros of A (Xo, t) and 
that 

F (xo,t )(~ ~) 
is holomorphic in a neighborhood oft = 00 and has an inverse 
there. 

We now summarize the key points which have been 
made so far concerning F (t ). 

(1) F (t ) is defined, for given H, as any solution of Eq. 
(49) which is (for given x) holomorphic in a neighborhood of 
t = 0 and which satisfies the gauge conditions (64) to (66). 

(2) We can further specialize the gauge ofF (t) so that its 
only singularities are at the zeros of 1'A (x, t) and, possibly, at 
thezerosof1'A (xo, t ) for one other point Xo in the domain [V) 
of H. These singularities are branch points of index -l/2 
(except when there are confluences). 

(3) In this specialization of the gauge, 

F(t )(~ ~). 
is, with the exception of the points at which Z2 ± p2 = 0,22 

holomorphic in a neighborhood of t = 00 and has an inverse 
there. 

Actually, the gauge conditions (2) and (3) given above 

1133 J. Math. Phys., Vol. 21, No.5, May 1980 

are independent of one another if one restricts (2) to finite t. 
All of the Fpotentials used so far by the authors and by K-C 
satisfy condition (3). However, they do not all satisfy condi
tion(2). For example, theZipoy-VoorheesF(t ) used both by 
the authors 13 and by K_C7 in the past has poles or branch 
points at t = ±! in addition to those at the zeros of rA (x, t ). 
(The Xo in this case is, in effect, "at infinity," which is outside 
of the domain of H and which will be covered in a sequel to 
this paper.) The singularities at t = ±! can be removed by 
multiplying the given PV(t ) with 

(( ~ ~ ~~ t/z (I + ~t )MZ) (0 = real parameter), 

o 1 -2t 

on the right, where we use a cut whose section in the I-plane 
intersects the real axis in the open interval between t = ! and 
t = 0 or between t = -! and I = O. 

It is essential to point out that we are not advocating the 
use of our specialized gauge under all circumstances or by 
everyone. However, it is important to know that it exists. Ifwe 
are given F (x, t) in a different gauge, then the F (x, t) in the 
specialized (sp) gauge can be constructed from 

Fsp (x,t) = .r(x,xo,t )F,p (xo,t), 

Y(x,xo,t): = F(x,t)F(xo, t)-I, 

where F,p (xo,t) can be chosen to be the expression (69). 

4. THE HOMOGENEOUS HILBERT PROBLEM 

In this section, Fo(t) will denote the F potential of any 
given member V4o ofV(u). On theotherhand,F(t )willdenote 
the result of a specific transformation of Fo(t ) which is in
duced by a member u(t ) of K L ,and F (t ) is not to be construed 
as being the F potential of any member of V (Ii) until we have 
proven that such is the case. 

We select an arbitrary compact region [Vel in the do
main [U] of 

H o = Fo(O), 

(where we are letting H o: = (Ho] to avoid the cumbersome 
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brackets). It will be understood that x is restricted to [Uc ] 

throughout the remainder of this section. 
Then there exists at least one smooth contour L about 

the origin such that Fo(t ) is holomorphic on L + L+. Choose 
any L is this category, and let u(t) be any member of K L' 

Suppose u(t ) is holomorphic on L+. If Fo(t) is subject to 
the transformation 

Fo(t)----->-F(t): = [u(oyIFPo(t)u(t)-I, 

then itcan be seen from Eqs. (3), (49), and (64)-(66) thatF (t) 
satisfies all of the defining conditions for an F potential of 
V40 . The only possible point of difficulty in seeing this arises 
from the fact that 

Ho--+F (0): = [u(ot I] I Hou(Oy 1 - .ou(O)u(Otl. 

However, it is easily proven that .ou(O)u(oyl is imaginary 
and symmetric; so the above is a trivial gauge transforma
tion. [See Eqs. (40) and (41)]. 

If u(t ) is not holomorphic in L., then the above transfor
mation of Fo(t ) by u(t ) may no longer define a simple gauge 
transformation of the F potential. However, the theoryl of 
the HHP informs us that there exist F (t ) and X-(t ) such that 

F(s) = X_(s)Fo(S)U(syl, F(O): = Fo(O), 

for all s in L, where the following conditions hold: 
(1) F (t ) is continuous and has an inverse for all t in 

L + L, and F (t ) is holomorphic in L •. 
(2) For all finite t in L + L, X(t) is continuous and has 

an inverse. For all finite t in L, X(t ) is holomorphic. 
(3) The rows of X(t ) have finite degrees - m and - n 

in a neighborhood of t = 00 such that 

M_: = lim Z (t )X(t ) 
{ ~ 'x 

has an inverse, where 

(
t In 0) Z (t): = . o t n 

It is clear that this HHP defines a generalization of the pre
viously considered transformation when u(t ) was holomor
phic on L + L., and %.(s) was (U(Oyl] T. We still have to 
justify the use of the notation F (t ) in this generalization. 

We shall prefer to put the above HHP equations in the 
more standard form of Eqs. (9)-(11), viz., 

X_(s) = X.(s)G (05), X+(O) = I, 

G (t ): = Fo(t )u(t )FO(t)-I, X.(t): = F (t )FO(t)-I. 

Since, in our particular HHP, G (t) satisfies the strong condi
tion that it is holomorphic on L (as opposed to just satisfying 
a Holder condition on L ), there is the correspondingly stron
gerconclusion thatX.(t )andX(t ) are each holomorphiconL 
We introduce, as is customary, the sectionally holomorphic 
function 

x (t): = X+(t), if t is in L + L, 

X (t): = X(t), if t is in L + L. 

Then X (t) [or the ordered pair of functions X + (t), if we 
prefer] is called a/undamental solution 1 ofthe HHP for G (s). 

The integers n, m, whose negatives are the degrees at 
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infinity of the rows of X (t), are called the component indices 
of the HHP for G(s). Since, in our particular HHP, 

detG (s) = 1, 

there is a theorem which tells us that 

m +n =0. 

In our proof that the solutionF(t) of the HHP is an Fpoten
tial of some member V4 of V (/-L), we shall have to rely on the 
premise m = O. The question of whether the component in
dices are 0, 0 is important for us since, otherwise, we would 
have to place constraints of an (as yet) unknown character 
on our choice of the members u(t) of K L • We shall assume as 
a working hypothesis that m = O. In the discussion of Sec. 6, 
we shaJl reduce the problem of determining the component 
indices for u(t ) and Fo(t ) to that of proving the existence of a 
solution of our HHP for arbitrary Fo(t) and for an especially 
simple kind of u(t), viz., 

( ) . = (1 ta (t») 
u 1 t. 0 1 ' 

where aCt ) is holomorphic on L and at t = 00. (The solution 
oftheHHP corresponding to arbitrary Fo(t )and to any u l(t) 
for which aCt ) has n simple poles in L. has already been 
found; so the question is answered insofar as that case is 
concerned.] 

Like remarks apply to a second working hypothesis 
which we shall make, viz., that d Xi (t) have the same do
mains of continuity and holomorphy as (respectively, for 
±) X.t (t). 

We shall now take up the main goal of this section. We 
first prove that X.(t) is holomorphic at t = 00 and that it has 
an inverse at that point. This follows from the extension 

X(t) = X+(t )G (t ) 

of the HHP into the complex plane. From the gauge condi
tion/or Fo(t ) at t = 00 and/rom the analogous condition satis

.fied by u(t) at t = 00 [Sec. 1, after Eqs. (3)], G (t) is holomor
phic at t = 00, and G (00) has an inverse. Therefore, since 
X(t) is also holomorphic and has an inverse at t = 00, it 
follows that 

X(t) is holomorphic at t = 00, 

X.( 00 )-1 exists. 

We next define 

* ,p,z,A (t;. = same as those defined for V40, 

H: = Ho + %+(0).0, 

A (t): = I - t (H + H t).o, 

ret): = t A (t)-ldH. 

(70) 

(71) 

(72) 

(73) 

It is essential to grasp that the above are definitions; we still 
have to prove that they are what the notations suggest. 

We shall next prove that, for all t, 

detX(t) = 1, 

X(t)tDA (t)X(t) = DAo(t), 

detA (t) = detAo(t) = A (t )2, 

dX(t) = r(t)DX(t) - X(t)ro(t).o, 
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flA (t )dX (t) + t [X (t )tJ-lfldHcI1 = tfldHflX. (78) 

To prove Eq. (74), use Eqs. (3), (9), (10), and (for Fo) (65) to 
prove 

detX.(s) = detX_(s). 

Therefore, detX (t) is an entire function of t. Since X (t ) is 
regular at t = 00, 

detX (t) = constant. 

The value of this constant is unity, from Eq. (11). 
To prove Eq. (75), use Eqs. (3), (9), (10), and (for Fo,Ao) 

(66) to get 

[X.(s) tJ-tflAo(s)[X.(a)J- 1 = same with - replacing +. 
Therefore, 

[X (t) tJ-1 flAit )[X (t )]-1, 

is an entire function of t. Since Ao(t) is linear in t, so is this 
entire function. By using Eqs. (11), (71), and (for Ho) (44), 
we obtain the coefficients in this linear function of t, which 
turns out to be flA (t ) as defined by Eq. (72). That proves Eq. 
(75). 

Equation (76) follows simply from Eqs. (74), (75), and 
(for Ao) (67). 

To prove Eq. (77), operate on Eq. (9) with Ii (s)d, and 
use Eqs. (10) and (for Fo) (49) to get 

Ii (s)dX.(s)X.(stl + sX.(s)dHcI1X.(stl 
= same with - replacing +. (79) 

Therefore, 

Ii (t)dX(t)X(tt l + tX (t)dHcI1X (t)-l 

is a linear function of t. [Note Eq. (74)]. By manipulations 
similar to the proof of Eq. (75) and by using Eqs. (II), (71), 
(43), and (73), we get Eq. (77). 

To prove Eq. (78), first multiply Eq. (79) through by 
Ii (st l and introduce Fis) as defined (for Ho) by Eq. (46). 
Then use Eqs. (72), (75), and (for Ho) (45) to get 

flA (s)dX.(s)X.(st 1 + s[X.(slJ- 1fldHcI1 [X.(s)J- 1 

= same with - replacing +. 
The rest of the proof of Eq. (78) uses Eq. (71) and closely 
resembles the proof of Eq. (77). 

We consider by definingF(t) as in Eq. (10), whereupon 
we deduce 

dF(t) =F(t)flF(/), 

A (t )dF(t) = t dHflF(t), 

F(O) = fl, F(O) = H, 

- A. (t )detF(t) = 1, 

F(t )tflA (t )F(t) = fl. 

(80a) 

(80b) 

(80c,d) 

(80e) 

(80t) 

The above are, respectivley, derived from Eqs. (49) and (77), 
Eqs. (50) and (78), Eqs. (64) and (11), Eqs. (64) and (71), 
Eqs. (65) and (74), and Eqs. (66) and (75). [In each pair of 
this list of equations, the first one is for Ho or Fo, i.e., the 
subscript "0" is to be inserted at the appropriate places in 
Eqs. (49), (50), (64), (65), and (66).] 

From Eqs. (80a) to (80e), we see that F (t ) satisfies all of 
the defining equations for the F potential corresponding 10 a 
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given H. Moreover,from Eq. (70), we see that F (t )satisfiesour 
gauge condition at t = 00, i.e., this condition is preserved by 
the transformations induced by K L-

It remains to prove that H is an H potential for some 
spacetime. To show this, we now prove that 

2(z ± p*)dH = (H + H t)fldH, 

!(H - H T) = fez, 

(8Ia) 

(8Ib) 

h: = - ReHis symmetric, (8Ic) 

p2: = + deth. (8Id) 

To derive Eq. (81a), note that Eqs. (73), (80a), and (80b) 
imply 

Ii (t )dF(t) = A (t )dF(t). 

So, from Eqs. (72) and (43) 

2(z ±p*)dF(t) = (H + Ht)fldF(t). 

Take the t-derivative of the above equation; then set t = 0, 
and use Eq. (SOd) to get Eq. (81a). 

To derive Eq. (SIb), note that Eq. (SOe) is equivalent to 

- A. (t )F(t ) TcF (t ) = c. 

Take the t-derivative of the above, and set t = 0 to get Eq. 
(SIb). 

Equation (SIc) is a trivial implication ofEq. (SIb). 
Equation (SId) is deduced from Eq. (76) by using the rela
tions 

A (t )TcA (t) = c detA (t), 

and Eq. (72), as well as the relation 

H + Ht = -2h +2i£z, 

which follows from the definition of h in Eq. (8Ic) and from 
Eqs. (8Ib) and (SIc). 

Equations (SIa) to (SId) show that H fulfills the defini
tion of an H potential for a V (f.l) spacetime V4 whose metric 
components gab are 

gab: = hab · 

Equation (8Ia) is equivalent to the statement that dx adHab 
is a closed self-dual 2-form, which is equivalent to the state
ment that gab satisfies the vacuum field equations. We refer 
the reader to Sec. 2 for other details. 

5. TWO SIMPLE HHPAPPLICATIONS 

We shall consider two transformations involving a 
Minkowski space Fo(t ) corresponding to a rotation about an 
axis and a time translation as the pair of isometries charac
terizing the metrical form in Eq. (1). This Fit) has been 
computed by K_C6 and is given byl3 

(A. + ~2tz )) 

t ,(82) 

A. 

whereA. = A. (t), andz andp are the conventional cylindrical 
coordinates. For given z and p, the branch points are at 
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t = (2r ± t I = ~(z ± ip )-1 (p > 0). 

We select a branch cut and a contour L so that Fo(t ) is holo
morphic on L + L+. For example, if z and p are real, we can 
choose a circular arc with center at t = 0 as our cut, and we 
can choose a circle with center at t = 0 and radius < 12r ± I-I 
as our L. Any other choices which satisfy the requirement 
that Fo(t ) be holomorphic on L + L+ will do as well and may 
even be useful at times. 

Consider any u(t ) which is expressible in the exponen
tial form 

u(t) = exp[y(t )E], 

(83) 

(
ta(t) ; (t ) ) 

y(t) = ;(t) t-I(3(t) ' 

where a(t), (3 (t), and; (t ) are holomorphic on L and at 
t = 00. Though we shall not consider the transformations of 
Fo(t) corresponding to arbitrary a, (3, and y, it is expedient 
not to specialize until later. The kernel G (s) of the HHP is 
given by 

G (s) = expM (s), M (s): = Fo(s)y(s)EFo(S)-I. (84) 

From Eqs. (82) and (83), we readily compute (supressing sin 
some places) 

- ~ (a - (3 + 2i ;)(1 - 2sz) ( - a + (3 + 2i Op2s 
2 

M(s) =A- -I + (_ a + (3)(2stl(1 -2sZ)2 

- (a - (3 + 2i Os ~ (a - (3 + 2i ;)(1 - 2sz) 
2 

( 

~ (a +(3) (~+(3)(2stl(1 -2sZ») 

+ ~(a +(3) . 
o 2 

Now we are ready to discuss the special cases. 
First consider the B group of K-C7 which is defined by 

a = (3 is holomorphic in L, 
(86) 

; = 0 (B group). 

Upon inserting (86) into (85), we obtain an M (s) which is 
holomorphic in L (including 00). Hence, from Eq. (84), the 
solution of Eqs. (9) to (11) which satisfies the condition at 
t = 00 is given by 

X+(s) = I, X(s) = expM (s). 

So, F(s) = Fo(s); we have proven that the B group leaves the 
Minkowski space Fo(t) ofEq. (82) invariant. 

As our second example, consider 

a =(3= o. (87) 

Equation (85) becomes, as can be seen with the aid of Eqs. 
(83) and (84): 

M (s) = A. (stl; (s)P (s) = ; (S)Fo(S)(o- 1 ~)F()(S)_I, (88) 

where 

(
1 - 2sz 2is p2 ). 

P(s): = . 
-21s 2sz-1 

Observe that P (s) is holomorphic in L. and at finite values of 
s in L. This suggests that we seek a solution of the form 

(89) 

where cP.(t ) is a complex valued function of p, z, and t which 
is (for fixedp, z) holomorphic in L+. Note that the expression 
(89) has been constructed so that it automatically satisfies 
Eq. (II). 

Upon inserting (89) into Eq. (9) and using Eqs. (84) and 
(88), we get 

(90) 
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(85) 

So we see that we have the solution of the HHP which satis
fies the boundary conditions at t = 0 and at t = 00 if we find 
cP+(t) and cP-{t ) such that 

cP+(s) - cP-(s) = - A. (stl; (s), (91) 

where cP-(t ) is continuous on L + L, is holomorphic in L, 
and satisfies 

cP-( 00 ) = O. (92) 

Equation (92) is necessary, because P (t) is of degree 1 in t. 
Equations (91) and (92) constitute a standard problem 

in analysis with the solution 

cP(t) = - -1-i ds ;(s) , 
2rri L A. (s)(s - t) 

(93) 

cP (t) = cP ± (t) if t is in L ± (respectively), 

where it should be remembered that the branch points orA (t) 
are in L. From Eqs. (88) and (89), we have (recalling that 
Fo(O) = iE) 

(e -1/>(0) 0) (e -1/>(5) 

F(s) = 0 e1/\O) Fo(s) 0 (94) 

where 

¢(t): = A- (t )cP+(t ). (95) 

In summary, the solution is given by Eqs. (82), (94), (95), and 
(93). 

The expression (94) was originally derived6 by K-C via 
a different route and is the F (t ) for the general static axially 
symmetric stationary vacuum spacetime (the Weyl metric). 
Note that 

A- (s) = 2s[(2st2 -2(2stlrcosO + r]1/2, 

where 

z = r cosO, p = r sinO. 

Therefore, cP (t) as given by Eq. (93) is a solution of Laplace's 
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equation (in three dimensional Euclidean space). On ac
count of the reality condition 

[A. (sn;- (s)] * = A. (S*)-Ig (s*), 

¢(O) = f/J+(O) is real; t/J(O) is the general axially symmetric 
solution of Laplace's equation in a neighborhood of r = 0 
which is free of singularities. 

6. PERSPECTIVES 

There remain two central themes concerning the exact 
solutions for members of V. One of these is the problem of 
finding the solutions of the HHP or of the equivalent integral 
equation corresponding to any given u(t ) and Fo(t ). The sec
ond is the question of whether or not all of V can be generat
ed from Minkowski space by the group K. 

In a certain sense, the first of these problems can be 
reduced to a succession of relatively simple ones due to the 
fact that the general u(t) can be expressed as a product in
volving factors of the form 

U(!I(t)=(~ :a(t»). U(21(t)=C_r l{3(t) ~). 
where aCt ) and (3 (t) are holomorphic on L and at t = 00. 

The point is that the transformations involving a u' I I(t) 
or a u( 2 I(t ) seem to be amenable to analysis for ageneral Fo(t ). 
For example, as we already mentioned in Sec. 1, the solution, 
corresponding to an arbitrary Fo(t) and to a u( I I(t) [or u( 21(t)] 

for which a(t) [or (3 (t)] has n simple poles in L+ has been 
found. 14.20 At least, this is true to the extent that a certain 
known n X n matrix which appears in the solution can be 
inverted; the problem has thus been solved in the sense that it 
has been reduced to a standard algebraic problem which can 
be machine computed for reasonably small n. 

An important extension of the result for n simple poles 
is the corresponding "solution" for an aCt ) or a /3 (t ) which 
has a smooth (or even more arbitrary) line distribution of 
singularities in L+. It is plausible that the same form of solu
tion holds, but the inverse of a known n X n matrix is re
placed by the inverse of a known Fredholm operator. The 
problem is thus reduced to one about which much has been 
written. 

As a more formal application of the factorization into 
u' I , and u( 2, elements, there is a good chance of proving (or 
disproving) that the Fredholm operator corresponding to a 
general aCt ) or /3 (I) is invertible for every Fo(t). That would 
be equivalent to proving that the component indices of the 
HHP for every u(t ) and every Fo(t ) are (0, 0). A like remark 
holds for the question whether dX ± (t) has the same do
mains of continuity and of holomorphy as X ± (t). 

There may also be the possibility of taking advantage of 
the special properties of a particular type of Fit) to facilitate 
the inversion ofthe Fredholm operator. The case ofthe static 
Weyl Fo(t) is especially important because there is the dis
tinct possibility based on work ofK-C6

.
7 and of Hoenselaers, 

Kinnersley, and Xanthopoulos ls that every axially symmet
ric stationary vacuum (at least the asymptotically flat ones) 
can be generated from the general static Weyl Fo(t) by the 
u' I I(t) transformations alone. 

Finally, there is the second central theme. Can every 
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member of V be generated from Minkowski space by the 
group K? With the aid of the HHP, this question is reduced 
to a reasonable one in analysis (or in the topic oflinear differ
ential equations), viz., given any Fit) and F(t) in the same 
V (fl), does a u(t ) always exist such that 

F(t )u(t )Fo(t >-1 

is holomorphic in a neighborhood of t = 00 which contains 
the singularities of both Fo(t ) andF (t )? [In our special gauge, 
that would sim ply be the zeros ofr A. (x, t ) and "T A. (xo, t ).] This 
is a problem which should interest everyone. 

APPENDIX: PROOF OF THEOREM IN SEC. 3 

A I' A 2, and Tshall denote any open circular disks in the 
complex plane C. We let 

A (2): =A I XA
2

, A (51: =A ,2'xA (2I XT. 

A (2 I will be called an (open) interoal in C 2, and A (5 I will be 
called a symmetric interoal in C 5 . We shall lead up to our 
proof of the theorem in Sec. 3 by proving five lemmas. The 
first lemma is a restricted version of the theorem. 

Lemma (l): Let A (5 I denote any symmetric interval in 
D (s I. (1) There exists exactly one solution Y(/) of Eq. (49) 
such that its domain is A (5 I, and such that 

Y(x,X,/) = I. (Al) 

for every x inA (2 I and tin T. (2) For all x, y, XI inA (2 I and I in 
T, the inverse of ,rex, y, t) exists, and 

Y-(x,y,t) = Y(x,xI ,t )Y(XI ,y,t), 

5T(x,y,t )-1 = Y(y,X,!). 

(3) 5' (t ) is holomorphic in A (5,. 

(A2) 

(A3) 

Proof: Introduce components Fi (t ) of the 1 form F (t ) 
by 

F(t) = dxiri(t). 

Consider the ordinary differential equation 

af(xl,y,t) = r (X l y2 t)ill'(x l y t) ax. 1" '.I ,t, 

subject to the initial condition 

f(/,y,t) = I, 

(A4) 

(A5) 

in the domain A I XA (2) X T. According to a standard theo
rem,31 the solution of (A4) and (A5) exists, is unique, has an 
inverse, and is holomorphic in A I XA (2 I X T. Next, consider 
the ordinary differential equation 

aY(x,y,t) F( )il=( ---'--,':"';""":" = 2 x,t Y x,y,t), 
ax-

subject to the initial condition 

Y(x\ y2,y .t) = f(x l, y, t) 

(A6) 

(A7) 

in the domain A (5 I. According to the same standard theo
rem,31 the solution of (A6) and (A 7) exists, is unique, has an 
inverse, and is holomorphic in A (5 I. 

Now, the integrability condition (48) has the compo
nent form 

Isidore Hauser and Frederick J. Ernst 1137 



                                                                                                                                    

= rl(x,t )[Jr2(X,t) - rix,t )[Jrl(x,t). 
After differentiating (A6) with respect to Xl, using the inte
grability condition to replace ar2/aX I, and regrouping 
terms, we get 

ag(x,y,t) =r(xt)[Jg(xt) 
ax2 2' " 

(AS) 

where 

) aY(x,y,t) r ( )n q( ) g(x,y.t : = I - I x,t ~~J x,y,t . 
ax 

(A9) 

However, note thatg(x, y, t) and Y(x, y, t) are solutions of 
the same ordinary linear homogeneous differential equation 
(AS) and (A6). respectively. Therefore, since Y(x, y, t) has 
an inverse (so that its columns are linearly independent and 
constitute a fundamental pair of solutions), there exists a 
2 X 2 matrix k (xl, y, t) such that 

g(x.y,t) = Y(x,y.t)k(xl,y, t) (AlO) 

throughout A (5). Now x 2 = y2 in (AlO), whereupon (A7) im
plies 

g(XI ,y2.y ,t) = f(x l ,y,t)k (xl.y,t). (A 11) 

However, from (A4) and (A 7), if we set x 2 = y2 in (A9). we 
get 

g(XI.y2,y,t) = o. 
So. from (All), k (xl, y, t) = 0, whereupon (AlO) implies 

g(x,y,t) = o. (A 12) 

Also, upon replacing Xl by yl in (A 7). Eq. (AS) yields 

Y(y.y.t) = I. (AI3) 

Equations (A9), (A12), (A6), and (AB) establish the main 
part of the lemma. 

Next, we prove (A2) and (A3). SinceY(x,xl,t) is a fun
damental solution of Eq. (49). there exists a 2 X 2 matrix 
M(xl,y.t) such that 

Y(x.y,t) = Y(x.xl.t)M(xl.y.t). 

Set x = XI above. and use (AI) to get (A2). To get (A3), set 
x = y in (A2). 

We want to extend the solutions in symmetric intervals 
to D I 5). This process has some of the features of analytic 
continuation in the complex plane, and Lemma (1) has al
ready supplied us with the analog of the power series. The 
next lemma supplies key results which make the continu
ation possible. 

Lemma (2): Suppose 

A 15) =A ,21 XA ,2 I X T. A (5), =A ,z)'XA ,z)'XT' 

are any overlapping symmetric intervals in D (5), and Y (t ) 
and 5"(t) are the solutions ofEqs. (49) and (AI) in the re
spective intervals. (1) In the region of overlap, 

.7'(x,y,t) = Y(x,y,t). (AI4) 

(2) For all y inA' 2), y' inA '21', x inA (2)nA ,2 I', and t in TnT'. 

.sT'(y' .x,t )Y(x,y,t) (AIS) 

is independent of x. 
Proof: For all t in TnT', x in A ,21nA (2)., Y in A (2), y' in 

A '2 1
'. Eq. (49) yields [d = (a/ax i)dx'] 

d [Y'(x,y',t yl'Y(X.y,t)] = o. 
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So M (y,y' ,t ) exists such that 

Y'(X,y',t)-I'Y(X,y,t) = M (y,y'.t). (A16) 

Use (A3) and (A16) to get (AlS). Set x = y = y' in (AI6) to 
prove M(y,y,t) = I; then set y' = y in (AI6) to get (A14). 

The significance of(A14) is that it tells us that the value 
of Y(x,y.t) is independent of the specific symmetric interval 
in D ,5 I which covers (x.y,t ). As regards (A IS), it suggests how 
Y(x,y,t) can be defined for arbitrary (x,y,t) inD (5) by using 
products like that in (AlS). 

To help us formalize the idea, we need some more defi
nitions. For any point (x,y,t) in D (5), we let L (x,y,t) denote 
the set of all simple32 oriented smooth lines in D ~2) which join 
y to x; y is the initial and x is the final point. 1 will denote any 
line in L (x,y,t). 

Since I is compact. there exists at least one finite se
quence of intervals A ?) in D?) such that 

O<J<;n, y is in A 62), x is in A ~2), 

n 

U A j2) contains I, 
i=O 

I nA;Z~ 1 nA )2) is not void (l<;i<;n). 

The set of all finite sequences of intervals in D ~2) which satis
fy the above conditions will be denoted by K (I). 

From the above definition, if (A 62l, ... A ~2» is any given 
member of K (I), there exists at least one sequence of points x 
in D ~2) such that 

O<;j<;n+I, xo=y, xn+1 =x, 
(AI7) 

Xi lies in A )2~ InA )2) (1 <;i<;n). 

Moreover. these points may always be selected so that they 
lie on l. Note that Xi + I and Xi are both in A )2). Define 

A )5): = A ~Z)XA )2)X Ti' 

where Ti is any covering of tin C such that A )5) is in D (5). 

[Clearly, anA )5) exists since (X"Yi,t) lies inD' 5) for all Xi 'Yi in 
A )2). ] Define 

Y(x,y,t,I): = IT Yi(Xi + I ,x"t), 
i -o=-o 

(AI8) 

where Y i (t ) denotes the solution ofEqs. (49) and (A 1) in the 
symmetric interval A )5). In the next two lemmas, we shall 
establish that the value of the above expression (AIS) is 
uniquely determined by x. y, t, and l. 

Lemma (3): For any givenlinL (x,y,t )and for any given 

(A ;)21, ... ,A ~2» in K (I), the expression (A IS) has a value which 
is independent of the choice of the points XI"'" Xn which 
satisfy (A 17). 

Proof: A ?21 and A )2) overlap. Also, Ti I and T; over-
. Th ~ A (5) d A (5) lap, because they both contam t. erelore, ; _I an , 

overlap (1 <;i<;n). The conclusion then follows from the sec
ond part [Eq. (A1S)] of Lemma (2). 

Q.E.D. 
Lemma (4): For any given I in L (x,y,t ), the expression 

(A IS) has a value which is independent of the choice of the 

member (A 621, ... ,A ~» of K (I). 
Proof: Since the value of (A IS) is independent of the 

choice ofxl, ...• x n .Iet us select these points so that all lie on l. 
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Then consider that, by definition of a simple32 oriented 
smooth line, there exist C 00 functionsz'(a) andz2(a) ofa real 
variable a defined over an open interval (c, d) such that I is 
the set of all points 

z(s): = (zl(a), z2(a», for a<a<b, 

where 

c <a<b <d, 

z(a) = y, z(b) = x, 

I dZ~;a) I + I dZ;;a) 1#0, (AI9) 

z(a)#z(a') if a#a', except possibly when a = a and 
a'=b. 

Consider the ordinary differential equation 

df(a,ao,t) _ dt(a) r ( ( ) )nl"( ) - ; z a ,t HJ a,ao,t , 
du da 

c<ao<d, f(ao,ao,t) = I. 

We have the standard results 

f(a,a',t )f(a',a",t) = f(a,a",t), 

f(a;! I ,a;,t ) = :7, (x; + I ,x; ,t ), 

where a
J 

is that value of a for which 

Xj = z(a) (O<j<n + 1). 

From Eqs. (AIS), (AI9), and (A20), 

,7(x,y,t,l) = f(b,a,t). 

(A20) 

Q.E.D. 

The final stages of our proof require that we say some
thing about the dependence of :7(x,y,t,/) on I. Suppose 1 and 
I' are any members of L (x,y,t). We shall write 

I-I' 

whenever there exists at least one finite sequence of members 
Ik of L (x,y,t), and there exists at least one family of intervals 
A ~~) in D ~2) such that 

O<k<N, 10 = I, Is = I', 

O<i<n k , 

(A ~2i) , ... ,A ~~:I.) is a member both of K (Ik _ I) 
andofK(ld(1<k<N). (A2I) 

[This is one way offormalizing the concept of being able to 
transform I into I' continuously without leaving L (x,y,t ).] It 
is easy to show that - is an equivalence relation. 

Lemma (5): Ifl-I', 

Y(x,y,t,l) = .Y(x,y,t,l'). 

Proof: From (A2I), the same expression of the form (A IS) 
can be used both for Ik _ I and for I,. Therefore, 

.7(x,y,t,lk I) = :7(x,y,t,U, O<k<N 

which gives us our conclusion, since 10 = I, and IN = 1'. 
We shall say only a few more words about the final 

stages of the proof. The above lemma enables us to replace 
the notation :7(x,y,t,l) by the notation :7(x,y,t,v), where v 
is a label for the various equivalence (- ) classes of lines in 
L (x,y,t). Now, suppose S ~2) is any simply connected subre
gion of D ~2), andS(s) is the set of all (x,y,t) inD (5) such that x 
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and yare both inS~2). Suppose, furthermore, that we restrict 
L (x,y,t ) so that its members all lie in S ~2). Then, all lines in 
this restricted L (x,y,t) are equivalent (-), and:7 (so re
stricted) is single valued and is that branch of the function 
which satisfies (AI). 

We feel that the remainder of the proof is sufficiently 
straightforward so that we can stop here. It is perhaps worth 
noting that the same proof is applicable to any completely 

integrable n X n linear homogeneous differential equation 
like Eq. (49), for which the one form rn is a holomorphic 
function of (x I, x 2

, t); the extension to any finite number of 
coordinates and parameters involves no difficulties. 

(More specifically, this the homogeneous Hilbert problem for nonsingular 
square matrix functions of a complex variable. The theory is given, for 
example, in Chap. 18. N.1. Muskhelishvili, Singular Integral Equations by 
(Noordhoff, Groningen, 1953). In particular, Eq. (127.15) in this refer
ence corresponds to our Eq. (9). We differ in only one way from the con
ventions of Muskhelishvili, viz., our X. are the transposes of their X ' , 
and our G is their (G ')"; therefore, where we refer to rows, he would refer 
to columns. 

'R. Geroch, J. Math. Phys. 12, 918 (1971). Though this paper is largely on 
space-times with one Killing vector, Sec. 2 presents the essential idea for 
the group K. 
'R. Geroch, J. Math. Phys. 13, 394 (1972). 
"W. Kinnersley, J. Math. Phys. 18, 1529 (1977). this paper clarified the 
field equation symmetries which are responsible for K. It also enlarged K 
to form a group K' which covers the stationary axially symmetric electro
vacs. 
'w. Kinnersley and D. Chitre, J. Math. Phys. 18, 1538 (1977). 
"w. Kinnersley and D. Chitre, J. Math. Phys. 19, 1926 (1978). 
7W. Kinnersley and D. Chitre, J. Math. Phys. 19,2037 (1978). This paper 
contains a new five parameter vacuum solution which has the 8 = 2 Tomi
matsu-Sato solution as a special case. 

x Actually. the general theory in this paper is applicable to the cases for 
which d (de! h) is identically zero or is identically a null one form. Howev
er, some of the specific statements concerning our choice of gauge and the 
character of the singularities of the Fpotential (as discussed in Sec. 3) have 
to be modified or revised in these special cases. 

'''In all statements concerning I dependence, the Riemann sphere topology 
is used. 

"w. Kinner~ley, J. Math. Phys. 14, 651 (1973). 
('More precisely, the singularities occur at the zeros of (21)",1 (x, I ), as will 

become clear in Sec. 4. 
"I. Hauser and F.J. Ernst, Phys. Rev. D 20, 362 (1979). 
(41. Hauser and F.J. Ernst, Phys. Rev. D 20, 1783 (1979). This paper con

tains t he extension of the integral equation to electrovacs. In the exten
sion, 3 X 3 matrices are employed, and u(t) is a member of SU (2, I). 

"c. Hoenselaers. W. Kinnersley, and B. Xanthopoulos. Phys. Rev. Lett. 
42, 481 (1979); 1. Math. Phys. 20, 2530 (1979). 

(hY.A. Belinskii and Y.E. Zakharov, SOy. Phys. JETP 75,1953 (1978). 
(7D. Maison. Phys. Rev Lett. 41, 521 (1978); J. Math. Phys. 20, 871 (1979). 
"B.K. Harrison, Phys. Rev. Lett. 41, 1197 (1978). 
,oG. Neugebauer. J. Phy,. A 12, 1.67 (1979). 
"'OUf n-pole solution in Ref. 14 is actually for an electrovac. It is the vacu

um specialization of our results which correspond to those in Refs, 15 and 
16. 

"This follows, for example, from Eq. (125.9) in Ret'. I and from the state
ment immediately following the equation in the book. 

"Yalues of x corresponding to z' + p' = 0 [ ± : = - (sin(det h)] are ex
cluded from the domains of both Eqs. (7) and (8) and of the HHP defined 
by Eqs. (9) (II) and the subsequent conditions. The reason is that F(t) has 
a singularity at t = 00 for such values of x; this will become clear in Sec. 4. 

"In the K-·C papers, the Ernst potential is the upper left element of their H, 
whereas ~. is the lower right element in our H. 

"One can use Eq. (2Id), with S" = 0 and/"P , ~c exp(2r) ofF.J. Ernst, J. 
Math. Phys. 15, 1409 (1974). Alternatively, one can use Eq. (2.12) of Ret'. 
4. These are simply examples. 

"Our notations and conventions concerning differential forms, Grassmann 
products, duality operations, etc., are described in an Appendix to the 
paper by I. Hauser and F.J. Ernst, J. Math. Phys. 19,1316 (1978). 
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2"The term "connected" is used here in the sense of "arcwise connected." 
Specifically, a region is called connected if any two of its points lie on at 
least one simple smooth arc which is contained by the region. 

27In this extension to complex x, [H (x)] * denotes the complex conjugate of 
[H (x*)], and [H (x)] t denotes the Hermitian conjugate of [H (x*)]. The 
duality oprator * may be defined by Eqs. (24) and (25), and Eqs. (26), (30), 
(31), etc., are correct, as they stand, for the extension. The distinction 
between V( + ) and V( - ) is unnecessary for [H(x)]; in fact, the V( - ) 
expressions and relations can beobtainedfrom the V ( + ) ones by the substi
tutionsx'.-x',x2

.- - ix2
, z.-z,p.-ip, and *_i*. In our equations, how

ever, we shall continue to maintain a formal distinction between the two 
"cases" as an aid to those who would prefer to think in terms of real x or 
who would prefer to maintain the distinction. 

1140 J. Math. Phys., Vol. 21, No.5, May 1980 

2·We have not yet been able to find a reference for this theorem and would 
welcome one. The related theorems which we have found are strictly local 
in their existence claims or say nothing about analyticity or about param
eter dependence. 

29See, for example, Chap. XIX, E. L. Ince, Ordinary Differential Equations 
(Dover, New Yor, 1956). 

30For this purpose, we used Eqs. (3.1), (3.3), and (3.6) of Ref. 13. 
"See, for example, Solomon Lefschetz, II, Differential Equations: Geomet

ric Theory, 2nd ed. (Dover, New York, 1977), Chap. II, theorem (10.3). 
32However, we do permit the line to return to y; i.e., we do permit x = y. 

Therefore, the term "simple" does not have its conventional meaning. A 
definition is given in Eq. (A 19). 
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The concept of symmetric vector field in Riemannian manifolds, which arises in the study of 
relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic 
properties of the manifold curvature. A procedure for generating a congruence of symmetric fields 
out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature 
("isotropic universe") is studied in detail, with all its symmetric vector fields being explicitly 
constructed. 

I. INTRODUCTION 

The concept oflocally symmetric vector field in general 
Riemannian manifold has recently been introduced by 
Walker. I He was motivated by his earlier investigations2 on 
possible laws of orientation of galaxies. The distribution of 
galaxies in the three-dimensional curved space is assumed, in 
the standard cosmological model of general relativity, to be 
isotropic ( and homogeneous). Most of the galaxies, however, 
reveal in their structure one or more axis of symmetry, and 
the question arises as to whether the orientation of the galax
ies ought to be random, or there are other laws of orientation 
which do not violate cosmological principles. The galactic 
axes of symmetry are represented by unit vector fields, and 
thus one is led to consider the symmetry of such fields. A unit 
vector field is defined by Walkeri to be symmetric if it exhib
its rotational symmetry. To be precise, let M be an n-Rie
mannian manifold with metric tensor g. A unit vector field 
VET(M) is said to have symmetry about a pointpEMifit is 
invariant under all linear transformations of normal coordi
nates centered atp which leave V(p) andg(p) invariant. The 
condition of symmetry is expressed as the vanishing of a 
certain function cP of the normal coordinates (CP = 0 identi
cally at p). The vector field is said to have first (second) order 
local symmetry about p if a weaker condition is satisfied by 
CP, namely, its first (and second) order partial derivatives 
vanish at p. Finally, the vector field is defined to have first 
(second) order local symmetry in M if it has first (second) 
local symmetry about every pE M. After some manipula
tions, Walker arrives at a covariant formulation of the condi
tion of local symmetry. It turns out that the case of three
dimensional Riemannian manifolds (which is offundamen
tal importance for the underlying cosmological consider
ations) is special. A necessary and sufficient condition for 
the unit vector field V to have first order local symmetry is 
that in local chart (x 1 , ... ,x n) it satisfies 

V Y VI" = a(g/lV - V;, V,,), for n > 3 

V" V;, = a(gI"Y - V;, Vy ) + /3el" VA VA, for n = 3 

where fl, v = 1, ... ,n; V v denotes covariant derivative with re
spect to the metric g;eJl vA is the three-dimensional alternat
ing tensor; and a and/3 being some scalars. The vector field V 
has second order local symmetry iffin addition to these con
ditions it satifies 

for n> 3 

/3 = 0 and aJl = av VVVJl , 

or a = 0 and /3 = constant, for n = 3 
whereby a,. = a,,. denotes the partial derivative of a with 
respect to x Jl. The existence of a locally symmetric vector 
field restricts the manifold, and it is easy to establish a ca
nonical form for the metric tensor of a manifold admitting 
such field. 

In the next section the implications of the existence of 
one or more locally symmetric vector field will be studied. In 
Sec. III the same investigation will be carried out for the 
three-dimensional case, and in Sec. IV we focus our attention 
on a three-manifold of constant curvature. Section V is de
voted to concluding remarks. 

II. n> 3 

In this section we analyze the case n > 3. Let VJl be a 
first order locally symmetric vector field 

V v VI" = a(g,.v - VJl V,,), VJl VJl = 1. (2.1) 

The integrability conditions of these equations are l ,} 

RJl OAT = (gl" A - VJl VA)aT - (gJl T - VJl VT)aA 

+ a 2(g1" A VT - gl" T VA)' (2.2) 

where the subscript 0 denotes contraction with the vector 
VJl ' e.g., RJlOAT = RJlVAT VV. From Eq. (2.2) we have: 

RJloVO = (a2 + ao)(gJlv - VI" VJ, (2.3) 

RJlo = (n - 2)aJl + [(n - 1 )a2 + ao ] VJl' (2.4) 

Theorem 2.1: A first order locally symmetric vector 
field is a Ricci principal direction if and only if it has second 
order local symmetry. In that case the associated eigenvalue 
is (n - l)(a 2 + ao)' 

Proof Let VJl be a first order locally symmetric vector 
field which is a Ricci principal direction. Hence (2.4) is satis
fied, and in addition 

RJlo = pVI"' 

where p is the eigenvalue. The latter is substituted in (2.4), to 
yield 

(n - 2)aJl = [p - (n - 1 )a2 
- ao ] VJl . 

This implies that a = a(V), i.e., VI' has second order local 
symmetry. Contraction with VJl givesp = (n - 1)(a2 + ao)' 
The converse is proved similarly. 0 
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Now suppose that a manifold admits two first order 
locally symmetric vector fields VI' and VI' 

\1 v VI' = a(gI'V - VI' V,,), 

\1 v VI' = a(gI'V - V,);v). 

(Note that we do not consider VI' and - VI' as distinct.) 
Thus in addition to (2.2)-(2.4), we have the integrability 
conditions: 

RI'M'" = (gI'A - VI' VA)ar - (gI'T - P" VT)aA 

+ a 2
(gI'A Vr - gl'T VA)' (2.5) 

Rl'jjyiJ = (a2 + ajj)(gl'v - V;, V,,), (2.6) 

Rl'jj=(n-2)al' + [(n-l)a2+ajj ]V;,. (2.7) 

Contracting (2.3) with VI'V" and (2.6) with Vl'vv we get 
two expressions for R ojjojj ' from which follows: 

(2.8) 

Likewise, from (2.4) and (2.7) [in view of (2.8)] follows: 

au - a jj = ,p (a jj - ao)' (2.9) 

with 

,p = g''''VI' VV' 

Contract now Eq. (2.2) with VI' V r, to obtain 

RWJOO = (1 -,p 2)a
" 

+ (a2 + ,pajj)V;, - (,pa2 + ajj)Vp" 

On the other hand, contracting (2.6) with VV and using (2.8) 
lead to 

Rl'ooo = (a
2 + aO)(V,1 - ,pVI')' 

From the last two equations we can deduce the last identity 
needed for the next theorem, viz.: 

(1 - ,p 2)a
" 

= (ao - ,pajj)V1' + (a jj - ,pao ) V;,. (2.10) 

Theorem 2.2: Let VI' and VI' be two first order locally 
symmetric vector fields. Then there exist two scalars A and B 
such that 

R,,,Y' = A v" + BV;" 

Rl'vV"=BVI' +AVI" (2.11) 

and consequently the vectors (1Iv'2) (VI' + VI') and 
(1Iv'2)(V" - VI') are Ricci principal directions. 

Proof we have 

V" VI' = a(g,lV - VI'Vv), 

V" V;, = a(g"" - VI'Vv)' 

As was shown above, this entails that a satisfies (2.10), and a 
satisfies an analogous equation. Substituting (2.10) into (2.4) 
one obtains: 

(1 -,p 2)R ,LO = {en - 2)(au - ,pao) + (1 -,p 2)[(n -1)a2 

+ a" ]}v" + {en - 2)(a ii - ,pao)}Vp" (i) 

Interchanging the roles of V,I and VI' we can similarly write: 

(1 - ,p 2)R'IO = [(n - 2)(ao - ,paiJ J V,I + [(n - 2)(ajj 

- ,pao) + (1 -,p 2)[(n - l)a2 + aa] Vp" 

Straightforward manipulation of the last equation, with the 
aid of (2. 8) and (2.9), yields: 
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(1 -,p 2)Rl'jj = {en - 2)(a jj - ,pao)}VI' + {en - 2)(ao 
- ,paa) + (1 - ,p 2) [en - l)a 2 + a o ]}V,I' 

(ii) 

The two expression (i) and (ii) provide the representation 
stated in the theorem. 0 

Corollaries: 
(i) If a manifold admits two first order locally symmet

ric vectors, they lie in a subspace of the tangent space at each 
point spanned by two Ricci principal directions. 

(ii) If a manifold admits two first order locally symmet
ric vector fields, one of them being of the second order, then 
both vectors are of the second order, both are Ricci principal 
directions corresponding to a common constant eigenvalue. 

(iii) If a manifold admits three first order locally sym
metric vector fields, then all of them are of the second order, 
and consequently are Ricci principal directions correspond
ing to a common constant eigenvalue. 

( iv) If an n-manifold admits n -1 linearly independent 
locally symmetric vector fields, the manifold is of constant 
curvature. 
Remark: some of these corollaries have been derived 
through a different approach by Gauchman. 4 

Proof 
(i) This proposition follows directly from the theorem. 
(ii) Suppose v" in the last theorem has second order 

local symmetry. By theorem (2.1) VI' is a Ricci principal 
direction, and from (2.11a) B = 0, which by (2.11b) implies 
that V;, is a Ricci principal direction with the same eigenval
ue, and is of the second order. By theorem (2.1) the common 
eigenvector is 

and it is being left to demonstrate its constancy. Since V,I and 
V;I have second order ~ymm.:try, a = a(V), a = a(V), 
where VI' = V,I' and VI' = v,1" Hence the left-hand side ~f 
(*) is a function of V, the right-hand side is a function of V, 
and as Vand Vare functionally independent (otherwise 
VI' = ± VI')' both sides must be constant. 

(iii) Let U, Vand Wbe three first order locally symmet
ric vector fields. By the theorem, the six vectors 
(l/v'2)(U ± V), (1Iv'2)(U ± W), (1Iv'2)(V ± W) are 
Ricci principal directions. At least one of the two vectors 
(11\/2)(U ± W)isnotorthogonalto(1Iv'2)(U + V). With
out loss of generality we can assume this vector to be 
(1/v'2)(U + W). Thus the two vectors (1Iv'2)(U + V)and 
(1Iv'2)(U + W) constitute a pair of non orthogonal eigen
vectors of the Ricci tensor, and hence they correspond to the 
same eigenvalue, say p. Since the inner products 
(U + V, U + W) and (U + V, V + W) are equal, the vectors 
(1/v'2)(U + V) and (1Iv'2)(V + W) are not orthogonal, 
and hence (1Iv'2)(V + W) corresponds also to the same ei
genvalue p. Consequently any linear combination of the 
three vectors (1Iv'2)(U + V), (1/v'2)(V + W) and 
(1Iv'2)(V + W), in particular the vector U, isa Ricci princi
pal direction. The proposition is thereby proved in virtue of 
corollary (ii). 

(iv) Let V;I!)'"'' Vi:' I) be n -1 linearly independent 
locally symmetric vector fields. By (iii) all of them have sec-
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ond order local symmetry, and hence their scalars a (k), 

k = t, ... ,n -1, satisfy 

ark) = (a(k)V(k)V\V(k) 
J1. v J Jl ' 

(a(k»2 + a~k)V(k)1" = (a(1»2 + a~I)V(1)1" = _ p. 

The integrability conditions (2.2) for these fields assume the 
form: 

TWVA7 V(k)v = 0, k = t, ... ,n - 1 

with 

TI"VAT = RI"VAT + p( gl"AgY7 - gI"7gvA)' 

Denote 

v(n) _ tId •... A" • V(1)V(2) v(n -I) 
11 - A\ A2 '" An _ .. I ' 

Where exp(.u AI , ... ,An __ I is the alternating tensor. Since 
anti symmetrization over (n + 1) indices annihilates, we 
have identically 

T Ivt!'A, ... A".] v(n-l)=O 
paJ.l .0- An 1 

(square bracket symbols are used for antisymmetrization), 
from which follows that the vector field v~n) too satisfies 

TI" VA 7 v(n)Y = 0. 

Thus the ennuple of independent vectors V~l), ... , V~) satisfy 

Til v J. T v(a)Y = 0, a = t, ... ,n, 

which implies 

1'" vA T = 0, 

namely, the manifold is of constant curvature p. 
The last corollary deals with linearly independent sym

metric vectors. The next theorem shows that there is no up
per bound to the number of linearly dependent symmetric 
vectors which a manifold can admit. 

Theorem 2.3: Let a manifold admit two second order 
locally symmetric vector fields Vt') ,a = 1,2: 

V Via) = a(a)(g - V~~) Viva»~, 
\' Ii, J.lV r-

a(l) = a(I)(V(1», 

a(2) = a(2)( V (2), 

where 

Via) = Via) 
II .11. • 

Denote 

",(a)(v(a» = exp f a(a)(v(a»dv(al, 

..1 2 = [",(1)]2 + [1/,<2)]2 + 21/P)",(2) V~l) V(2)1", 

pia) = ",(a)/..1. 

Then the unit vector field 

V =p(l) V(1) + p(2) V(2) 
~ J1. J1. 

too is a second order locally symmetric vector field, i.e., it 
satisfies the equation 

V v ~, = a(gllV - VI" Vy ), 

with 
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Proof From the definition of t/J (a), 

t/J(a)'1" = a(a)t/J(a) v~a) . 

With the aid of this relation we differentiate..1 2: 

..::1..::1'1" =..::1 2(il)a(l) + p<2)a(2»(p<I) V~I) 

+ i 2
) V~», 

i.e., 

..1'1" 
-- = aVI"' 

..::1 
Therefore 

p(1)'1" = p(1) [a(1) V~I) - a VI" ], 

i 2)'1" = i 2)[a(2) V~) - a VI" ]. 

When these two relations and the symmetry equations for 
V(I) and V(2) are substituted into 

I" I" 

V V =p(l)V V(1) +p(2)V V(2) +p(l) V(I) 
v J.l v J-L v J-L 'v /1 

+p(2) V(2) 
'v J.l' 

one obtains finally 

Vy VI" = a(gI"V - VI" Vy ). 

The vector field VI" has then local symmetry, necessarily of 
the second order according to corollary (ii). 0 

From this theorem we can conclude that the existence 
of two second order locally symmetric vector fields implies 
the existence of an infinite number (in fact, a two-parametric 
congruence) of second order locally symmetric vector fields. 
Indeed, the indefinite integrals in the definition of t/J (a) con
tain arbitrary constants. Let ",(I) be one particular solution 
of the equation 

d•llI ) 
_'f'_ = a(l)t/J(I) 
dV(1) , 

and similarly for t/J(2). Then for arbitrary real numbers A (I) 
and A (2) we put 

..1 2(A (I),A (2» = [A (I)t/J(1)]2 + [A (2)t/J(2)]2 

+ 2A (I)A (2)t/J(1)",(2) V~1) V(2)1", 

A (0)",(0) 
p(a)(A (I),A (2» = , a = 1,2. 

..1 (A (I),A (2» 

A direct calculation verifies that the set of vector fields: 

VI" (A (I).A (2» = p(1)(A (I).A (2» V~) + i21(A (I).A (2» V~) 

is a two-parameter congruence of second order locally sym
metric vector fields. 

The statement of theorem 2.3 gives rise to the question 
whether the existence of two first order locally symmetric 
vector fields is sufficient to guarantee the existence of a third 
locally symmetric vector field. The question can be answered 
in the negative, and it is enough to demonstrate it via an 
example. 

Example: LetR n __ 2 bean (n - 2)-Euclidean space, and 
let M2 be a two-dimensional Riemannian manifold with 
metric (in local chart xy): (I + x 2)(dx2 + dy2). Let Mn 
= M2 X (x2)R n _ 2' the meaning of this notation being that 

local coordinates (ul .... ,un
) = (x.y.u\ ... ,un

) exist, such that 
Mn has the metric 
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TABLE I. Classification of Riemannian manifolds into five categories. The 
table is exhaustive-every manifold belongs to one of the five classes, and all 
the five classes are realized. 

Class No. 

No. of locally symmetric first order 0 
vector field of second order 0 

2 

1 
o 

3 4 

2 
o 

ds2 = (1 + x2)(dx2 + dy2) + x2 [(dU3)2 + (dU4)2 

+ ... + (dU n)2]. 

It is readily verified that the two unit vector fields: 

V(I) = xb l + b2 

" " fl ' 
V (2) _ i:1 i:2 

Ii - XUI" - U,i , 

have first order local symmetry, with scalars 

a(l) = a(2) = __ 1_. 
1 + X2 

Since the vectors are derived from the scalars 

1 V(I) = _X2 +y 
2 ' 

V(2) = ~x2_y 
2 ' 

5 

00 

00 

the scalar a (I) is manifestly not a function of VOl alone, and 
hence V;;l is not of the second order. Thus by corollary (iii), 
the manifold does not admit any locally symmetric vectors 
apart from V~ll and V~). [It is evident that Rn ~ 2 in the 
example can be replaced by an arbitrary (n - 2) dimensional 
Riemannian manifold]. 

The various possibilities with regard to the number of 
locally symmetric vector fields admitted by a manifold can 
be summarized in Table I, which classifies all Riemannian 
manifolds into five categories according to the number of 
locally symmetric vector fields of first and second order ad
mitted by them. 

III. n = 3 

In this section the case n = 3 will be analyzed. Let V" 
be a first order locally symmetric vector field in a three
dimensional Riemannian manifold; 

V J';, = a (g'il' - Vfl VJ + /3efl vO' (3.1) 

The integrability conditions of these equations are l 

R,iO).T = (g"A - Vfl VA )aT - (g"T - Vfl V,)aA 
+ (a" - /3 2)(gfl A VT - gIlT VA) 

+ 2a/3(e,dT - V,ueATO ) + (eI"Ao/3T - eI"To/3A)' 

Contracting with V T and antisymmetrizing on (p,,)..) one 
finds 

/30 + 2a/3 = O. (3.2) 

From this we can conclude that 

2a/3eflAT +e"Ao/3r -e,uTo/3A = -/3"eATO , 

in virtue of which the expression above for Rl"oAT becomes: 
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R,uOAT = (gI"A - V,u VA)ar - (g,ur - V,u Vr)aA 

+ (a2 
- /3

2
)(g'iA VT - g,LT VA) 

- (/3,u + 2a/3VI")eATO ' 

From Eq. (3.3) we have: 

Rl"ovo = (a
2 

- /3 2 + aO)(g,Ll' - V,L Vv )' 

(3.3) 

(3.4) 

RILO = aiL +(2a2-2/32+ ao )V,i +el"vo/3 v
• (3.5) 

It follows from (3.4) that if a manifold admits two first order 
locally symmetric vector fields v" and VI"' then 

iP - p2 + Cia = a 2 - /3 2 + ao. 

In (3.4) one can employ the identical vanishing of the three
dimensional Weyl conformal tensor, to express R ILOVO in 
terms of the Ricci tensor and scalar. One finds then: 

RliV + (a2 
- /3 2 + a o - 4R )gfl\' + (a2 

- /3 2 + a o 

+ 4R )V,L V,. - ROI" Vv - Rov v" = O. (3.6) 

Theorem 3.1: Let a three-manifold admit a first order 
locally symmetric vector field VJL , and let a, b, c be the Ricci 
eigenvalues with a<c<b. Then V,i must be of the form 

V,i = pA,L + qBI"' 

p2 = (c - a)/(b - a), q2 = (b - c)/(b - a), 

where A I" and B I" are two orthonormal Ricci principal direc
tions corresponding to the eigenvalues a and b respectively. 

Proof Let el" be a unit vector orthogonal to the two 
vectors VI" and ROil' Contracting (3.6) with C" one obtains: 

R,uvC' + (a 2 
- /3 2 + a o - 4R )C,u = 0, 

i.e., C,.. is a Ricci principal direction with the eigenvalue 

c = ~R - a 2 + /3 2 
- a o 

(so far, c is not necessarily the middle eigenvalue). Conse
quently, the vectors VI" and ROI" lie in the subspace of the 
tangent space at each point spanned by two orthonormal 
Ricci principal directions orthogonal to CI" ' with eigenva
lues a and b, a<b, viz.: 

V,u = pA,u + qB,u , 

for some scalars p and q, p 2 + q 2 = 1, and 

ROIL = paAI" + qbB
"

. 

Equation (3.6) reduces now to 

p 2b + q 2a - c = 0, 

implying 

p 2 = (c - a)/(b - a), q 2 = (b - c)/(b - a), 

and in particular a<c<b. 0 
This theorem furnishes a simple derivation of a result 

due to Gauchman4
, namely 

Corollary: Let a three-manifold admit a first order lo
cally symmetric vector field V,u, and let a, b, c be the Ricci 
eigenvalues. 

(i) Jfthe manifold is "degenerate", i.e., a = c=j=.b, then 
Vii is the Ricci principal direction corresponding to b. 

(ii) If the manifold is "non degenerate" , i.e., a < c < b, 
then VI" is one of the four vectors 

(~--;=-;; ~~) ± --AIL ± --B/" , 
b-a b--a 
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where All and Bil are the Ricci principal directions corre
sponding to a and b. 
(If a = c = b, then the manifold is of constant curvature). 

In particular, it follows that a manifold which is not of 
constant curvature can admit at most two first order locally 
symmetric vector fields (recall that we do not distinguish 
between Vil and - V

Il
), and in view of the next theorem, it 

can admit at most one second order locally symmetric vector 
field. The case of constant curvature will be dealt with in the 
next sec. IV. 

We are now in the position to investigate the order of 
the symmetry. We shall call a Riemannian three manifold 
axial if two of its Ricci eigenvalues coincide, while the third 
one is constant. In this terminology, a three-dimensional 
version of theorem (2.1) can be formulated. 

Theorem 3.2: A first order locally symmetric vector 
field is a Ricci principal direction if and only if it has second 
order local symmetry or the manifold is axial. 

Proof One direction is obvious, if Vil has second order 
local symmetry, then either a = ° and.B = const, or.B = ° 
and aft = ao Vft' In both cases (3.5) entails that Vft is a Ricci 
principal direction. Likewise, if Vft is a first order locally 
symmetric vector field in an axial three-manifold, then by 
proposition (i) of the last corollary it is a Ricci principal 
direction. 

Conversely, let v" be a first order locally symmetric 
vector field which is a Ricci principal direction. Then, by the 
foregoing discussion, the manifold is degenerate, two of its 
Ricci eigenvalues are equal (to a, say), and Vft is a Ricci 
principal direction corresponding to an eigenvalue b, 

R Oft = bV", 
R =2a +b, 

b = 2(a2 -.B 2 + ao)' 

Equations (3.5) and (3.6) assume the form 

aft - ao v" + ellvo.B v = 0, 

Rftv - agftV + (a - b) Vft Vv = 0. 

(3.7) 

(3.8) 

(3.9) 

Taking the covariant divergence of (3.9) and employing the 
Bianchi identity, we obtain 

bft =2[bo -ao +2a(b-a)]Vft' 

Contraction with VI' and substitution back yields 
bl, - bo Vft = 0. 

The solutions of Eq. (3.10) fall into two groups: 

( i) bo #0, 

(ii) bo*O. 

(3.10) 

In case (i) v" by (3.10) is proportional to a gradient, and as 
Vft is a unit vector, it must be a gradient. In order to show 
this we take the derivative of (3.10) with respect to x v, and 
antisymmetrize over f-l and v 

bo(V",v - VV,ft) + bov Vft - boft V" = 0. 

Contract with VV 

bOft = boo Vft , 

and substitute back 
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Thus Vft is a gradient,.B = O,aft = ao Vft by (3.8), and Vft has 
local symmetry of the second order. In case (ii), by (3.10), 

bft =0, 

and the manifold is axial. 0 
It is to be noted that in the case of a first order locally 

symmetric vector field admitted by an axial three manifold, 
the associated scalars a and.B are both harmonic, viz., 

gflv'V ft 'V va = 0, gflv'V ft 'V v.B = 0. 

This follows directly from (3.8) and (3.2), when the constan
cy of the Ricci eigenvalue b is being invoked. 

IV. CONSTANT CURVATURE 

We now turn to the case which is the most pertinent to 
the underlying cosmological considerations, namely, to the 
case of a three-diminsional Riemannian manifold of con
stant curvature. In this section we enumerate and analyze all 
the second order locally symmetric vector fields admitted by 
such a manifold. These fields fall into two categories, viz., 
locally symmetric vector field Vft of type 1: 

V'v Vft = .Bel,vo' .B = constant of: 0, (4.1) 

and locally symmetric vector field Vft of type 2: 

V'v Vil = a(gftV - Vft Vv), aft = ao VI"' (4.2) 

We first address the question of the number oflocally sym
metric fields of type 1 which are admitted by the manifold. 
Substitution of a = O,.B = constant in the integrability con
ditions (3.3) gives: 

R ftoAT = -.B 2(gftA Vr - gftT VA)' 

On the other hand, if the manifold is of constant curvature K, 
then 

R ftOAT = - K (g1'A VT - gIlT VA)' 

We conclude, therefore: 
Theorem 4.1: If a manifold of constant curvature K ad

mits a locally symmetric vector field of type 1 [Eq. (4,1)], 
then K =.B 2. In particular, a manifold of negative constant 
curvature does not admit locally symmetric fields of type I. 

Suppose now that a manifold of constant curvature 
K = .B 2 admits two locally symmetric vector fields of type 1. 
Then according to the last theorem we can write without loss 
of generality: 

V'v Vft = /3eftYA VA, 

(4.3) 

V'l' Vft =jieftVA VA, 

whereji =.B or ji = -.B. In the first case, it follows immedi
ately that the inner product gflvVft v,. is constant. If the sec
ond possibility is realized, i.e., 

V'v Vft = .BeIH,A VA, 

V'v Vft = - /3el,vA VA, 

we deduce from this that the two vector fields commute: 

[V, V ll' = VV'V y Vft - VV'Vv Vft = 0, 

Furthermore, consider the unit vector field U orthogonal to 
both Vand V 
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U (1 A. 2) - 1/2 V"V- A 
J1 = - 'f/ ejLVA. , 

where 

¢=gl'''VI'Vv. 

As a consequence of the symmetry conditions for V and V, 
this vector field commutes with both V and V: 

[U'V],S = [U,V]I' =0, 

Thus the three uni t vectors VI" VI' and UI' form a triad of 
commuting linearly independent vectors. We can choose, 
therefore, a local coordinate chart (xyz), such that 

V -- ~ - a a V=-, U=-. 
ax ' ay az 

In view of the relations: 

glsvv" Vv = g"v~s V" = g"vUI' U" = 1, 

g''''U,S V" = glsvu" Vv = 0, g"VVI'V" = ¢, 

the metric tensor in this coordinate system assumes the form 

ds1 = dx2 + 2¢dxdy + dy2 + dz2. 

Thus if the manifold admits two locally symmetric vector 
fields of type 1 with [3 and - [3, then the metric can be re
duced to this form. It is easily verified that ¢ can indeed be 
chosen such that ° < ¢ 2 < 1, the manifold is of constant cur
vatureK = [32, and the two vectors a laxanda lay have local 
symmetry of type 1. It proves later more convenient to 
change to new coordinates 

x--+x+ y, 

y --+x - y, 

in terms of which all the solutions of the symmetry condition 
(4.1) can be calculated. The final result is formulated in the 
next theorem. 

Theorem 4.2: The most general locally symmetric vec
tor field of type I admitted by a manifold of constant curva
ture [3 1, [3 > 0, is of either of the two forms: 

v" = aA" + bB,s + eCI" a
2 + b Z + c2 = 1, 

(4.4) 

where (A ,B,C J and! A,B,C J are two fixed triads of ortho
normal vector fields, and a,b,e,ii,b,c are arbitrary constants. 
A local coordinate chart (xyz) exists, in terms of which the 
metric tensor is 

ds2 = cos2zdx2 + sinZzdyZ + (l/[32)dz2
, (4.5) 

and the two triads are given by: 

A = cos e ( - tgz ~ + cotz!!"') + [3 sin (J !!... , 
ax ay az 

B = sin (J (tgz ~ -- cot z ~ ) + [3 cos (J ~ , 
ax ay az 

a a 
c= ax + ay' 

(4.6) 

A = cos if(tgz~ + cotz ~) - [3 sin if~ 
ax ay az' 
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B= -( a a) -a sin (J tgz- + cot z - + [3 cos (J - , 
ax ay az 

c= a a 

ax ay' 

with 

(J = [3 (x + y), if = [3 (x - y), 

All the vectors v" satisfy 

\Iv V,l = [3e,lvA VA, 

and all the vectors v" satisfy 
- -A 

\Iv V'I = - [3 e'Ll'A V . 

Proof The line element (4.5) is indeed positive definite, 
and direct calculation reveals that it satisfies 

Rl'v = - 2[32g'11" 

i.e., it describes a manifold of constant curvature. It follows 
from the isometry of all manifolds of the same dimension 
and the same curvature that for a three-dimensional mani
fold of constant curvature [3 Z a local coordinate chart (xyz) 
exists, in terms of which the metric tensor is given according 
to (4.5). Employing the sign convention 

e l23 = g liZ = + [3 cosz sinz, 

it is easily verified that the two triads (A,B,C J and IA,B,C J 
have, indeed, local symmetry of type 1 with constants + {3 
and - {3, respectively. 

Conversely, suppose that u's is a locally symmetric 
vector field of type 1, with associated constant + [3. Since 
the inner product of vector fields of type 1 having the same 
associated constant are constant, it follows that (U,A ), 
( U,B ), and (U, C) are constants. Hence, U

" 
has the first 

form of (4.4). Similarly, if the associated constant of u" is 
- {3, then U,I has the second form of (4.4). 0 

We turn now to the case of locally symmetric vector 
fields of type 2. Again we have to distinguish between mani
folds of positive and negative constant curvature. For a 
manifold of positive constant curvature [3 z, it is conve'lient 
to use the coordinates (xyz) of theorem 4.2. The metric ten
sor is given by (4.5), and it is possible to find solutions for the 
symmetry Eq. (4.2) in a direct maner. By a tedious calcula
tion one finds the following solution: 

-- (1 - cosZ[3xcos2z)- IIZ(sin [3x cosz ~ 
ax 

1 f3' a) + - cos x Slnz - , 
{3 az 

with the associated scalar: 

a(l) = -- {3 cos {3x cosz(l - cosz {3x COSZz) - 1/2. 

Three more solutions of a similar character are obtained, and 
it facilitates the writing to express all the four solutions 
V;:') ,a = 1,2,3,4 in a uniform way, viz.: 

V;~) = (1/{3)[1 - (S(1l)2] 1/25«1),,
1 

(no summation over a), where the four scalars 5 (a) are given 
by: 

Elhanan Leibowitz 1146 



                                                                                                                                    

5(1) = cos fJx cosz, 

5 (2) = sin fJx cosz , 
5 (3) = cos fJy sinz , 
5(4) = sinfJy sinz. 

These vector fields satisfy: 
" Via) = a(a)(g _ v(a)v(a» 
v '\' fl J-lV f-l v' 

with 
ala) = _ fJ5 (a) [1 _ (t (a»2] - 112. 

(4.7) 

Any three of the four vectors are linearly independent, and 
none of the four is a linear combination with constant coeffi
cients of the remaining three. Furthermore, the conditions 
for local symmetry of type 2 in three dimensions are analo
gous to the conditions for second order local symmet~ in 
higher dimensions. Theorem 2.3, therefore, together wlth 
the remarks following its proof, can be consulted to conclude 
that there exists an infinite number oflocally symmetric vec
tor fields of type 2. It can be shown (the details will be pub
lished elsewhere) that a process of generating more vectors 
out of these four along the line of theorem 2.3 does, in fact, 
exhaust the set of locally symmetric vector fields of type 2 
admitted by the manifold. The precise meaning of this state
ment is contained in the following theorem, which gives also 
a summary of the foregoing discussion. 

Theorem 4.3: A three-dimensional Riemannian mani
fold of positive constant curvature fJ 2, fJ > 0, admits two two
parameter congruences of locally symmetric vector fields of 
type 1, and a four-parameter congruence oflocally symmet
ric vector fields of type 2. A local chart of coordinates 
(X

I
,X

2
,X

3
) = (x,y,z) exists, in terms of which the metric ten

sor is given by (4.5), the two congruences oflocally symmet
ric vector fields of type 1 are given by (4.4) and (4.6), and the 
locally symmetric vector fields of type 2 are given by 

Vll (C) = N (C) 5 (C}p , 

where C = (C( I) ,C(2) ,C(3) ,C(4» are four arbitrary real num
bers, 5 (C) is a scalar defined in terms of the scalars (4.7) as 

4 

5(C) = L C(a) 5 (a), 
Q=! 

and N (C) is a normalizing factor (to make V
Il 

(C) a unit 
vector). The manifold admits no other vector fields with sec
ond order local symmetry. 

The situation in the case of negative constant curvature 
can by analyzed, mutatis mutandis, by the same method, and 
we quote only the final result. 

Theorem 4.4: A three-dimensional Riemannian mani
fold of negative constant curvature - fJ2, fJ> 0, admits no 
locally symmetric vector fields of type 1, and admits a four
parameter congruence of locally symmetric vector fields of 
type 2. A local chart of coordinates (xl,x\x 3

) = (x,y,z) ex
ists, in terms of which the metric tensor is given by: 

ds2 = cosh2zdx2 + sinh2zdy2 + (l/fJ2)dz2, 

and the locally symmetric vector fields of type 2 are given by 

VIl (C) = N(C)TJ(C),11 ' 

where 
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4 

TJ(C) = L C(a)TJ(a), 
a~l 

and TJ (a) being the four scalars: 

TJ (I) = cosh fJx coshz, 
TJ (2) = sinh fJx coshz, 

TJ (3) = cos fJy sinhz, 

TJ (4) = sin fJy sinhz 

(the rest of the notation is the same as in the ~ast theorem). 
The manifold admits no other vector fields wlth second or-
der local symmetry. . 

For completeness we add the case of locally flat maDl
fold, which was excluded in the preceding theorems. The 
following result is immediately obtained, 

Theorem 4.5: The most general second order locally 
symmetric vector field admitted by a locally flat three-mani
fold with metric tensor 

ds2 = dx2 + dy2 + dz2 

is of type 2, and is given by: 

V = N[(A +Dx)~ + (D + Dy).E.. + (C +Dz) aa ], ax ay z 

where A, D, C andD are arbitrarily real constants, and Nis a 
normalizing factor, . . . . 

Returning now to the cosmologlcallmphcatlOns, we see 
that an isotropic universe allows for the various types of sys
tematic distributions of orientations throughout space, ac
cording to the sign of the curvature and the list of vector 
fields constructed above. The existence of these distin
guished but symmetric directions should in principle be de
tectable. Angles formed between axes of galaxies (and other 
celestial sources of radiation) and the line of sight are observ
able, and deviations from pure random distributions of ori
entation could be measured. Of course, to implement such 
an undertaking, a sufficient amount of data from distant ob
jects ought to be available, so as to eliminate statistically the 
impact of local fluctuations. 

v. CONCLUSIONS 

The relation between locally symmetric vector fields 
and Ricci principal directions has been analyzed. It has been 
found that a locally symmetric vector field is a Ricci princi
pal direction ifit has second order symmetry, but not neces
sarily so if it has only first order symmetry, Furthermore, it 
has been shown that if two first order locally symmetric vec
tors are admitted by a manifold, they must lie in a Ricci two
space at each point. As a consequence a bound has been set 
for the number oflinearly independent locally symmetric 
vector fields admitted by a manifold. As for linearly depen
dent locally symmetric vector fields, a procedure has been 
established for the generation of a two-parameter congru
ence of such vectors out of a given pair having second order 
local symmetry. The case of a three-dimensional Rieman
nian manifold of constant curvature, which attains special 
importance in relativistic cosmological models, has been 
studied in details. A coordinate system adapted to the sym
metric vectors was found, and the list of all second order 
locally symmetric vector fields has been explicitly construct-
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ed. Classification of these vector fields according to their 
type distinguishes between the cases of positive and negative 
constant curvature. These results, coupled with further as
tronomical observations of the orientation of matter and ra
diation fields throughout space, may shed some light on the 
question of the sign of the curvature of the universe. 
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A technique is presented using orthonormal tetrads which enables efficient algebraic 
manipulation of Einstein's equations by computer and ease of physical interpretation. The results 
are applied to the spherically symmetric case and Birkhoff's theorem is proved in the formalism. 
Several exact solutions such as Tolman's and Schwarzschild's are derived, and isotropic expansion 
of Pefect fluids considered. 

1. INTRODUCTION 

The use of tetrads has grown rapidly in the last 20 years 
in general relativity, and some of the more recent examples 
are summarized in Refs. 1-7. Some earlier work is quoted in 
these sources, particularly Ref. 5, and has been of value in 
furthering our understanding of solutions to Einstein's equa
tions. It is the orthonormal tetrad with metric components 
1Iab = diagab (1,1,1, -1) defined in a local neighborhood of 
space-time that is of interest here as contrasted to the more 
common null tetrad. Brans 1 has examined such tetrads for 
Petrov type I (general) case and looked at the integrability 
conditions by computer finding certain surprising degener
acies. Ciubotariu2 has set up an observer field in terms of 
tetrads for the Schwarzchild metric, and Koppel3 has exam
ined the gauge of tetrad potentials. Moller4 claims the tetrad 
formalism may be of value in avoiding certain coordinate 
singularities and Asgekar and DateS consider using tetrads 
for investigating a charged fluid. Mitskievic and Nesterov6 

examine the Bel-Robinson superenergy tensor and Hoense
laers 7 uses a triad system in space-times with one Killing 
vector. Here we present an examination of the spherically 
symmetric space-time using orthonormal tetrads minimiz
ing the role played by coordinates. The same format has been 
applied to unidirectional space-times Ref. 8, p. 172, and the 
stationary infinite cylinder as well as the finite stationary 
axisymmetric fluid, 9 where the equations can be placed in a 
complex notation which bears resemblance to some of the 
equations of Ernst. 10 

2. THE BASIC THEORY 

We let the indices a, b, c, d, ... = 1,2,3,4 refer to the 
orthonormal tetrad, and i,j, k, I, ... = I, 2, 3, 4 refer to some 
coordinate system, and let v~a) be the transformation coeffi
cients. Suppose, denotes frame differentiation and • coordi
nate differentiation. Let Yea) denote the ath vector field de
fined locally on some neighborhood U in space-time which 
makes up the orthonormal tetrad, v~a) being its coordinate 
components. Then v~a) ~b) gij = 1Iab where 1Iab 

= diag"b (1,1,1, -1) is the frame component representa
tion of the metric tensor. Since the Yea) form a basis for the 
tangent space to space-time evaluated at each XEU we may 
write [v(a),V(b)] = Tb ca Vc where the scalars Tb ca are called 
the Ricci rotation coefficients. This Lie bracket relation is 
equivalent to V(a).b - v~b).a = Ta e b v~ which is just the inte
grability condition for the coordinate function x i since x:e 

= v;e)' In general, the integrability condition for a scalar 
function cp is CP,ab - CP,ba = Ta e b CP,e or equivalently 
<P'ji = <P'ij' Of course, <P,a = V~a)<P'i for any scalar function 
cpo 

The Ricci rotation coefficients must satisfy the Jacobi 
identity T[b a e,d J + Te a [d Tb e e J = O. Since the Tb a c are sca
lars, they must likewise be integrable, and we refer to the 
equations Tb ae,de - Tb ae,ed = Tie Tb acJ as the integrability 
conditions for the Ricci rotation coefficients. 

The symmetric metric connection L i k I = ! k j I re
ferred to as the Christoffel symbols also is represented in 
frame components as [b a c I, although this time ! b a e I 
# Lab I. They are given by [b ac I = !(Tb ac - P be - Pcb) 

where the indices are raised and lowered on the scalars Tb ac 

using the metric 1Iab or 11 ab in the usual way. Frame covar
iant differentiation is then analogously done asA a b;c = A a b.c 

+ A db! d a c l - A ad! / c I, etc. 
The Riemann tensor can then be expressed in terms of 

linear first derivative terms in Tb a e and quadratic single con
tractions of Tb a c with itself. This is given in Ref. 8, p. 142. 
The Ricci tensor, of interest here, is given by 

Rab = T(a,b) + TC(ab),c + J)Jab - !Eab +A(ab) + ~Gab 
where To = Ta bb' Bab = TCda Te db' Eab = Tca dTcbd , 

Aab = Tc TCab , Gab = T/a Tdcb , and the Einstein summa
tion conventions is followed even though these are only sca
lars. We can easily see Bab = B ba , Eab = Ebo , Gab = G ba · 

The tetrad vectors v(a) are also denoted alternately as 
V(I) = r, V(2) = s, VOl = t, V(4) = u. Their components in 
frame components are ~ = 0 °1 , ~ = 0°2 , t

a = Oa3 = ta, 

Ua = Oa 4 = - Ua • It should be mentioned that the Bianchi 
and Cyclic identities for the Riemann tensor, the Ricci iden
tities, and all local differential geometry properties are con
sequences of the Jacobi identity and integrability conditions 
for the Ricci coefficients. Thus we may write out the field 
equations, \mpose integrability and in principle, if not in 
practice, solve the problem or show no solution exists. 

3. ENERGY-MOMENTUM TENSOR 

We choose u to be the timelike normalized flow for the 
material medium. Then following the notation of Ehlers 1 1 

we write Ua;b = (Jab + {J)ab - ua ub . In frame components, 
assuming A, B, etc. = 1,2,3, cover the spatial indices only, 
we have the acceleration ua = Ta \, the deformation rate 
along the flow (JAB = T4(AB)' and the rotation between mate-
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rially nonrotating and spatially nonrotating frames along 
the flow W AB =!TA

4
B • 

The general energy-momentum tensor is given by 
"'-Tab = _ (pe2 + €)uaub _ AUaVb _ AvaU b + Tab, 

where Tab = Tba, TabUb = 0,pe2 + €>O, vavb = 1, vaua 
= O. We interpretp as mass density, € as thermal and poten

tial energy density, AVa = qa as heat flux vector of magnitude 
A and direction v", A >0. We assume the triad r, s, t is chosen 

'" so as to diagonalize the stress tensor Tab, in this case 
Tab = O"J r"rP + 0"2 s"Sb + 0"3 tat b. We call 0"1' 0"2' 0"3 the prin
cipal stresses, and with the spacelike axes oriented along the 
principal directions of stress we refer to the tetrad as an 
adapted/rame component system. The energy domination 
condition of Hawking, 12 that 0 > Tabua ub for all timelike U a 

meanspc2 + €>2A + O"max whereumax = max! 10"11,10"21, 
10"311. This guarantees that Tabub is not spacelike. It is to be 
noted that our condition that Tabua ub be negative is simply a 
consequence ofthe choice ua li

a < 0, so T~ maps future point
ing timelike vectors to future pointing timelike vectors indi
cating a positive energy and mass density, provided T~Ub is 
timelike. For any material continuum we expect a timelike 
eigenvector to exist which mayor may not be parallel to u a. 

For a perfect fluid, A = 0 and 0"1 = 0"2 = 0"3 = - P, P>O, 
P <pe2 + € will hold. 

If K = 81TG / e4 we find that Einstein's equations give us 

1 
0"1 = - - (R33 + Rn - RJI - R 44 ), 

2K 
1 - (R,3 + R JJ - R22 - R 44 ), 

2K . 

1 
- - (RII + R22 - R33 - R 44 ), 

2K 

pe2 + € = - J... (RJl + R22 + R3J + R 44 ), 
2K 

Aai = J... Ri4 , (alf + (a2f + (a3)2 = 1, 
K 

where Vi = a l r' + a 2si + a 3t i is the heat flux direction. As 
well,R

AB 
= a,A #Bwhichistheconditionofadaptedframe 

components. 
The conservation equations Tab;b = a split up into en

ergy and momentum equations in the tetrad notation. They 

are 

T/JO"I = €T/t + €,4 + (Aa /).! + Aal {T/b + T[ \], 

(pe2+€)TA\ =O"A,A +O"ATAbb -O"tTAlt 
- [A (TA4B +T4BA)aB 

+ (A 4 + A T4 11 )aA 

+ AaA
•4 ]. 

A few comments are in order here. The first equation is 
a scalar equation and the second holds for A = 1,2,3, while 
all other indices have sums, lower case from 1 to 4, upper 
case from 1 to 3. In the first equation, € can be replaced by 

2 a Of Tab a' pe + € since (Pua);a =. course, ;b = is a conse-
quence of the contracted Bianchi identity and, therefore, the 
equations above will be equivalent to integrability conditions 
for certain of the Ricci coefficients. We will see this in exam-
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pies to follow. More details are given in Ref. 8, p. 159. 

4. SPHERICALLY SYMMETRIC SPACE-TIME 

We shall illustrate this by examining the metric 

ds2 = - A (r,t )dt 2 + B (r,t )dr + e(r,t) 

X (de 2 + sin2edrp 2). 

Since this is diagonal, we simply rescale the coordinates to 
obtain the desired frame. Thus 

V~4) = A- 1, V;J) = B -l, V~2) = e - J, 

V~3) = e -- lcsc8, 

and 

r,1 = vii» 8,2 = V~2)' 1,4 = Vt4)' 

Using 

we obtain 

Tb ac = gt allb rc J + gs"Slb rc J + ds"slb Uc I 

+ dtat lb uc] + kUaU lb reJ + yr"r1b uc ] + htQt1bsc ], 

(4.1) 

where 

g=2T3\ =2T2\ = 
1 ae 

eVB ar 

d=2T/2 =2T433 = 
1 ae 

eVA at 
, 

k= 2TJ\ = 
1 aA 

- , 
AVB ar 

y= 2T4
J

1 = 
1 JB 

- , 
BVA at 

h = 2T3 32 = - 2cotB Ne. 
In (4.1) we see that h has one-, two-, and four-derivatives, 
while all other functions g, d, k, y have only one- and four
derivatives. Wewriteg,1 asg 1 ,d,4 asd4 ,h,2 ash2,etc. 

We now start with (4.1) and the above nonzero deriva
tives, completely ignoring the coordinates and the functions 
A, B, and C. The starting point now is the Ricci coefficients 
(4.1) and we simply ignore the line element ds2

• The kinemat
ics and physics can be completely described without coordi
nates and without vector or tensor fields, simply with scalars 
and the comma derivative. All physical quantities are in ca
nonical (tetrad) form, not to be interpreted through obscure 
coordinates, and describe the matter in its infinitesimal rest 
frame. 

5. THE TETRAD SOLUTION 

We apply the general method by imposing Jacobi iden
tity and integrability conditions to (4.1) and working out the 
principal stresses, heat flux, and mass and energy density. In 
order to fully determine the tetrad it may be necessary also to 
impose some form of gauge condition. The most convenient 
one the author has found so far is the differential gauge con
dition Tb a c,a = O. One can show (Ref. 8, p. 149) that the 
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formula for the exterior derivative dla I b of a one formla in 
tetrad components is 

dia I b = ia,b - ib,a - fc Ta C b ' (5,1) 

If To = To b b are considered to be the tetrad components in 
this particular frame component system of some I-form, 
then the contracted Jacobi identity can be used to show that 
dTa I b = Ta C b,c so the gauge condition is equivalent to the 1-
form Ta being closed, i.e., dTa Ib = O. Since a closed form is 
locally exact and the tetrad fields are o~y defined on neigh
borhoods, this means that a potential fl exists with 
n,a :::: na = Ta, i.e" the integrability condition is satisfied. 
for fl, which we call the basie gauge potential. For the sphen
cally symmetric case this is closely related to, but not identi
cal with the gauge potential of Sec. 7. 

In Ref. 9 Carlson shows that for perfect stationary axi
symmetric fluids, the differential gauge condition can al
ways be imposed, and although not unique, has a special 
unique integrated gauge determined by a relationship among 
Weyl tensor components in the case of Kerr and Wahlquist l

) 

solutions, Here it leads to the usual prolate spheroidal co
ordinates from the tetrad frame. Alternate gauges are con
sidered as well, and a geodesic radial gauge is used to form 
the central leading terms that exhibit Newtonian behavior. 
The differential gauge condition, however, gives the simplest 
expression for known exact solutions in its unique integrated 
form, 

Likewise we see in Sec. 7 that for spherical symmetry 
the condition Tb Gc,a = 0 is equivalent to the flow being can
onically oriented. This is not so for all solutions 14 and the 
orientations defined need not be unique, but are a restricted 
class. Thus this gauge condition is not always satisfied for 
adapted frame components, and others m~ be considered.3 

The conformally flat metric with Tb ac = ¥1,[b 8~ I does satis
fy this gauge. Now we examine the tetrad formalism. 

The calculations are straightforward but lengthy, how
ever they are much more suited to algebraic computer solu
tion than are the usual coordinate forms, where derivatives 
are required to second order and large messy denominators 
appear. The tetrad solutions in coordinate free relativity 
have been put on an algebraic computer program by the au
thor using REDUCE 2 15 and are very much superior in 
speed and compactness than corresponding coordinate 
solutions, 

In the spherically symmetric case, using (4.1) we have 
the integrability conditions 

f/J41 - f/J14 = Yf/JI 12 - kf/J4/2 

for all functions with one- and four-derivatives only, i.e., g, d, 
k, and Y, For h we have 

Y k 
h41 - hl4 = - hI - - h4' (5.2) 

2 2 

hl2 - hZI = - .Lhz . 
2 

The Jacobi identity gives us 

g4 + d l = - kd!2 -gy/2, 
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(5.3) 

(5.4) 

(5.5) 

hI =gh!2, h4 = -dhI2. (5.6) 

Now (5.6) and (5.5) imply (5,2) and using (5.3) and (5.4) we 
obtain 

h21 =gh2' hZ4 = - dh2· (5.7) 

Working out the principal stresses, etc., we obtain 

1 ( h 2 gZ 3d 2 
(7'1 = - - - 2d4 - h, + - + -

2K - 2 2 2 
-gk ). 

1 
(7'2 = (7'" = _. 2K (k l - gJ - Y4 - d4 

t k 2 y2 d 2 yd 
+2+T-2-T- 2 ~) 2 ' 

_ ~ ( _ 2g _ h, + ~ + 3~ 
2K I " 2 2 

d
2 

) - T- dy , (5,8) 

- ~(g4 -d
J 
+gd- yg + kd), ai=f, 

2K 2 2 

= - ~ ( - 2d l + gd - gy) = - ~ (2g4 + kd + gd). 
2K 2K 

The conditions «(7'J ),2 = 0 and (pe2 + £),2 = 0 of 
spherical symmetry give us 

h22 = hh2 (5.9) 

and this completes the solution for h, guaranteeing hand h2 
are integrable. 

The conservation equations of energy and momentum 
are 

d(7'2 + y~1 = (pe2 + d( d + ~) + (pel + £),4 

+1l,1 +Il(k-g), 

(pe
2 + £)~ = (7'1,l + (7'1 (~ - g ) + g(7'2 

- 1l,4 - Il (y + d), 

(5, lO) 

and these give, respectively, the integrability conditions for g 
and d. Of course, kinematically Wab = 0, zi° = (k 12)1" and 
Bab = (d 12)(sasb + tatb) + (yI2)rarb' Thus ify = d the de
formation is isotropic or shear free, In the coordinate formu
lation (Sec. 4) this means B IC is independent of t. 

If we puty = din (5.8) we see, among other things, that 
Il = dlIK. Thus, in an isotropic expansion of a spherically 
symmetric space-time the heat flux, which is radially direct
ed, is proportional to the radial derivative of the expansion 
rate. Also, the frame rotation tensor AAB = T1AB I is zero 
whether or noty = d. AAB measures the rotation rate be
tween the tetrad frame and the materially nonrotating 
frame. 

6. BIRKHOFF'S THEOREM 

In this section we look for vacuum solutions, putting 
the quantities in (5.8) to zero. We are free to orient the flow 
vector as we please, and choose it so as to make the scalar 
invariant a = C4141 have zero 4-derivative. For a spherically 
symmetric space-time, the Weyl tensor is pure electric and 
type D (or zero) and in the vacuum case a = - h2!2 
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+ h '/2 + g'/4 - d'/4. Since a=t"=O for vacuum, and 
a.4 = - (3d 12) a, the orientation condition is d = O. Hence 
A = D-g. = 0 and (5.5) impliesgy = O. But sinceg=t"=O (from 
g, equation) then y = O. 

The vacuum Eqs. (5.8) then become 

h2 h 2 3g2 

gl = - 2 + 4 + 4' (6.1) 

h2 h 2 g2 gk 
(6.2) 0=d4 = -- + - +-

2 4 4 2 

k, = -
3h2 3h 2 3g2 k 2 gk 

(6.3) -+ -- +--
2 4 4 2 2 

Now g is trivially integrable from (5.10) and (6.2) im
plies k. = 0 which together with (6.3) implies k is integrable. 
Thus the solution is time independent and without rotation 
and hence is static. 

Even if the flow vector is not oriented so that we have 
this obvious time independence, and even if y=t"=d, in the 
vacuum case we have a number of interesting relations. As 
well as a, the quantity h2 - h 2/2 = 2/C(r,t) (see Sec. 4) is 
also an invariant and a = - (m/2 112)(h2 - h 2/2)3/2 where 
m is a constant, identical with the Schwarzschild mass. Fur
thermore a = dyl2 + gk 12 

and so 

d g 
d 4 = - 2 (d - y), d , = 2 (d - y), 

g4 = - ~(k+g), gl = ~(k+g), 
2 2 

and k, - y. = dy + gk - k '/2 + y'/2. These relations are 
useful for placing the Schwarzschild solution in other than 
the canonical tetrad frame for matching on the boundary to 
various interior solutions. 

1. THE SCHWARZSCHILD SOLUTION 

In this section we shall solve for the above vacuum solu
tion in the unique canonically oriented isotropic frame, 
which makes all four-derivatives zero. We say the flow vec
tor in a spherically symmetric space-time is canonically ori
ented if the gauge condition y I = k4 is satisfied. This means 
there exists a gauge potential fl with fl, = k, fl4 = y, since fl 
is integrable. In terms of the coordinate functions, A, B, and 
C, this means that AlB = F (t )G (r), a factorization, since 
fl = InA + f(t ) = InB + g(r). We can then readjust coordi
nates r----+fk), l-.f2(t) so as to make A = B. Thus the flow is 
oriented so as to make the conformal flatness of the two
space part of the metric in Sec. 4 obvious. It is a restricted 
class of orientations, not unique. 

If we impose this condition, plus y = d in the vacuum 
case, we obtainy = d = 0 and all four-derivatives zero as in 
the first part of Sec. 6. The equations we obtain are 

h 2,..2 h 
h2 = -+ ~-gk, h = L (7.1) 

2 2 '2 

g2 gk k 2 

gl = 2+ 2' k, = - 2+ gk. (7.2) 

Because Ta 'h = 0 (since y = 0) we see that the one-
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form ra has zero exterior derivative, i.e., dra1b = 0 from 
(5.1). Thus there exists a local metric radial coordinate x 
withxa = ra andip, = dipldx for any ip. Thefunctionsgand 
k depend only on x so the pair (7.2) can be solved. 

To solve (7.2) we change variables to separate putting 
U = kg and V = gllk, so dU Idx = ~kgl and dV Idx 
= W. Hence dU IdV = k = U 2I3 v -1/3 so integration 

gives2U I/3 = V 2l
' + eforconstante = - (2Im)2!3, where 

m is Schwarzschild mass. We take 

~~ = ~ U 4/3(2U I
/3 + (~yI3)1I2, 

and substituting U = -4mlr 3 we obtain 

~ = (1 _ 2m)1/2, 
dx r 

and 

x = mcosh -I(rlm -1) + (r -2mr)1/2. 

We call r the Schwarzschild coordinate, Now 

V = (2/m)(1 - 2mlr)3!2, 

and so 

k = (2mlr)(1 - 2mlr) - 112, 

and 

g = - (2/r)(1 - 2mlr) '12. 

Now 

so 

h = -2(cotB Ir), 

where B.b = (l/r)sb' Going back to A, B, C in Sec. 4 we find 

ds2 = - (1 - 2mlr)dt 2 + (1 - 2mlr) -Idr 

+ r(dB 2 + sin2Bdip 2). 

The beauty of this is that it is not necessary to ever go 
back so far as to work out the metric in coordinates, and 
physical behavior can be inferred by simple equations such 
as (7.2) with their solutions. 

8. THE TOLMAN SOLUTION 

It is possible to show in this tetrad formalism that for 
spherically symmetric dust, the flow is canonically oriented 
(i.e., y, = k.) if and only ifthe deformation is isotropic y = d. 
Under these conditions we obtain the constant density con
formally flat solutions of Tolman, which are the zero pres
sure special cases of the Robertson-Walker perfect fluid so
lutions. They are the only members of this class of solutions 
which can be matched to an exterior Schwarzschild solution 
using Lichnerowicz boundary conditions. \6 

Puttingy = d and (7, = (7, = (7] = - p = 0, A = 0, the 
conservation Egs. (5.10) give the relations (pe2 + E).4 

= - (3d 12)(pc2 + E) = - B(pe2 + E), B = e;;, and k = 0 
(i.e., zero acceleration in rest frame). These automatically 
imply g and d are integrable. For convenience we put 
F = 2K(pe 2 + E) to represent matter and energy density. 
Now k = D-k. = O----+d, = 0 (by Gauge)----+A = O. Also 
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k, = 0 gives 

3gZ 3d Z 

2+ -2-' 

so a = 0 (conformally flat). Also 

h Z _ dg 
gl =hz --, g4 = 

2 2 

d4 = 
h2 h Z ~ 3d z 

--+ -+ --
2 4 4 4 

We have, of course, 

gh dh 
hI = 2' h4 = - "2' 
hZI =ghz, h24 = -dhz , h22 =hhz· 

We can check that F 4 = - (3/2)dF as expected, but also 
that F.I = 0, so the d~nsity is a constant radially. Thus this 
would make a reasonable spherical cosmological model 
(d] = 0, FI = 0). We get the pair of equations 

F d 2 3 
d4 = - -- -, F4 = - -dF, (8.1) 

6 2 2 

which contain all the physics of the problem. Since Ta \ = 0, 
i.e., k = 0 we have dU a 16 = 0 so there exists a local metric 
time coordinate 7 with 7.a = - Ua = 84

a , qJ4 = dqJ Id7 for 
any qJ. Thus d and F are functions only of 7. 

To separate variables in (8.1), introduce U = d 31 F so 

dU d 2 dF 3 
- = - - and - = - -dF. 
d7 2 d7 2 

Dividing and integrating we obtain F = (3/2)d Z + CF ZI3 

for some constant C. If C> 0 we have an elliptic solution 
with ultimate gravitational collapse in finite time, C = 0 
parabolic, and C < 0 hyperbolic, where the universe expands 
to infinity with energy to spare. The complete Robertson
Walker solutions can be handled very simply in the tetrad 
notation (including pressure) by the omnidirectional and 
unidirectional conditions (Ref. 8, pp. 167 and 172), though 
we will not give the solutions here. 

9. SCHWARZSCHILD'S INTERIOR SOLUTION 

In this section we shall consider static solutions in a 
frame with y = d = 0, and all four-derivatives zero. For a 
perfect fluid we put (71 = (72 = (73 = - P = - /12K and 
pe2 + t = F 12K, A = O. Hence we obtain, writing prime for 
one-derivative, 

f' = - ~(f+F), 
2 

3 F k 2 

k'= 2/+ 2- 2+ gk, 

, / F g2 gk 
g = 2+ 2+ 2+ "2 

(9.1) 

This system of three equations can be reduced to two if de
sired. We can see that (1nlf + gk - !g 21)' = g = -2(1nr)', 
where the radial coordinate r replaces the metric coordinate 
x so that r' = drldx = - gr12, h = - (2/r)cot8, 82 = 1/r. 
By appropriate boundary conditions at the center of the 
sphere (Ref. 8, p. 236) we obtain/ = - gk + ~ 2 -2/rz and 
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eliminatingJ, (9.1) becomes a set of two equations for k and g 
derivatives with respect to r. 

Let us look for conformally flat interiors. Now 
a = C4141 = /12 + F 16 + gk 12, and putting a = 0 we ob
tain F = -3/ -3gk ....... r = 0 so F (the density) is constant. 
We eliminate/to obtain 

k' = _ ~ _ gk, g' = F + ~. (9.2) 
2 2 3 2 

The boundary conditions on g require g to become infinite 
and behave like -2/x (or -2/r) near x = 0 (Ref. 8, p. 
236). Thus integrating gives g = - (~F)1/2 cot 
[(2F)I12 (xI2)]. From r' = - grl2 we get r = (2/(W)1/2) 

3 

sin [GF) 112 x12], since r - x near x = O. 
Putting U = kg we obtain 

dU dx 
=--, 

(F 13)U - U 2/2 g(x) 

and integrating with k (0) = 0 we obtain k and/from 
/ = - F 13 - gk. In terms of r this gives 

g= _ ~(I_F:yI2, 

aFr 
k=--------

3[I-a(l-FrI6)1I2] , 

/= 

where 

- F + 3Fa(1 - Fr16)112 

3[1 - a(1 - FrI6)1I2] 

10 +F 13 
a= , 

/0 +F 

(9.3) 

and wherelo = /Ix ~ 0 (central pressure). Now/ = 0 at 
r = ro, the point of application of Lichnerowicz boundary 
conditions, and ro = 61 F - 21 (3a 2 F), ~ > a > 1- Matching 
conditions give Schwarzschild mass m = F~/12 
= 11T~(pe2 + t)(G le4

) using F = 2K(pe2 + t) and 
K = 81TG Ie 4. Now 

1 ac k= 
g= - CYB Jr' 

2cotO 
h=-yC' 

1 aA 
AYB ar 

soC=r 2,B=(l-FrI6)-I,A = [1-a(I-FrI6)112]Z. 
Thus we obtain the metric as 

(9.4) 

The junction requirements are imposed across the/ = 0 sur
face so that g, k are continuous and this implies h is 
continuous. 

10. ISOTROPIC EXPANSION OF PERFECT FLUIDS 

A general spherically symmetric time-dependent per
fect fluid has A = 0, (7\ = (72 = (73 = - P = - /12K and 
pc 2 + t = F 12K so from (5.8), 

3d 2 gk 

4 2 
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d, = ~(d - y), d 
g4 = - 2(k + g), 

2 

F h2 h 2 3~ _ d 2 dy 
(10.1) g, =-- -+ -+ 2' 2 2 4 4 4 

k, - Y4 = L+ F h 2 ~ d 2 
-- h2 + - +--

2 2 2 2 2 

(h] - ~) = -d(h2 - ~). 
242 

Integrability for g and d give conservation equations 

F4 = - (d + ~)U + F), I, = - ~ U + F). (10.2) 

The Weyl tensor component a = C4'4' is given by 

F h2 h 2 ~ d 2 

a= 6- 2+ 4+ 4"- 4' (10.3) 

and satisfies 

a,4 = - 3~a + (d ;;,y) U + F), 

(10.4) 

3ga F, 
a,1 = -2-+ 6 

The objective in solving (10,1) is to find explicit expres
sions for the unknown derivatives such as to satisfy the gen
eral integrability conditions rp14 - rp41 = (y12)rp, 
- (k /2)fP4 for all the Ricci coefficients. This permits the 

equations to be integrated. 
To do this, conditions may be imposed. If we require 

isotropic expansion y = d, dynamic motion d i= 0 and ca
nonical flow (i.e., Gauge condition) then a = 0 and the 
space-time is conformally flat, so by (10.4) F, = 0, i.e., the 
density is radially constant. This is seen by imposing integra
bility for k. Ifwe require, on the other hand, the existence of 
a one parameter equation of state I = I(F),J' = dl I dF so 
I, =f'Fl,h =f'F4 ,J" = d 21 IdF 2, etc., then from (10.2), 

14 = - 1'( d + ~)U + F) and Fl = - 2> U + F). 

(l0.5) 

Imposing integrability on/(equivalently on F) gives 

0= - d+ - -U+F)-I - -(gd-gy+y,) k ( y )(/" ') I' 
2 2 I' 2 

k4 ky +-+-. 
2 4 

This equation involvingYl and k4 can be combined with the 
one in (10.1) for kl - Y4 imposing integrability on k andy 
and solving, in general quite difficult to do. If we impose the 
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added condition y = d (isotropic expansion) then 
k4 = - kdt/J/2wheret/J = 1 +3[(r /f')U + F) - f'].Also 
kJ = 3a - (k /2)(g + k), so integrability for k gives 

0= _J-(t/J-2)a+k2 -U+F)--( til tP) 
2 4/' 2 

for d*O, and this means a/k 2 is a function of F. Imposing 
this condition, i.e., (a/k 2) 1 F4 = (alk 2) 4FJ 

we obtain 

I+F ---
12af' 

is a function of F, or equivalently fg + (Ina)., 11k is a func
tion of F. Repeated applications give new successive con
straint conditions, the apparent implication being that no 
solution is possible unless a = O. This is the content of a 
theorem proved by Mansourjl7 and Glass. ls It states that for 
isotropic expansion y = d subject to dynamic motion d*O 
under a barotropic equation of state, the only solution 
matching an exterior Schwarzschild is the Tolman dust 
solution. 

It is possible to obtain solutions for y = d (isotropic ex
pansion) that is B (r,t )/C (r,t ) is independent of t, and the 
coordinate r may be chosen so that this ratio is 1/ r 2. A sum
mary of such solutions is given by Chakravarty et al. 14 It is to 
be noted that for these the flow is not canonically oriented 
nor are they subject to a barotropic equation of state. 

We can see that if y = d and F, = ° then (10.4) and 
(l0.1) imply al(h2 - h 2/2)3/2 is a constant. This is related 
to the "gravitational field energy" discussed in Ref. 18, 
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In a previous paper we studied a set of origin point data that was invariant under three
dimensional rotations. This data, however, was not, in general, invariant under spatial inversions. 
We can obtain another set of data from the original data by performing a spatial inversion. Both 
sets of data can be incorporated into aesthetic field theory without compromising the basic ideas 
of the theory, by introducing complex fields. It is found that this combined set of data leads to 
computer solutions only slightly more complex than the corresponding real case. 

I. INTRODUCTION 

Field equations have been formulated based on math
ematically aesthetic ideas. 1.2 All orders of derivatives of the 
fields as well as all tensors are treated in a uniform manner 
with respect to their change. 

The aesthetic field equations yield different sorts of so
lutions depending on their origin point data. We have ob
tained a two-particle solution and have studied a scattering 
of the two particles. 3 We have found sine, cosine solutions 
analytically.4 These latter solutions are exact for certain ori
gin point data. Other choices of origin point data lead to 
constant r Jk. Some other solutions can be shown to be un
bounded.5 Still other solutions are more difficult to analyze 
on the computer. Numbers get very large so it is not clear 
whether singularities are developing or if we are just dealing 
with large numbers. 

At any rate, it is clear that solutions of the aesthetic field 
equations depend on the origin point data. The question then 
is what sort of criterion should be used in order to obtain a 
satisfactory set of data. 

II. CHOOSING ORIGIN POINT DATA 

We have taken two points of view in the past: 
(1) We have initiated searches for a general set of r~y 

that obeys no tensor restrictions other than integrability. It is 
not easy to prove that a r ~y does not obey any set of tensor 
relations, since there are an infinite number of tensor restric
tions that can be obtained by taking products and contrac
tions of expressions involving the fields. To implement this 
program we have looked for r&y with no restrictions in 
mind at the outset. All manner of solutions to the integrabi
lity equations have been pursued. 

(2) Our second viewpoint is motivated by the notion 
that not only should the field equations be formulated ac
cording to mathematically aesthetic ideas, but the origin 
point data should also be subject to aesthetic considerations. 

Basically, the idea we have pursued in this context is 
that there should exist coordinate transformations that do 
not affect the nature of the solution. 

An example of this approach is given in Ref. 2. For 
nonzero r &r we take 

r:o =r~o =r~o =r~ =rbl =r62 =r63 =A, 
r~1 =r~2 =r~3 = -B, 

ri3 =r~1 =rj2 = -ri3 = -ri2 = -r~1 =c. 

(1) 

For any choice of A, B, and Cthe integrability equations 

A ~kpl= r'",kR mjpl + rjmR mkpl - r;R impl = 0 (2) 

are satisfied. For A = B = C we find 

R~=Q rn 
We have investigated the data for various choices of A, B, 
and C and found similar results. (This was true as long as A 
and B had the same sign. If A and B have opposite signs we 
have not been able, in the cases observed, to observe boun
dedness in axis runs.) We have chosen, A, B, and C to have 
same order of magnitude so as not to lead to any more errors 
than is necessary. Some investigations of a possible pro
nounced magnitude effect were looked for, but not found as 
yet. 6 The set of data (1) leads to maps a bit less complex than 
those found in Ref. 3. The x, y planar maps show only 2 
planar maximum and minimum while those in Ref. 3 show 3 
and 4. 

What makes the data (1) so interesting from a group 
theory point of view is that thisr~y is unchanged by a three
dimensional rotation. Thus we see that such a symmetry 
requirement is a powerful restriction on the nature of the 
origin point data. 

We have also investigated a r ~y that is unchanged by a 
Lorentz transformation in Ref. 7. This was a somewhat more 
unnatural situation since it led to a five-dimensional theory. 

A limitation of our results using data (1) was that the 
fields went to zero far away from the two particles in what 
appears to be an uninteresting way. A realistic solution 
would be expected to give many particles and not just two. It 
is possible that with greater distances from the origin more 
structure could develop, although we have yet to see any of 
this. 

Our aim at this point is to find more complicated solu
tions, by one way or another, to the aesthetic field equations, 
assuming that such complicated solutions to the equations 
exist. 

Writing 

(4) 
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we note that even when r py is invariant under three-dimen
sional rotations r;k is not in general. The symmetry is thus 
an underlying one. However for various choices of A, B, and 
C in (1) the character of solutions was similar for different 
general choices of ea 

j in all the cases we investigated. 

III. SPATIAL INVERSIONS 

We have concerned ourselves thus far with three-di
mensional rotations. What we have not looked into pre
viously is the effect of spatial inversions. We can bring in 
spatial inversions by using 

(

-1 

(eo,) ~ ~ 
o 

-1 

o 
o 

o 
o 

-1 

o 

(5) 

in Eq. (4). We see that rpy in (1) is not invariant under this 
transformation. We obtain from (1), using (4) and (5), 

r l -r2 -r3 r o r l r 2 r 3 A 10 - 20 - 30 = 00 = 01 = 02 = 03 = , 
r~1 =r~2 =r~3 = -B, (6) 

r~3 =r~1 =r~2 = -r~3 = -rf2 = -r~1 = -CO 

Thus, only if we choose C = 0 at the outset would the data be 
invariant under rotations and inversions. 

We have investigated C = 0 theory and found similar 
type maps as when C #0. The restriction C = 0 implies that 
gaOr':", has no totally antisymmetric part when 

~~)~G ~ : D <n 

C = 0 theory means that r py has no nonzero components 
with the indices a, p, and r all taking on different values. We 
note that in our sine, cosine solution4 such components 
played an important role. 

The question then is whether we can satisfy the basic 
equations of aesthetic field theory and at the same time intro
duce both data (1) and (6) into the theory, such that both sets 
of data playa role of equal stature. 

There are several ways to proceed at this point. What 
we need is a scheme that allows for some kind of doubling. 

We note that in Dirac theory a doubling is necessary in 
going from the Pauli equation to the Dirac equation in order 
to take into account the existence of antiparticles. We should 
then look into various ways that a doubling can be discussed 
within aesthetic field theory. 

Doubling to dimension eight was considered in Ref. 5. 
There we considered a 4 $ 4 structure. Then we allowed cou
pling between the subuniverses by means of a general eight
dimensional ea

j • A problem in such a theory is to prove the 
"integrity" of the subuniverses. We would have to show that 
the coupling between the subuniverses remains small in 
some sense so that an observer would find himself restricted 
to one of the subuniverses. We have yet to be able to prove 
that this is the case. Also, comparing results in the eight-
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dimensional theory with a four-dimensional theory used as a 
control, we did not see significant changes in the nature of 
the results. 

Another possibility is to take a 3 $ 3 theory with a single 
time coordinate (rather than the two times in eight-dimen
sional theory). Thus we effectively have a seven-dimensional 
theory. Our nonzero r ~y was then 

r:4 =r~4 =rj4 =r!4 =r!1 =r~2 =r~, =A, 

ril =r~2 =rj3 = -B, 

rt3 =r~1 =r~2 = -r~3 = -r~2 = -r~1 =C, 

r~4 =r~4 =r~4 =r~5 =r~6 =r~7 =A, 
r~5 = r~6 = rj7 = - B, 

(8) 

r~7 = r~5 = r~6 = - r~7 = - r~6 = - r~5 = - c. 

Thus the data for the three-dimensional subuniverse is the 
spatially inverted data of the other three-dimensional subun
iverse. The common fourth coordinate is the way that the 
two subuniverses are coupled. The problem that we have 
encountered with respect to data (8), is that integrability is 
not satisfied. As integrability is a basic requirement in aes
thetic field theory we have not pursued the data (8). Note in 
Ref. 8 we have investigated a theory not based on integrabi
lity. However, we feel that dropping this restriction would 
make the theory rather unnatural. 

We have not been able to find an interesting set of data 
to study in the seven-dimensional theory so we will turn to 
other considerations. 

IV. COMPLEX FIELDS 

There is another approach we can take toward combin
ing (1) and (6) into aesthetic field theory without the necessi
ty of bringing in higher dimensions. We can allow the fields 
to be complex. We note that the aesthetic field equations can 
be obtained in exactly the same way as in Ref. 2, whether or 
not the change function is real or complex. The basic equa
tions thus have the same form. We can think of the introduc
tion of complex fields as a mathematical tool that enables the 
aesthetic principles of treating higher derivatives of the field, 
as well as all tensors in a uniform way (with respect to 
change), to be satisfied and still we can make use of both the 
origin data (1) and (6). Thus we can use aesthetic principles 
towards assigning the origin point data while not compro
mising the other aesthetic ideas in the theory. 

We write 

(9) 

with A fk and B fA real. We choose the real part of r~)' to be 
the data (1) and the imaginary part of r~y to be the data (6). 
For simplicity we shall take 

A =0.1, 

B=O.I, 

C= 0.1. 

(10) 

The R lkl = 0 integrability equation is then satisfied for ei
ther data (1) or (6) when taken by itself-but when we com-
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bine the two sets of data via complex fields this is no longer 
the case. This is because our equations are nonlinear and the 
real and imaginary parts are coupled. Thus we are again in 
danger of not having a theory consistant with integrability. 
However, we shall find that the integrability equations (2) 
are satisfied in this case. The basic field equations are as 
usual 

arlk . . 
--+ rj~r'm, - r'mkr'fl- rJmr7:, = o. 

ax' 

But now r lk is complex. R limk is defined by 

I ar:k ar:m · . 
R imk = -- - axk - r~mr5k + r~kr5m . 

axm 

Using the field equations (11), R \mk becomes 

(11) 

(12) 

R l
imk =r:jrtm -r~r~nk +r~mrlk -r~kr5m' (13) 

Using (9) we see 

ReR limk = A :jA tn - B ~Bjkm - A ~A jmk + B ~Bjmk 

+A~mA;k -B~mB;k -A~kA5m +B~kB;m 
(14) 

and 

ImR limk = A :jB)km + B ~A jkm - A ~B~k - B ~A jmk 

+A~mB;k +B~mA;k -A~kB;m -B~kA5m . 
(15) 

Choosing e"i = f>f (R limk = 0 is independent of the choice of 
e'\ so long as it is not singular), we see for A lk given by (1) 
and B;k given by (6) that (14) is zero but (15) is not. Then 

R limk = ReR limk + i ImR timk (16) 

is not zero. 
However, from (2) we can calculate ReA ijkpl and 

IrnA 'jkpl for the data (1) and (6). The results of the calcula
tion show that both real and imaginary parts of A ilk pi are 
zero. Hence we have 

A }kpi = O. (17) 

Thus the fields r lk are integrable. That is, the mixed deriva
tives of all fields constructed from r lk (including contrac
tions) are symmetric. Furthermore, equation (17) is main
tained by a complex e"i transformation. 

Putting (9) into (11) and separating the real and imagi
nary parts yields 

+Bjm A 7:, -AJkB~I-BJkA'mI' (19) 

These equations were then programmed for the computer. 
We were unable to sum an infinite series of corrections as we 
did in Ref. 9, so instead we employed a fourth order Runge
Kutta method. The field equations maintain the integrabi
lity equations at all points which, as in our previous work, 
gives a check on the reliability of the numbers coming off the 
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computer. 
If we consider a real quantity at the origin we note, 

because the change function r Jk is complex, the real quanti
ty no longer remains real as we move away from the origin. 
On the other hand A Jk and B Jk are defined to be real, so they 
remain real, as is evidenced from the right-hand side of (18) 
and (19). 

If B lk = 0 the theory collapses into what we have con
sidered before in Refs. 1 and 2. The question then is whether 
the introduction of B lk leads to new types of effects or not. 

v. COMPUTER RESULTS 

We investigated Eqs. (18) and (19) on the computer. We 
used the following ea

i 

with 

fll= 
f21 = 
f3 1 = 

fOI = 

and 

hll = 
h 2

1 = 
h 3

1 = 
hOI = 

0.88, 
0.5, 
0.2, 

-0.16, 

0.3, 
-0.24, 

0.13, 
0.05, 

f l
2 = -0.42, 

f22 = 0.7, 
f3 2 = -0.55, 
fOz = -0.35, 

h IZ = -0.2, 
h 2

2 = -0.16, 
h 32 = -0.26, 
h02 = 0.1, 

h 13 = 
h 23 = 
h 33 = 
h03 = 

-0.32, 
-0.425, 

0.89, 
0.28, 

0.11, 
0.09, 
0.31, 

-0.26, 

(20) 

flO = 0.2, 
Po=0.3, 
f30 = 0.6, 
fOo = 1.01, 

(21) 

h 10= 0.15, 
h 2

0 = 0.07, 
h 30 = -0.086, 
hOo = -0.31. 

(22) 

Rerer was taken to be (1) and ImF er was taken to be (6). 
We compared the results with the case when ImF ey and h a i 

were taken to be zero. 

The results are as follows. For the noncomplex theory 
there were two turnabout points on the x axis for r : 1 , and 
one planar maximum and one planar minimum. In the com
plex theory the number of turnabout points for A : 1 along 
the x axis was now 4. For the z = 0, t = 0 map we saw again 
one planar maximum and one planar minimum. There is 
thus a slight overall increase in complexity but nothing we 
have not seen before. A ~3 was also studied. It showed one 
planar maximum and one planar minimum. We found no 
new structure after long runs made from the origin in any 
case. It is quite remarkable that r lk --+0 at infinity since this 
is not an input into the theory. However, we have not yet 
been able to obtain a many body system in our work. 

We considered other sets of data as well. We considered 
the following 

r~3 =r~1 =ri2 = -r~z = -r~1 = -ri3 =0.1, 
(23) 

with the other rey = O. We also considered the case when 

r~3 =rio = -rio = -ri3 =0.1 (other rer =0) 
(24) 

and the case 

r~3 =rio = -ri3 = -rio =0.1 (other rer =0). 
(25) 
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Equations (23) - (25) would each lead to a constant r}k if 
the theory were real. Each of the sets (23), (24), and (25) were 
taken together with (6) (A = B = C = 0.1) to form a com
plex theory. The results are not very different from the case 
of data (1) taken with data (6). 

We have also found in all the cases above the B)k be
haved similarly to A }k' 

VI. CONCLUSIONS 

We have found that the complex theory used with the 
group theoretical data has led to only slightly greater com
plexity as compared to the case of data (1) alone. We have 
not observed new effects not previously observed. However, 
the complex theory gives us more parameters at our disposal 
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and it is not clear that the new effects cannot be obtained for 
some other, as yet untried, data. We have seen that with the 
complex theory we can find, without too much difficulty, 
solutions to the integrability equations, and thus solutions to 
the aesthetic field equations exist (at least locally). 
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A systematic study of spherically symmetric space-times with vanishing curvature scalar R is 
undertaken. The solutions of the equation R = 0 are classified according to the number of 
different eigenvalues of the Ricci tensor R/3 (which for spherical symmetry necessarily possesses 
one double eigenvalue) as well as to the vanishing or non vanishing of the conformal curvature 
tensor. The case of conformally flat spherically symmetric solutions is fully integrated, as well as 
the case of one quadruple or two double eigenvalues. For the case of one triple and one single 
eigenvalue various classes of solutions are obtained, and for that of one double and two single 
eigenvalues a number of particular solutions with two free functions of one variable are found. It is 
noted that the methods developed in this paper allow the full integration of the case of plane 
symmetric solutions of R = O. 

I. INTRODUCTION 

In this paper we study spherically symmetric solutions 
(s.s.s.) of the equation 

R = 0, (1) 
where R is the Ricci scalar of the four-dimensional pseudo
Riemannian metricga{J' Spherical symmetry is defined here 
by the vanishing of the Lie derivative of the components of 
the metric tensor with regard to the generators of the rota
tion group O(3,R ).1.2 This problem is of course of intrinsic 
mathematical interest. Our own interest arose in the course 
of a larger program aiming to establish whether, in the 
framework of Riemannian geometry, Einstein's theory of 
gravitation is the only one derivable from a variational prin
ciple which admits Birkhotrs theorem.3

.
4 This theorem 

states that the vacuum field equations of Einstein's theory 
are satisfied by a unique one-parameter family of s.s.s.; these 
are static (outside the horizon) and asymptotically flat. If a 
theory of gravitation does not allow Birkhotrs theorem, the 
description of isolated gravitating systems meets with 
difficulties. 5

.
6 

Any solution of Eq. (1) solves also the field equations 
following from the Lagrangian ( - g)1/2R 2, i.e., 

2g""R;u U _ 2R;'"" - 2RR 1''' + ~VR 2 = 0, (2) 

where R I'v is the contracted curvature (Ricci) tensor, g is the 
determinant of the metric, and the semicolon denotes covar
iant differentiation. Every conformally flat solution ofEq. 
(1) satisfied the field equations following from the Lagran
gian ( - g)1/2R a{JRa{J 7: 

-2RI'URVu +~VRUTR<7T =0. (3) 

The field equations following from the Lagrangian 
( - g) 1/2Ra{Jy/jR af3y/j (where Ra{Jy/j is the Riemann-Christof-

")Research supported in part by Grant No. 77-28356 of the National Sci
ence Foundation and through the award of a study leave for 1978-9 by 
Temple University. 

fel curvature tensor) are a linear combination ofEqs. (2) and 
(3). 8 Therefore, any linear combination of the above three 
quadratic Lagrangians leads to a field equations which is 
solved by every conformally flat solution of Eq. (1). Because 
of the multiplicity of such solutions (see Sec. III) no such 
field equation admits a Birkhoff theorem. 6 Of course, any 
Lagrangian ( - g)1/2f(R ) wherefis a polynominal not con
taining terms independent of or linear in R also leads to a 
field equation which is solved by any solution ofEq. (1) and 
thus also does not admit a Birkhofftheorem.6 

We were further motivated to look into the s.s.s. of Eq. 
(1) by the fact that this equation seems to be the weakest 
possible vacuum field equation of any theory of gravitation 
in the framework of Riemannian geometry, e.g., Eq. (1) con
tains Nordstroms gravitational theory, for which we display 
all s.s. vacuum solutions. In general, all s.s. Einstein-Max
well fields and null fluids are to be found among the solutions 
ofEq. (1). 

The generic s.s. metric contains two free functions of 
two variables and leads to two independent curvature invar
iants of order 2: the Ricci scalar R and the conformal invar
iant C: = GCa{Jy/jca{Jyb)1/2, where Ca{JYD denotes the confor
mal curvature tensor.9 Thus, Eq. (1) will lead to a (coupled) 
system of two nonlinear second-order hyperbolic partial dif
ferential equations with one free coefficient function C (of 
two variables). Obviously, such a system cannot be expected 
to yield to a complete integration in terms of known func
tions or their integral representations in general. Neverthe
less, below we do give the generic solution ofEq. (1) in the 
case C = 0 and for a specific one-parametric family of values 
C #0, # constant. In both cases, it depends on two arbitrary 
functions of one variable each. We also give the general solu
tions in the case C #0 whose Ricci tensor has either one 
quadruple or two double eigenvalues. They also contain up 
to two free functions, but now of the same variable. 

After some general remarks in Sec. II, in Sec. III we 
give the generic conformally flat s.s.s. ofEq. (1) and discuss 
its subclasses according to the eigenvalue structure of the 
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Ricci tensor. In Sec. IV two classes of S.S.s. with non vanish
ing conformal curvature tensor are displayed. In Sec. V a 
different canonical form for the metric is used to derive other 
classes of 8.S.S. of Eq. (1) of the same generality as those 
found in Sec. IV, which do not entirely coincide with them. 
The equivalence problem has not been tackled in general, 
however. Section VI is concerned with conformal mappings 
used for the generation of new s.s.s. of Eq. (1) from those 
already known, and our results are summarized in Table III 
and discussed in Sec. VII, where we also note the complete 
solution ofEq. (1) for the case of plane symmetry. 

II. METHODS OF SOLUTION AND BASIC FORMULAS 

We use two methods for obtaining S.S.s. ofEq. (1): (i) 
direct integration and (ii) generation of new solutions by 
conformal mapping from those already known. 

Unfortunately, for the direct integration, the use of a 
single form of the metric tensor may not suffice to produce 
the optimal set of solutions. We use the following canonical 
forms: 

ds" = z\u,v)[2eW (U,V)du dv - dfJ 2], 

ds2 = cV,t )dt 2 - a4(r,t )(d,z + ,z dfJ 2], 

ds" = F(u,r)du 2 +2du dr -,z dfJ 2, 

(4) 

(5) 

(6) 

where dfJ 2: = de 2 + sin2e dcp 2 is the surface element of the 
unit 2-sphere. Any s.s. metric can be brought into either 
form (4) or (5),10 while Eq. (6) is especially suited for metrics 
whose Ricci tensor admits two double eigenvalues. 11 The 
main advantage of the canonical form (4) is that it allows a 
linearization ofEq. (1); it also facilitates the discussion of s.s. 
metrics of Takeno type S2' 

Obviously, coordinate transformations of the form 
u = feu'), v = g(v') are the most general ones preserving the 
canonical form (4) (see Ref. I, p. 18), This means that the 
functions z, wand z', w' defined by 

z' = z, w' = w + InA (u) + InB (v), (7) 

describe the same metric. Similarly, the canonical form (5) is 
preserved among others by the transformations t = f(t '), 
r = (r'tl which implies 

c' = A (t ')c, a' = r,·4a, (8) 

If JF /Ju #0, the canonical form (6) does not allow any non
trivial transformations of u and r preserving it. 

The components of the curvature tensor of the canoni
cal forms (4) and (5) are given in Appendix A, while those for 
Eq. (6) can be taken from Ref. II. 

The main drawback in working with different canonical 
forms for the metric lies in the fact that one must prove the 
inequivalence of the solutions obtained. In general, this 
proof is as difficult to carry through as the construction of 
the solutions themselves. In order to circumvent the equiv
alence problems we classify the solutions with regard to the 
algebraic structure of the Ricci tensor R" (3. (The Petrov type 
of C aflytJ is of little help here l2 because s.s. metrics may only 
have type D or 0.) As is well known, the Ricci tensor of any 
s,s. metric possesses one double eigenvalue 

(9a) 
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while the remaining ones are given by 

Au = !(R(/' + RII) ± J 1/2, 

.:.1: = l(RoO - R I 1)2 + ROIR 01. 

(9b) 

The second method departs from the observation that 
the Ricci scalar R '" of the metric g~/J = g"ll e2<1> is related to R 
of ga(3 through 

R '" = R e 2<1> + E, (10) 

whereE depends on cp,gaIJ' and their first and second deriva
tives. Although we have not been able to integrate the differ
ential equation E = ° completely for any of the canonical 
forms (4)-(6), we give particular solutions and apply them to 
generate further solutions of Eq. (1). This method is of spe
cial interest because the algebraic type of R '" (113 is different 
(and, in general, less degenerate) than the type of Ra (3, as will 
be shown in Appendix B. Thus, solutions ofEq. (1) with the 
most general algebraic type of Ra fl can be generated from 
those with one quadruple or two double eigenvalues, which 
we know completely. 

III. THE GENERIC CONFORMALLY FLAT 5.5.5. of R = 0 

Starting from the canonical form (4) we calculate the 
curvature invariants Rand C. This leads to the system of 
partial differential equations for the unknown functions 
z(u,v), w(u,v): 

e "'W,Ui' + 1 - z2C = 0, (1Ia) 

Z,Ut. + i;z'e"(C- ~R)=O, (1lb) 

where Rand C are considered to be given, and the comma 
denotes a partial derivative. For conformally flat s.s.s. ofEq. 
(1), Eq. (lIb) implies z = A (u) + B (v), while W must satisfy 
the Liouville equation 

W,Ut. + e'" = 0, (12) 

whose solution is given byI.l 
expw = 2D"E,. [D(u) - E(V)]·2. After successively trans
forming to u: = D(u), iJ: = E(v) andp: = 2- 1/2(U - iJ), 
r: = 2· 1/2(U + iJ) we arrive at the metric 

gall = [A(p+r)+B(p--r)fp·27]"IJ' (13) 

where 7] ap is the Minkowski metric in polar coordinates p, e, 
cpandA (p + r),B (p_. r)are arbitrary functions. Thisis the 
general S.S.s. of Nordstrom's theory of gravitation. 14 

The only solution (13) with a quadruple eigenvalue of 
R/J is Minkowski space, while for solutions with two double 
eigenvalues either B = 0, A #0 or A = 0, B #0 holds. The 
Robinson-Lovelock metric 15 gal! = a2p.27],Y/3 is the most ele
mentary example of this set of solutions. Surprisingly, those 
solutions which possess one triple and one single eigenvalue 
of R,/ are difficult to identify. The lengthy equation to be 
satisfied by the functions A and B of Eq. (13) in this case, 
which we have not been able to solve in general, is given in 
Appendix C. The following three metrics are particular solu
tions of Eqs. (Cl) and (C2): 

o 
gall = r-7] all , (14a) 

with 
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with 

and 

with 

A (u) = !u2, B (if) = - !zr, 
gaf3 = (r - p2y2

1Jaf3 ' 

A (u) = 2-3/2U- I , B (V) = _2-3/2V- 1 
, 

(14b) 

A (u) = (¥3) 1/2u(1 + u2y .. B(V) = - (¥3)1/2v(1 + v2yl, 

and (30 a constant. 
Solution (14c) was given by Tolman l6 in the isotropic 

form 

(14c') 

and describes a null fluid solution of Einstein's theory of 
gravitation. 

IV. SPHERICALLY SYMMETRIC SOLUTIONS WHICH 
ARE NOT CONFORMALLY FLAT 

A glance at Eq. (II) shows that the case R = 0, C #0 
leaves the system of partial differential equations for z and w 
coupled, in general. If C is eliminated from Eq. (11 b) by 
means ofEq. (1Ia), Eq. (I) becomes linear in z with w given: 

z.u,. + /;z(e"' + w,ut') = O. (1lb') 

Before we explicitly solve this linear equation for specific 
values of C, we first treat the case of the Ricci tensor having 
one quadruple or two double eigenvalues. 

A. Degenerate eigenvalue structure of R" f3 

According to Ref. 4, of the five subcases of the canoni
cal form (4) ofmetrics whose Ricci tensor has two double 
eigenvalues, only 

ds2 = 2G,u du du - G 2(u,u)dfl 2, 

and 

ds2 = 2G,,, du du - G 2(u,u)dfl 2, 

lead to R -2C #0. If G is introduced as a new variable, the 
canonical form (6) turns up as the most general canonical 
form of a s.s. metric leading to a Ricci tensor with two double 
eigenvalues and R -2C #0. The general solution ofEq. (1) 
with C # 0 and a quadruple eigenvalue of Ra f3 is given by II 

ds2 = [I - 2~(U) ]du2 +2du dr -? dfl 2, (15) 

with one arbitrary function m(u) #0. 
Two double eigenvalues of R" f3 occur forI I 

, [ 2m(u) e
2
(u) ] ds-= 1- --r-+ ~ du 2 +2dudr-?dfl2, 

(16) 

where m(u), e(u)#O are arbitrary functions. Among the me
trics (15) and (16) are many well known solutions of Ein
stein's field equations, including all Einstein-Maxwell fields. 
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Again, it is difficult to pin down solutions with one tri
ple eigenvalue of R a f3 and one single one. For the case C #0 
we have found only one such S.S.s. of Eq. (1): 

(17) 

B. Generic eigenvalue structure of R" fJ 

We now consider metrics whose Ricci tensor has one 
double and two single eigenvalues. Of the various possibili
ties to decouple the system (1la) and (lib), a promising one 
is to put 

C = (1 - 0'0)Z-2, (18) 

where 0'0 is an arbitrary constant. We assume 0'0# I, as the 
case C = 0 was treated exhaustively in Sec. III. Two sub
cases are distinguished: 

1.0'0 = 0 

Here, Eq. (lla) reduces to the wave equation w.uv = O. 
Due to the freedom of introducing new independent varia
bles [see Eq. (7)] we may set w equal to zero without loss of 
generality. Then Eq. (lib) becomes 

(19) 

The general solution of this equation (essentially the telegra
pher's equation) can be found in many books l7 in the form 

z = Hcp (r + t) -+- cp (r -- t)] 

-+- ~ L_t 11 ds ¢( S )Jo( ~ i [t z - (r - S )2] ) 

t r+l J{~Ht2-(r-s)2]) 
-+- --- f dscp(S) 

2V 6 r - 1 V t 2 - (r - sf 
(20) 

where cp and if' are arbitrary functions, Jo and J I Bessel func
tions, and 

r: = 2- 1/2
(U - u), t: = 2- 1/2(U + u). 

The function z of Eq. (20) solves the boundary value 
problem 

z(r,O) = cp (r), Z.1 (r,O) = l/1(r). (21) 

The corresponding s.s.s. of Eq. (1) is 

ds2 = zZ(2du du - dfl 2). (22) 

In place of the integral representation (20) we may use an
other one: 

z = Zl -+- Z2 -+- Z3 + (aIr -+- az)(b l sin(t N3) 
+ bz cos(t IV3» -+- (CIt -+- c2) 

X (d l sinh(r/V3) -+- dz cosh(r/V3», 

where al, ... ,dz are constants and 

Zl = IX d-i [A (-i) sinht y;: -+- B (-i )cosht V;:] 

(23) 

X [ C (-i )sinhr ~ -i + ! + D (-i ) coshr ~ -i + 1 ] , 

(24a) 
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Z2 = f/3 dA [A (A) sint v'T + B (A )cost v'T] 

x [ C(A )SinhrF + D (A) coshrFJ, 

(24b) 

Z3 = 1"0 dA (A (A ) sint ~ A + 1- + B (A ) cost ~ A + :t J 
X [c (A )sinr v'T + D (A ) cosr v'T 1 (24c) 

Among the functions A (A ),B (A), C(A ),andD (A ) only two 
are free in the sense of leading to different solutions. By the 
special choice of 

A =C=O, B(A)=(3Atl/2, D(A)=(1-3Atl/2, 

we obtain from Eq. (24b) 

Z2 = ; Jo( t ~{ ). (25) 

or the Riemann function ofEq. (19) which was used in the 
integral representation (20). 

2. ao~O, =/ 1 

Here, Eq. (1la) reduces to w,uu + aoe -- w = 0 with the 
general solution 

w = In[ (2Iao)(dA (u)ldu)(dB (v)ldv)[A (u) - B (V)]-2 J. 
(26) 

By a coordinate transformation we arrive at the metric 

ds2 = 2z2(u,v)(u - vt2[20"0-1 du dv - !(u - V)2 d{) 2], (27) 

where now u and v denote the transformed variables, or, 
equivalently, 

ds2 = r 2z2(r,t )[0"0- 1 (dt 2 _ dr) - rd{) 2]. (27') 

Equation (Ub) now reads 

2 1 - 0"0 0 (u - v) z.uv + --z= . 
30"0 

(28) 

Introducing a new dependent variable X by 

z: = (u - vix with A: = ~( 1 ± ~ 4 ~:o ). 
Eq. (28) is transformed into 

X,up - A (u - V)-I( X,U - X,v) = o. (29) 

This is a special case of the Euler-Darboux equation whose 
general solution is known. IS For 0"0> 1,0"0#4 we obtain as 
the solution of Eq. (28) 

z = - (u _ V)(1I2)(1 +I) 

X fd5'tp[U+(V-U)5'][5'(1-5')]-A 

+ (u _ V)(II2)(l ± I) 

X fd5'tP[u+(V-U)5'][5'(1-5')]A-I, (30a) 

where.2': = [(4 - 0"0)130"0]1/2 and tp, tP are arbitrary func
tions. If a o = 4, the solution is given by 
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z = (u - V)1/2{ f d5' tp [u + (v - u)5'] [5'(1- 5')]-1!2 

+ f d5' tP[u + (v - u)5'][ 5'(1- 5')]-1/2 

X In[ 5'(1- 5')(v - u)]. (30b) 

The solution ofEq. (29) for values 0"0< 1 is known as well (see 
Ref. 18). For particular values of 0"0 the general solution of 
Eq. (28) may be written without use of an integral represen
tation. For example, if 0"0 =~, the general solution ofEq. 
(28) is given by 

z = (d 2Idx2)fI(X) -lO-lJ2(d Idx) fl (x) 

+ (d 2Idi)f2(Y) + 1O-1/2(d Idy)fzCy), (31) 

where x: = 201/2U, y: = 201!2V, andfl(x) andfiy) are arbi
trary functions. 

Of course, the classes of solutions given by Eq. (20) or 
(23) with Eq. (24) and by Eqs. (30a), (30b), and (31) may also 
contain solutions leading to one quadruple or two double 
eigenvalues. 

V. ALTERNATIVE APPROACH TO SOLUTIONS WHICH 
ARE NOT CONFORMALL Y FLAT 

Up to here the equivalence problem was avoided alto
gether, because we applied invariant criteria (eigenvalue 
structure of Ret /3) to distinguish the solutions found as well 
as the same canonical form for the metric within each alge
braic type. We know that the algebraically most general type 
of s.s.s. of Eq. (1) with C # 0 contains many more solutions 
than the rather rich classes exhibited in Sec. IV, since evi
dently Eq. (11 b/) possesses classes of solutions containing 
one free function w of two variables and two free functions of 
one variable each. In order to see if another canonical form 
facilitates the integration or even leads to still more general 
classes of solutions we now use the canonical form (5) for the 
s.s. metric (isotropic coordinates). 

In place of the functions c, a of the form (5) it is conve
nient to introduce other functions tP(r,t ), x(r,t ) defined by 

c = tPIX, a = xlr. (32) 

The metric then becomes 

ds2 = (tPlxfdt 2 - (Xlrt(dr + r d{} 2), (33) 

or, equivalently, due to Eq. (8), 

ds2 = (tPIx)2dt 2 _ X4(dp2 + p2 d{} 2), (33/) 

where p: = rl. A straightforward calculation of the Ricci 
tensor belonging to Eq. (33) leads to 

R = - (2r4Ix4)(3(r" IX) + (tP" ItP» + (12/tP2)[<¥IX) 

+4<XIX)2 - (tfltP)<XIX)], 

X': = X.r' x: = X.I . (34) 

Equation (34) is valid for any s.s. metric as X and tP are 
arbitrary functions of two variables. We now reduce the gen
erality by assuming 

X.I = 0, (35) 

i.e.,x = X (r). Then a class of solutions ofEq. (l)is given by 
arbitrary x(r) and tP(r,t) satisfying the linear equation 
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TABLE II. Some classes of mathematical functions occurring as solutions ¢ 
and X ofEq. (37). p(r) is the Weierstrass elliptic function. 

f(r) Special functions of mathematical physics 

porn 
a o cos2r + Po 

arP(r) + Po 

1+ a o 
r 

v(v+l) 

sin2r 

Bessel functions 

Mathieu functions 

Lame functions 

confluent hypergeometric function 

hypergeometric function 

Legendre functions 

¢" +3(x"(r)lx(r»¢ = O. (36) 

For every chosen x(r), Eq. (36) is ofthe type ¢" + J(r)¢ = 0 
with known coefficient functionJ(r). However, as we do 
want both functions X (r) and ¢(r,t ) explicitly, it is convenient 
to solve the system 

¢"(r,t) + J(r)¢(r,t) = 0, 
(37) 

3x"(r) - J(r)x(r) = 0, 

for ¢ and X with arbitrarily chosen parametric functionJ(r). 
This is easily done for large classes offunctionsJ(r). In fact, 
among the differential equations which can be solved explic
itly are the equations of Bessel, Mathieu, Lame, and Hill and 
the hypergeometric differential equation. Also each of the 
two equations (37) can be put into the form of the one-di
mensional time-independent Schrodinger equation in Carte
sian coordinates (or the radial equation in polar coordi
nates). Table I lists some of the more obvious results while 
Table II collects some of the differential equations men
tioned above. Of the two free functions of the coordinate t 
[the integration "constants" of the first ofEqs. (37)], one can 
always be transformed to 1. If ¢#O, the only solution lead
ing to two double eigenvalues of R/3 is given by X = aorl/2. 

A second set of solutions ofEq. (1) is obtained by 
assuming 

¢ = ¢(r), x(r,t) = t 1/5rJ(r), (38) 

where ¢(r) and rJ(r) (in place of X) satisfy the system (37) and 
no free functions of t do occur. The corresponding metric is 

ds2 = r 2t5 [¢(r)lrJ(rWdt 2 _ t 4t5[rJ(r)lr]4(dr + rdf1 2), 
(39) 

which after a coordinate transformation and a rescaling of ¢ 
and rJ becomes 

ds2 = [¢(r)lrJ(r}fdr - r[rJ(r)lr]4(dr + r df12). (39') 

The conformal curvature invariant C for the general s.s. met
ric (33) is given by 

C = (rIXt[3(X" IX) + (9Ir)(x'lx) - 12(X'IX)2 
+6(X'IX)(¢'I¢) + (3Ir)(¢'I¢) - (¢"I¢)]. (40) 

It should be noted that this expression does not contain any 
time derivatives. Thus, C depends, in general, on one free 
function of t and one free function of r, i.e.,/(r). This is the 
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same degree of generality which was achieved in Sec. IV 
when departing from the canonical form (4). The advantage 
here is that many of the solutions are more familiar than the 
integral representations (20), (24), (30), and (30'). 

As the canonical forms (4) and (5) can always be trans
formed into each other there is a distinct possibility that all 
of the solutions found in Sec. IV and all of Sec. V are equiv
alent. However, from the following example one can con
vince oneself that at least some solutions do not belong to 
both classes. Take the s.s.s ofEq. (1) obtained from the first 
entry in Table I, i.e., with 

ds2 = [ c(t) + rd (t) ]2dt 2 _ (a + .!!.- )\dr + rdfl 2). 
b +ar r 

(41) 

Let ab #0 and c(t)b -I + d (t )a- I #0. Then the coordinate 
transformation 

p = r(a + .!!.- )2, r = r(t), 2 ~ = c(t) + d (t) 
r dt b a 

(42) 

brings the metric into the form 

ds2 = [1 ± e(r) 11 _ 4a
p

b ]2d? _ dp2 
\j 1 -4ab /p 

_ p 2dfl 2, (41') 

where e(t): = [bd (t) - ac(t )]/[bd (t) + ac(t )]. To simplify 
matters we assume 

e(r) = O. (43) 

It is easy to show that the Ricci tensor of Eq. (41) with Eq. 
(43) has three different eigenvalues. A further transforma
tion of the spacelike coordinate pinto p by 

P = 4ab In [~ ~b + ~ ~b - 1 ] + V p( p - 4ab) , 

(44) 

leads to 

ds2 =p2(p)[p-2(p)(d? _ dp2) _ dfl 2], (45) 

i.e., a metric of the canonical form (4) dealt with in Sec. IV. 
From Eq. (45) we have 

pep) = z( vi)' eW = Z-2. (46) 

The system (IIa) and (lIb) with R = 0, Z = z(u - v), and 
expw = Z-2 can be solved explicitly (see Appendix D). The 
solutions satisfy 

C = ¥-2(1 +2z.u z.,,), (47) 

with 1 +2 z.uz.v #const. Consequently, they cannot be con
tained within the S.s.S. ofEq. (1) given in Sec. IV. 

VI. GENERATION OF SOLUTIONS BY CONFORMAL 
MAPPING 

We now apply the method of conformal mapping de
scribed in Sec. II for the construction of new solutions g~/3 
= gall exp2cp of 

R*=O (48) 
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from given ones ga/3 of Eq. (1). For the canonical forms (4), 
(33), and (6) we have, respectively, with tp: = exp</>, 

R * = tp-2R + 12tp-3e - wZ-2 

X(tp.u" + Z-IZ .u 1[1." + Z-IZ .v l[I.u)' (49) 

R * = 1[1-2R + 6tp-3 {( K )2(1[1 _ 1[1 !t..) if; .tt .t if; 

-( ; r[ l[I.rr + l[I,r( ~ + ~ )]). (50) 

R * = 1[1-2R + 6tp-3 [21[1.ur - 21[1.rrF 

+ (2/r)w,u - w,r(F,r + (2/r)F)]. (51) 

As a first application all conformally flat s.s. metrics 
generated from the Minkowski metric will be determined. 
With if; = X = r in Eq. (33) we obtain from Eq. (50) 

R * = 1[1-2R +6tp-3(I[I.tt - w'rr - (2/r)I[I). (52) 

With the new dependent variable y: = rl[l we obtain 

R * = ry-2R + 6ry-3( Y.tt - Y.rr)' (53) 

Thus, the Minkowski metric is carried into a solution ofEq. 
(48) if y satisfies the wave equation. This leads back to the 
result (13) of Sec. III. 

As a second application we set in Eq. (50) 

1[1 = a + bt + (c + dt) x, fr d 

if;(x)x(x) 
(54) 

with if;" = 0, and a, b, c, d constants. Obviously g:/3 
= 1[12ga/3 solves Eq. (48) if ga/3 solves Eq. (1). To each of the 

multitude of solutions obtained in Sec. V in which the free 
function of t is replaced by a constant we obtain a further 
two- or three-parametric set of solutions of Eq. (1): 

dS*2 = [a + bt + (c + dt) fr dx ]2 
if;(x)x(x) 

X {[ if;(r)/x(r) ldt 2 - [x(r)/r ]4(dr + r dfl 2)}, 
(55) 

which in general is not equivalent to the metrics we started 
from, as can be seen from the special subcase c = d = O. Bya 
coordinate transformation the metric transforms into Eq. 
(39) of Sec. V. Thus, a time-dependent solution ofEq. (1) has 
been generated by a time-independent one. To give a specific 
example we start from the isotropic form of the Schwarz
schild metric 

ds2=( 2r-m )2dt2_(r+!m )4(dr+rdfl2). 
2r+m r 

(56) 

Now if; = r - !m, X = r + !m, and from Eq. (55) we obtain 
the following solution of Eq. (48): 

ds*2 = a + bt + (c + dt )m- I In ds2. [ 
2r - m ]2 
2r+m 

(57) 

Using the Schwarzschild coordinate p: = r(I + !m/r?, the 
s.s. metric (57) takes the form 

dS*2 = [a + bt + (c + dt) 2~ In( 1 - 2;) r 
X [ (1 - 2; )dt 2 _ ( 1 _ 2; ) -I dp2 - p2dfl 21. 

(58) 
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This is a generalization of the solutions (vi) and (vii) of 
Wynne and Derrick l9 which follow for b = d = 0. 

In our last application we generate solutions ofEq. (1) 
with the most general algebraical structure of Ra (J from 
those with two double eigenvalues. From Eq. (51) it follows 
that the metric 

ds*2 = U + dx 0 ds2, [ J
r X2 + a ]2 

x 2F(x) 
(59) 

where ao is a constant, satisfies Eq. (48) if dsz = F(r)duz 

+2du dr - rd£1 Z solves Eq. (1). From Eq. (16) the most 
general such solution implies 

F(r) = 1-2mlr+ezlr, (60) 

with constants m and e. As a special case we consider 

(61) 

and obtain from Eq. (59) 

dS*2 = [u + r - (a0
2 + ao)(r + ao)-I -2ao In(r + a o>fds2

• 

(62) 

If we set ao = ° and introduce new coordinates r, p by 

r = Hu + r - a 0
2(r + ao)-I -2ao In(r + ao)j2, 

p = 21/Z(r + ao), 

Eq. (62) becomes, after a rescaling of ao, 

ds*Z = (1 - :0 ) -2 dr - r( 1 - :0 r (dpZ + p2d£1 2). 

(62') 

Equation (62') is contained within the class of solutions (33) 
where X = t 1/4f.i(r) and", = t 1/4v(r), while vCr) and f.i(r) 
satisfy 

v,rr + f(r)v = 0, 3f.i,rr - f(r)f.i = 0, 

with 

fer) = ~ a o 2r-2(r - aotl. 

VII. DISCUSSION 

In our investigation of spherically symmetric solutions 
of R = ° we have obtained a considerable number of explicit
ly given solutions depending on two free functions of one 
variable each. As far as we know all solutions presented in 
the literature are contained within the classes found in this 
paper and collected in Table III. 

However, we were unable to obtain the general s,s.s. of 
Eq. (1) and had to content ourselves with showing how s.s.S. 
can be constructed directly from different canonical forms of 
the s.s. metric or with the help of conformal mappings. It 
might be feasible to obtain the general solution for the case of 
one triple and one single root, but at present the general case 
of one double and two single roots appears to be beyond 
reach. Investigations of this question are continuing. 

Although we have not succeeded in establishing to what 
extent the classes of solutions belonging to different canoni
cal forms are equivalent or not, the discussion given in Sees. 
IV and V shows that they are neither mutually exclusive nor 
fully equivalent. 

In Sec. VI a method was developed to generate new 
s,s.s. ofEq. (1) with equal or more general eigenvalue struc-
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ture from known ones. This structure is not readily appar
ent, however, but needs detailed investigation in each par
ticular case. Various examples were given which show that 
the method does yield inequivalent new solutions. 

It is interesting to note that in the case of plane symme
try Eq. (1) can be integrated completely. Then the metric is 
of the formzo 

(63) 

where z and ware functions of u and v; instead of the system 
(Ila) and (lib) one obtains 

w,uv - Z2ewC = 0, (64a) 

z,uv + t z3ew(C -!R) = 0. (64b) 

If C = 0, this system leads to the general form of the metric 
(63): 

d~ = [A (ii) + B (v W(2dii dv - dx2 
- dy2). (65) 

IfC #0, zis arbitrary, and w is the solution ofthe inhomoge
neous wave equation 

w,uv = - (6Iz)z,uv' (66) 

for which the integral representation is known. 18 

In the course of working on R = 0, we have also ob
tained a number of S.S.s. of R = const. # 0. A paper on this 
problem is in preparation. 

APPENDIX A 

Using Takeno's notation I for the six nonvanishing com
ponents of the curvature tensor of a s.s. space-time 

a: = R IZ
IZ = R I3

13
, /3: = R oZ

02 = R 03
03, 

. - R 20 - R 30 £. R IZ R 13 r· - 12 - 13 , u. = zo = 30 , 

t". - R 01 . - R 23 
~.- 01' TJ·- 23, 

we obtain for the canonical form (4) 

r=z-Ie-W[_(Z-I) +(Z-I) w ] ,vv ,v ,v , 

{) = Z-Ie - W [ - (Z-I).uu + (Z-I).u w.u ], 

t" = Z-Ie - W[(Z-I) - z-zz + Z-I W J 
~ ,uu ,uu ,uu , 

1'1 = - Z-2 -2 e - W(Z-I) (Z-I) ., ,u tV , 

from which Eqs. (Ila) and (lib) follow. 
For the canonical form (5) we have 

[
a" (' )2 I' ] ( . )Z a = 2a-

4 
--;; - : + 7: _4c-z : ' 

-4 [ 1 a' ] e' 2 [ii ( a ) 2 /3 = a 7 +2 --;; -; -2e- --;; + --;; -

4 -Z£ 2 -z[ a' a a' a e' ] r= -a e u= e -- --- -- , 
a a a a e 

5 = a-
4 

[ e;' -2 ~ ~ J - 2e-
2 

[( : r + : -

-4[( a' )2 I a'] -z ( a )2 
1] = 4a --;; + 7 -;; -4c --;; , 

(AI) 

(A2) 

(A3) 

where the prime and dot denote derivatives with respect to r 
and t, respectively. 

Hubert Goenner and Peter Havas 1165 



                                                                                                                                    

TABLE III. Collection of S.S.s. of R = 0 obtained. If not stated otherwise. the entries form the general solution of the case considered. The solutions (55) and 
(59) obtained by conformal mapping overlap this classification and therefore are not listed in the table. 

Eigenvalues of R/3 

One triple. 
Quadruple Two double one single One double. two single 

C = 0 Minkowski space Eq. (13) with AD = 0 
A'+D'#O 

Eq. (l4a)-- (14c) 
(incomplete) 

Eq. (13) with AD #0 

CtO Eq. (15) with m#O 

From Eq. (A3) 

Eq. (16) with e#O 
Eq. (17) 
(incomplete) 

R = -2a-
4 

[4 a~' + ~ ~ +2 ~ ~ + ~ ~ + c;'] 

+12c-
2 

[3( : y + ~ - : ~ ]. (A4) 

and 

[
a" 2 a' ( a' )2 a' c' C=a-4 2-
a 

- ---6 - +4--
r a a a c 

+ ~~- ~]. (A5) 
r c c 

APPENDIX B 

We express the eigenvalues (9a) and (9b) of the Ricci 
tensor by the components of the curvature tensor 

AI•2 = - (a + f3 + 5) ±.1 1
/
2, 

A3.4 = - (a + f3 + 7]), (BI) 

.1: = (a -f3? +4yb. 

Thus, we have the cases 

Eigenvalues of R a f3 
Necessary and sufficient 

condition 

two double .1 = 0, 5 =1=7], 
one quadruple .1 = 0, 5 = 7], 

one triple, one single .1 =1=0, .1 = (5 - 7])2. 

If dS*2 = ds2 exp2q" where ds2 stands for the line element 
(4), a straightforward calculation using Eq. (A2) leads to 

7]* - 5 * = A 2(7] - 5) -2A e - wZ -2 

X [A.Ul' - z-lz.uA. v - Z-lz,uA.u], 
(B2) 

and 

y* =A 2y_A e- W z-2[A.Ul' -2z- 1 z,uA,u - w,vA,v]' (B3) 

b * = A 28 - A e - W z-2[A.uu -2z- 1 z,uA,u - w.uA,u l (B4) 

Obviously, .1 = ° and/or 5 - 7] = ° do give.1 * =1=0 and/or 
5 * - 7]* =1=0 in general. Similarly, in general the condition 
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Canonical form (4) of metric: Eq. 
(22) with Eq. (20) or (23). Eqs. (24) and 
(27') with Eqs. (30a) and (30b) or (31) 

(particular solutions) 

Canonical form (5) of metric: 
Eq. (33) with Eq. (37)} 
Eq. (39) with Eq. (37) see also Tables I and II 

(particular solutions) 

for a triple eigenvalue is not preserved by the conformal 
mapping. 

APPENDIXC 

From Eq. (A2) with expw = 2(u - ut2 we obtain as the 
condition for a triple eigenvalue of Ra f3 for a conformally flat 
s.s. metric 

4K2 +4(u - U)2 [KK,uv + K.uK,v] +2(u - U)3 [K,uuK,v 

- K,uuK,u] + (u - U)4[(K,uv)2 - K,uuK,uv] = 0, (Cl) 

K: =Z-I = [A +B]-I. 

In addition to have.1 =1= 0, the inequality 

[K,uv -2 K.v(U - uti] [K,uu +2 K,u(U - uti] =1=0, (C2) 

is required to hold. 

APPENDIX D 

With w = -21nz and Eq. (1) the system (lla) and 
(lIb) reduces to 

zZ,uv + ! z,uz,u + ! = 0, 

C - ~z-2(1 +2z,uz,v) = 0. 

(Dla) 

(Dlb) 

Introduction of the new dependent variable y by y: = Z3/2 
leads to the nonlinear wave equation 

y,uv + ~ y-It3 = 0. (D2) 

The solutions 01 the form y = y(u - u) are easily obtained. 
Three subcases arise: 

(a) z = ± 2- 1/2(U + u) + Kl' 

(b) ± 2- 1/2(U - u) 

= Kl + [z(z + KI)] III - KI sinh-l(z/KI)i/l, 

(c) ± 2- i/2
(U - u) 

= Kl + [z(z + IKI I)] 1/2 + IKil cosh -1(Z/KI)1/2, 

where KI, Kl are constants. 
The identification KI = -4ab,p = 2- 1/2(U - u), Z = P 

shows that case (c) corresponds to Eqs. (44) and (45) of Sec. 
V. In this case C cannot have the form z-2(1 - ao)' Case (a) 
corresponds to Minkowski space. 
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~onfo.rmal propertie~ of the :quations for weak gravitational waves in a curved space-time are 
mvest.tgated. The bastc equattons are derived in the linear approximation from Einstein's 
equatlO~~. They re~~esent, in fact, the equations for the second-rank tensor field ha{3' restricted by 
t?e au~thary cOndt~lOns h,,{3;a = 0, h =Ya{3h a{3 = 0, and embedded into the background space
~Ime ~Ith the metnc tensor Ya{3' It is shown that the eq~ations for ha{3 are not conformally 
mvan~nt und.er the transformations Ya{3 = i:..U y,,{3 and ha {3 = eU ha{3' except for those metric 
rescahngs which transform the Ricci scalar R of the original background space-time into e- lu R 
where R is t.he Ricci scalar. of the conformally related background space-time. The general fo~ 
of the equations for ha {3 which are conformally invariant have been deduced. It is shown that these 
equations cannot be derived in the linear approximation from any tensor equations which 
generalize the Einstein equations. 

I. INTRODUCTION 

Conformal symmetry appears to be important in con
temporary physics (see, for example, Refs. 1 and 2). Usually, 
the invariance with respect to the 15-parameter Lie group of 
conformal transformations Co which generalizes the Poin
care group is meant by a conformal symmetry.3.4 A more 
general kind of conformal transformation is a conformal res
caling of the metric tensor: g,lV = e -- 2u gill" Conformal res
calings are mostly applied to the equations that are written 
down in a generally covariant form. The conformal transfor
mations, viewed as conformal rescaling. correspond to that 
particular case in which a flat space-time Minkowski metric 
transforms into another flat space-time metric. Even this 
simplest kind of conformal symmetry which is important for 
high-energy physics may have some relevance to gravity as 
well (not curvature!) since a conformal transformation may 
be interpreted as a transformation to a constantly acceler
ated frame of reference. 3 Therefore. a property of a physical 
system with respect to Co may describe the behavior of the 
system in a constant homogeneous gravitational field. 

It has been known already for a long timel
.
5 that some 

basic equations of theoretical physics. among them the equa
tions for massless fields. are invariant not only with respect 
to Co but also with respect to the group Cg of conformal 
rescalings. For instance. the field equations for massless 
fields with integer spins remain unchanged under a replace
ment of g,,,, and field variables CPa(J ... ,' according to the rule 
g- - -2" - _ '71' - I) h' h . 

I'" - e gil'" cP,,(3 ... v - e cP,,(3"v' were SIS t e spin 
of the field. It is important to notice that the field variables 
transform with different powers of the conformal factor 
e 2", depending on the spin ofthe field. For the scalar field it 
is ijf = e"cp. and for the Maxwell equations (s = 1) Aa = Aa 

"'Supported in part by the Ministry of Higher Education, USSR, and by the 
National Science Foundation, USA (AST76-80801 A02). 

or F"(3 = Fa(3' For the gravitational field (s = 2) the confor
mal invariance is usually referred to the vacuum Bianchi 
identities with the Weyl tensor transforming as Ca (3l lv 

= e - 'fCa (3I"" 

Conformal symmetry of the field equations with respect 
to Cg is important from the physical point of view since it 
describes the particular way of coupling of the physical sys
tem to the external gravitational field (curvature).6 The role 
of conformal invariance in the context of quantum field the
ory in curved space-time has been emphasized many 
times. 7.8 It was shown in Ref. 9 that the Einstein linearized 
equations for weak gravitational waves in non vacuum con
formally flat metrices do not transform into the usual flat 
space-time wave equations under the conformal transfor
mation of the metric tensor and gravitational-wave varia
bles. Thus. graviton creation in the early Universe is possi
ble" while other massless particles such as photons. 
neutrinos, and gravitinos (spin s = 3/2 massless particle) 
cannot be created. (For the properties of the pure supergra
vity theory in this context see Ref. 10.) This fact seems to be 
fundamental enough in order to see to which extent it is 
inevitable. 

The purpose of this article is to investigate the confor
mal property of the gravitational-wave equations in more 
detail. In particular. we are trying to find such equations 
which could be conformally invariant. 

It is necessary to clarify the difference between our ap
proach and that which was used in other works. devoted to 
conformal gravitation on the classical and quantum lev
els. II

- ls We intend to treat the gravitational-wave variables 
on the same footing as all other fields embedded in a curved 
space-time. It means that under conformal rescaling the 
field variables should transform according to their spin s = 2 
weight. It might be S'(3llv = e uCa (3I Il ' according to Pen
rose's suggestion or h a (3 = e -- "ha(J in a linearized approxi
mation to the Einstein equations which is considered here. 
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(They are obviously consistent in the same way as the con
formal transformation rules are consistent for electrodyna-

A 

mical fie~ components FafJ = FafJ and electrodynamical po-
tentials Aa = Aa.) The linearized version of Einstein's 
equations provides a natural framework for treating spin 
s = 2 fields in an external gravitational field since these equa
tions describe, in fact, the second-rank symmetric tensor 
field embedded in a curved space-time. On the other hand, 
the works II-IS are concerned with the action and the field 
equations which are invariant under conformal rescaling of 
the metric tensor gafJ and some scalar function. If the com
ponents of gafJ are to be interpreted as spin s = 2 field varia
bles, then they transform according to the wrong rule; this 
rule includes the factor e - 2a instead of e- u. The same rule is 
prescribed for the second-rank tensor hafJ at the linearized 
level. Although this kind of symmetry may be useful for 
some purposes, it is certainly not what is meant by conformal 
invariance for other massless field equations. 

In Sec. II from Einstein's equations we derive the basic 
equations for graviational-wave perturbations hap. These 
equations have the same form both in vacuum space-time 
and in space-time filled with matter. We introduce also the 
usual auxiliary conditions h/3;p = 0, h = 0 which are simi
lar to that used in a flat space-time for separating spin s = 2 
states. 16 We investigate the conformal properties of the field 
equations and show that they are not conformally invariant 
except for those transformations which transform the Ricci 

A 

scalar R of the original background space-time into e - 2a R, 
where R is the Ricci scalar of the conformally related back
ground space-time. Although we believe that the chosen 
field equations, the auxiliary conditions, and the transforma
tion law for haP are well motivated, one should not think that 
the conformal noninvariance is a consequence of these as
sumptions. The formulas presented in the Appendix show 
that any other choice of the auxiliary conditions (if any) and 
of a transformation law cannot improve the situation. More
over, there is an indication that the prescribed auxiliary con
ditions and the transformation law emerge in a natural way 
under an attempt to make the basic equations conformally 
invariant. Having proved conformal noninvariance of the 
equations derived from Einstein's equations, we were inter
ested in the formulation of the equations for spin s = 2 field 
which are conformally invariant. 

Essentially, we look for a conformally invariant second
order differential operator which acts on a symmetric sec
ond-rank tensor field restricted by some auxiliary condi
tions. In other words, we generalize the flat space-time 
equations in such a way that the coupling of the tensor field 
to curvature is conformally invariant. To clarify the method 
used, we start from the simplified problem of finding confor
mally invariant equations for a scalar field (I-' (see Sec. III). It 
is known that conformal coupling of the f{! field to curvature 
can be represented by the equation 

'U R ° f{!;a' - f:l' = . (1) 

For the sake of generality we take into account some other 
fields to which the f{! field can be coupled (other than the 
curvature) and which transform according to definite rules 
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under a conformal rescaling. It is shown that the most gener
al conformally invariant coupling to curvature is expressed 
by Eq. (1) while coupling to other fields can also be confor
mally invariant and then Eq. (I) contains additional terms. 
The same method of searching for conformally invariant 
equations was applied to spin s = 2 field (Sec. IV). Since in 
this case the equations are more complicated, we restricted 
the search to the coupling of this field to curvature. The 
general form of such conform ally invariant equations is de
duced. It is seen that these equations could not be derived 
from Einstein's equations in the linearized approximation. 
The next step is to look for exact tensorial equations from 
which conformally invariant equations can follow in the lin
earized approximation (Sec. V). If such a theory existed it 
might be interesting to investigate it and compare its predic
tions with the predictions of Einstein's theory. Quite surpris
ingly, it turns out that such an exact theory does not exist, at 
least within those restrictions which were imposed on it. It is 
also shown that there exists a conformally invariant equa
tion describing the coupling of the second-rank tensor field 
to curvature and some additional scalar field. The possibility 
of finding an exact theory which would yield this equation in 
the linearized limit is not clear. In conclusion (Sec. VI), we 
give a discussion of the presented results. 

II. CONFORMAL NONINVARIANCE OF THE 
LINEARIZED EINSTEIN EQUATIONS 

First we will derive the equations which we will be 
working with. Let us start from the vacuum Einstein equa
tions with the cosmological term 

Rill' = AgilV ' 

Assumethatgill' = rilv + hilv ' where rill' is the metric tensor 
of a background space-time, and assume that the back
ground field equations R ~o; = A rill' are fulfilled. The linear
ized equations - (rita DR v a + rva DR ail) = ° or -2DR I"' 
+2 Ahill' = 0 both lead to the same equation 

h ;<X _ 2R h afJ _ (h <X _ ID ah) 
It v;a fLa/3v Il 2: It ;a; v 

- (h l' '' - !D,ah );a;il = 0, (2) 

where, as usual, all operations are performed in background 
space-time. R ilafJl' denotes the background curvature tensor; 
here and below we will not especially mark the background 
quantities. Equation (2) can be regarded as a generally co
variant equation for a symmetric second-rank tensor field 

hill" 
Choose the solutions to Eq. (2) which are subject to the 

auxiliary conditions 

hl,<X;a =0. 

(3) 

(4) 

In analogy to what is known for analogous equations in flat 
space-time, Eqs. (3) and (4) can be interpreted as the neces
sary conditions for removing the spin s = 0, and s = 1 con
tributions to hill" For these solutions Eq. (2) takes the form 

h ;a 2R h afJ - ° flv;a - }J-af3v -. (5) 

[Of course, Eq. (2) can be reduced to Eq. (5) under the 
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simpler condition 

X" =(h,," - !8" C< h ):a = O. (4') 

We are going to work with Eqs. (3)-(5) but before this let us 
see which part takes the solutions restricted by Eqs. (3) and 
(4) (we will call them spin s = 2 solutions), among all solu
tions to Eq. (2). 

It can be easily checked using the background field 
equations that if h ;v is a solution to Eq. (2) then 

hi'" = h ,~v + 5,,:v + 5v:1' (6) 

for arbitrary 5" is also a solution to Eq, (2). This fact is 
frequently referred to as a gauge freedom. 17-19 For any given 
solution h ,~v one can find a vector 5" which will map this 
solution into the class of solutions restricted by Eqs. (3) and 
(4).20 Therefore, the spin s = 2 solutions represent in a sense 
all the solutions to Eq, (2), Moreover, the spin s = 2 solu
tions map into themselves by the gauge transformations with 
S,,:\, Y = 0, 5 v:v = O. The remaining gauge freedom can be 
used to impose the initial conditions (hpvuVb = 0, 
(hill' u '}a n\E = 0 on some hypersurface I with the normal 
vector na

, where UCl is a vector field. It was shown in Ref. 19 
that the sufficient condition for h"vuv to be equal to zero not 
only on I but also off I is the existence of ua obeying the 
equation 

(7) 

where a" and b are arbitrary vector and scalar fields, respec
tively. In flat space-time such a vector ua does exist and 
therefore all solutions to Eq. (2) can be mapped into a class of 
solutions which fulfill Eqs. (3) and (4) and 

h,lVu" = 0 (8) 

(TT gauge, according to Ref. 17). We will call this class of 
solutions the spin s = 2 solutions with definite helicity. 

As for the curved space-time in general Eq. (7) is not 
integrable, except for a certain class of background metrics, 
among them the important case of conformally flat me
trics? I So in these cases the spin s = 2 solutions with definite 
helicity represent all solutions to the wave equations, simi
larly to what we have in flat space-time. 

Let us turn now to gravitational-wave equations in a 
nonvacuum space-time. The Einstein equations 
Rllv -- !g,,,,R + Agln, = Till' in the linearized approximation 
-- (,,,,(oR ~~ - ~oav8R) - Yl'"(oR,, a - ~8a,,8R) 

=0 - (YI'JjT"v + y",,8T",') have the following form: 

+ Yin' ( - h"13R a(! + X a; a - ~h;a ;") 

-- (YwloT"" - 1"""oT(\,). (9) 

Equation (9), similarly to Eq. (2), is gauge invariant If h:v 

and tiT:" are a solution to Eq. (9), then h"", defined by Eq. 
(6), and 8~", defined by 

0'[;", = tiT;*;" + TI' "Sa:" + T""s,,;,,, 
are also a solution to Eq. (9). For any given solution one can 
find 5" which will map this solution into a class of solutions 
subjected to Eq. (4') (see Ref. 20). Moreover, there still re
mains some gauge freedom 5,ll; ",a + 5 "Rail = 0 which can 
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be used to impose the zero-initial conditions for h, h:ana, 
h"vuv, (h"vu):an" on some initial hypersurface.2'. However, 
in the general case, hand h""u" will not vanish off I. 

Equation (9) includes metric perturbations as well as 
perturbations of 1'"". It is clear, however, that the source
free gravitational-wave perturbations should be associated 
in some sense with the perturbations of the gravitational 
field itself and not the matter. We shall define the spin s = 2 
solutions in a nonvacuum background as a class of solutions 
for which Eqs. (3) and (4) are valid together with 8Ta P = O. 
The last condition reduces Eq. (9) to the form ofEq. (2) and 
tiT/' = 0 together with Eq. (4') reduces it to the equation 

h ;rr 2R h aP - 0 
J-lv;a - )J.uj3v -, (10) 

which is exactly the form ofEq. (5) (but R ,l" - Agl'" #0 
now). The fact that Eqs. (5), (10), (3), and (4) formally coin
cide in a vacuum and in a non vacuum background corre
sponds to an intuitive feeling that a free gravitational wave 
should be "sensitive" to a curvature in the same way, inde
pendently of what is the source of that curvature. The other 
argument in favor of Eqs. (10), (3), and (4) is that for those 
space-times (for instance, for Robertson-Walker back
ground metrics) for which a unique decomposition of all 
perturbations into proper modes is possible, the tensorial 
(gravitational wave) modes obey these equations (cf. Ref. 
22). 

It is important that we impose the condition bTaP = 0 
(variation of TaP with mixed indices.) Other authors some
times define the gravitational-wave perturbations as the set 
of conditions bTl''' = 0 or 8(Tl'v - ~pv T) = 0 together 
with Eqs. (3) and (4). These alternative equations differ from 
Eq. (10) and do not lead to tensorial proper modes in sym
metric backgrounds, which we regard as an unsatisfactory 
drawback. As far as conformal invariance is concerned, 
these alternative equations are not conformally invariant. 

Thus, we regard Eqs. (10), (3), and (4) as those whse 
conformal property should be investigated. We will mark by 
carets all quantities in an original space-time and apply the 
conformal transformation 

-" 20" 
1""" = e Y"v' 

hi'" = eO"h" v , 

(11) 

(12) 

to careted Eqs. (10), Q), and (4). Un~r the transformation 
(11) the Ricci scalar R, Ricci tensor Rill" and Weyl tensor 
C"II V P transform as follows: 

R = e-2a [R -6( 0",,: a + 0" a £f')], (13) 
/'-. 

R,,,, = R,,,, - 20"";,, + 20",ll 0",. - (0",,; (l + 20"" O"(1)y,,,,, 
(14) 

/'-. 

C ((13~1.1.' == C Cl. fill'\" (7 a ==a.a . (15) 

Recall also the relation between cap",. and the curva
ture tensor R a PIli' : 

C"131'" = R "Ii,,,, + !(8""R(Jll - b",lR/iv + gl31,R "" 

which helps to restore the transformation rule for Rap", .. 
One can see that h = e -- "h and h" ":" = e- "(h" v;v 
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+ 3h/1- YO'y - hO'/1-)' Thus, Eq. (3) is conformally invariant. 
To keep Eq. (4) conformally invariant as well one needs 

h/1- YO'y = ° = h/1- YO'y. (16) 
This condition is analogous to one which keeps the electro
dynamic Lorentz gauge Aa; a = ° conform ally invariant. 

With Eqs. (3), (4), and (16) valid the left-hand side of 
Eq. (to) transforms as follows (one can consult formulas in 
the Appendix with k = 1): 

e- if [h/1-y;a;a - 2R/1-a/3yh a/3 - (0'0; a + 0' a~)h/1-v ] = O. 

It follows that Eq. (to) is not conform ally invariant, unless 

(17) 

Equation (17) severely restricts conformal transformations 
with respect to which set of Eqs. (to), (3), and (4) is confor
mally invariant. For a given h/1- Y, Eq. (16) also restricts IT; 

however, the origin and the meaning of the restrictions (17) 
and (16) are completely different. Equation (17) represents, 
so to say, the "genuine" noninvariance of the wave equation 
(to), while Eq. (16) is a necessary condition for keeping the 
auxiliary condition conformally invariant. Conformal in
variance of the wave equations and auxiliary conditions for 
potentials seems to be a more significant property than just a 
conformal invariance of the wave equations in terms offield 
components. 

Equation (16), together with Eqs. (3) and (4), selects the 
spin s = 2 solutions with definite helicity as those which 
could be conformally transformed. In general, for a given 0' , 

Eq. (16) restricts ~, v; however, in some cases, the conditio~s 
(16), (3), and (4) can be achieved at the expense of the gauge 
freedom and therefore do not, in fact, restrict the trans
formed solutions. Again, this is true for the Friedmann uni
verses-the case which we are most interested in. For exam
ple, in a background metric 

ds2 = a2(TJ)(dTJ2 - dx2 - dy2 - dz2
), (18) 

the gravitational-wave perturbations obey the auxiliary con
ditions (3), (4), and (8), where u" = (1/a,O,O,O). The metric 
(18) transforms into the flat space-time metric by IT = Ina 
and therefore Eq.(l6) is automatically fulfilled. 

Notice, that gravitational-wave equations and auxiliary 
conditions in Minkowski space-time are conformally invar
iant with respect to Co. Really, a solution to Eq. (17) in Min
kowski space-time is 

(19) 

where a2 = au a", and aa are constants. Conformal rescaling 
with the 0' factor (19) corresponds to a group of conformal 
transformations Co. This rescaling transforms the Min
kowski line element ds2 

m into the line element ds2 = e2ads~: 

ds2 = (c2dt 2 _ dx2 _ dy2 _ dz2). 
(I + 2aaxa + a2x u x u )2 

(20) 

Due to the gauge freedom in Minkowski space-time one can 
introduce Eqs. (3) and (4) and reduce the field equations to 
hill'," ,a = 0. The gauge freedom which remains is described 
by 5/1-,a ,0 = 0, 5 a,a = 0. For 0', given by Eq. (19), we intro
duce u Y = a" + a2x l'= - !e - aO'l', Note that (h/1-yu"),Q·a = 0. 
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The remaining gauge freedom can be used to impose 

(h/1-yu")II = 0 (h/1-yu").an"II = 0, and hence h/1-Yu" 

= ° = h/1-vlTv. Thus, the field equations, the auxiliary condi
tions, and the spin s = 2 solutions with definite helicity in the 
conformally related space-times (20) transform into each 
other. 

III. COUPLING OF A SCALAR FIELD TO CURVATURE 
AND OTHER FIELDS 

The aim of this section is to find the covariant and con
formally invariant, second order, linear, homogeneous dif
ferential equations for a scalar field qJ. As far as this equation 
will be formulated in a curved space-time it will describe the 
coupling of qJ to curvature, but, for the sake of generality, we 
also allow for coupling of qJ to other (nongravitational) sca
lar, vector, and tensor fields, which could be present in the 
given space-time. 

The general form of the equation is 
,A, /3"'" ""'.A.. A ......... 
ca m· +B"m +Am=O T"a;{3 Ta T , (21) 

where CPa =CP.a ;A,B a, and ca/3 are some scalar, vector, and 
tensor fields, respectively, C a/3 = C /3a, since qJ a;/3 = cP /3;0 . 

We make two additional assumptions also. Firstly, we as
sume that the coupling to the external gravitational field can 
be realized only through the metric tensor, the curvature 
tensor, and their different algebraic combinations, so that 
the gravitational part of coefficients, A, B a, and C a{3 should 
be constructed from them. Secondly, we note that the first 
term in Eq.(21) contains a piece ;Pa;a among all other possi
ble contributions. We want this piece to be present in the 
original and in the transformed equation. 

Under a conformal rescaling of the metric tensor the 
gravitational part of the coefficients A, B a, and C a/3 trans
form according to the law which is basically determined by 
Eqs. (13) and (15). As for the transformation laws for the 
non gravitational contributions to A, B a, and ca/3 we will 
derive them from the condition of conformal invariance of 
Eq. (21). 

First we will transform the cP field and its derivatives in 
Eq. (21). Under the transformation rules 

"" fl2 "" fl- I 
Y/1-V = Y/1-V, cP = qJ, 

Eq. (21) takes the form 

fl- I {C a/3[qJa;/3 -2fl- I(CPa fl/3 +fla CP/3) 

+ fl-IYaBcp"fl" - fl-1fla;BqJ 

+4fl-2 fla fl /3qJ - fl-2 y n/3 fl ,yfl <rcP ] 

+ i a 
(qJa - d cP ) + Acp } = 0. 

(22) 

(23) 

For Eq. (21) to be conformally invariant, we need the left
hand side of Eq. (23) to be equal to the left-hand side of Eq. 
(21) (without "carets") multiplied by fl in some power: fl n. 

Since C a/3;Pafl includes ya/3;Pa;/3 and this term transforms as 
lIfl 3(y"{3qJa;{3 + ... ), we want n = -3. Comparing the coef
ficients in front of CPa;/3' CP;a' and cP in between Eqs. (23) and 
(21) (without "carets") multiplied by fl- 3

, one can obtain the 
transformation laws 
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A _ 2 ~ p.A. _.A. _ _ P 
Ca{3 - fl CaP' jY' Cap=C - C =r" CaP' (24) 

Ba =Ba +W-I(flpCaP-!flaC), (25) 
"'-
A =fl-2A +fl-\flaBa +fla;{3ca(3). (26) 

"'-
Let us see what the gravitational contributions to Cap could 
be. This coefficient could contain ra{3' RaP' Ra aRap , etc. 
However, only raP can meet the transformation law (24). 
Hence, 

(27) 

where ca{3 is some tensor field which does not depend on the 
metric, but is connected by a relation 

ca{3 = fl 2Ca{3 (28) 

in the conformally related space-time. Since the coefficient 
A 

Ba has an odd number of indices, it cannot have any gravita-
tional contribution, so Ba = ba, where ba is a vector field, 
independent of metric. Substituting Cap = Ya{3 +AcaP into 
Eq. (25), one obtains the transformation law for ba : 

b" =ba +4fl- I fl{3(cf3a -!cDf3,,). (29) 
"'- "'-

The I!ravitational contributions toA could be of the form, R, 
A .,..;: A 

R 2, RapR ;:, etc. However, only the first term can meet the 
condition R = fl -2 R + ... which is dictated by Eq. (26). 

"'-
Hence, the general form of A is 

'" '" "'-A=aR+m, (30) 

where a is some function and fii is a scalar field. Substituting 
Eq. (30)andBa = ba andCa {3 = Yap + CaP intoEq. (26), we 
obtain the equation 

afl -2(R -6fl -I fla. a) + m 
= fl -2 [aR + m + fl -I(fl aba + fla; a + fla;pcap )], 

which gives rise to the relations 

-6a = 1, fii = fl -2m + fl -3(fl aba + fl a;{3caP ). (31) 

Thus, the most general conformally invariant equation 
of the form ofEq. (21) is 

cp;,,;a _ iRcp + ca{3CP;a;P + b acpa + mcp = 0, (32) 

where caP' ba' and m transform according to Eqs. (28), (29), 
and (31), respectively, unless all of them or some of them are 
equal to zero. Notice that if there exists any other conformal
ly invariant equation for the cp field, it cannot contain the 
operator CP;a ;a. The first two terms in Eq. (32) give the famil
iar equation for a scalar field in a curved space-time. 

IV. CONFORMALLY INVARIANT EQUATIONS FOR A 
SECOND-RANK SYMMETRIC TENSOR FIELD 

Having proved that the equations which follow from 
the Einstein equations for the second-rank tensor field ha {3 
are not conformally invariant, we will try now to find certain 
equations which are conformally invariant. For simplicitly, 
we will consider only the coupling of hap to the external 
gravitational field and not to other fields. The general strate
gy will be similar to the one used in the previous section. \ 
However, in the case of ha{3 there is a complication related to 
the fact that ha {3 should obey not only the field equations but 
also the auxiliary conditions. 
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We are looking for conformally invariant equations 
within the following class of equations. They should be co
variant, second-order, homogeneous differential equations. 
Coefficients in these equations can contain the metric tensor 
Ya{3' the curvature tensor, and their different algebraic 
combinations. 

The general form of these equations can be written as 
follows; 

F"" aapph~ - - p'" aP1'h~ - UA a {3h~ -,.,.v a{3;rr;p + Ill' a{3;1' + I'l' a{3 - O. (33) 

We also assume the validity of the auxiliary conditions 

,=~ D~ 
(35) 

and will demand their conformal invariance. In fact, we 
.A. 

should put Pl'l' a{31' = 0 since a tensor with an odd number of 
indices cannot be constructed as an algebraic combination of 
metric tensor and curvature tensor. 

'" A 
Some properties of the symmetry of tensors F and U 

follow from the fact that 'ap is a symmetric tensor and Eq. 
(33) is assumed to be symmetric with respect to the free indi
ces f..l and v. To the same end, since 

haP;<r,p - ha{J;p;a = ha.R E{3ap + hE{3R raap ' 

we may assume that the first term in Eq. (33) contains only 
the symmetric (with respect to a,p) part of ha {3;a;p while the 
antisymmetric part is included in the last term in Eq. (33). 
This assumption also de~rmines, in part, the symmetry 
properties of the tensor F. 

As we know from Sec. II, under the transformations 
(11) and (12) the gauge conditions (34) and (35) transform 
into Eqs. (3) and (4), respectively, ifEq. (16) is satisfied. 
With the use ofEq. (16) one obtains the following transfor
mation rules for ',.,.';'a and ',.,.';'a;{3: 

',Iv;a = e"(h,ll';a - h,.,.aav - hvaa,.,. - h,.,.v a ,,), (36) 
~ {j {j 

h""";a;P = e
a

(h,.,.v;a;{3 + h
'
'Y;8 YvaP Y + hVY;{j Y,.,.a{J Y 

+ h,.,.yZva{J l' + hvyZvaP Y + hY8 V""l'a{31'{j), (37) 

where 

Yva{J Y8=!Ya{J8v Yo'" - u v(8a 1'8/ + 8pY8a 8) 

- 8v 1'(ua8{J 8 + u{J8a 8), 

ZvapY = !8v
1'( - aa;{3 + 3aaa{3 - Ya{Jabo"') 

+ 8ar( - a v ;{3 + 3ava{3 - Y{3v a{jd") 

(38) 

- Y{3vaY;a + 2avaaD{3Y' (39) 

{j~{j (@) V,Iva{J l' = 2a,.,. al'Da YUp . 

The conformal invariance ofEq. (33) implies that after 
substituting Eqs. (12) and (37) and transformation laws for F 
and Uinto Eq. (33), the left-hand side ofEq. (33) transforms 
into the same expression (without "carets") multiplied by 
some power of ea. The power is determined from consider
ations similar to the ones used in Sec. III. The first term in 
Eq. (33) c9(ltains a piece h~ll'U ;0'. This arises from the contri
bution to F"v aa{3p of the following form: 

A F aa{3p = 8 a DP ,~fip (41 ) 
JLV J.l v r .. 

We want to save the term h,.,.v;O' '" in the transforme5t equa
tion. So we will sacrifice all other contributions to FJlv (m{3p if 
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they do not fit into the transformation law for hp';'u;u. Since 
~ . 

hp';'u;u = e - U(hpv;a;U + ... ), 
we will demand that Eq. (33) be transformed into 

e - "(F!-,,, ua/3Pha/3:o;p + va !-,v/3hap ) = o. (42) 

The right-hand side of Eqs. (36) and (37) already contains 
the factor eU

; therefore, Eg. (42) implies that the transforma-
"" ""'-tion law for the tensors F and V must have the following 

form: 

F "a/3p = e -2a (F ua/3p + ... ) (43) 
liV pv , 

[ja (J = e -2u(Va /3 + ... ) (44) 
~v ~v· 

Unlike what was done in Sec)II, h~e, we could not obtain 
the transformation rules for F and V directly as a result of 
comparing the coefficients in front of ha/3;o;p, ha/3;rY' and ha/3 
in both Eqs. (33) and (42). This is because there may be 
additional terms in these transformation rules which after 
multiplying them by ha/3;o;p and ha/3 can vanish due to the 
auxiliary conditions (3) and (4). A A 

Let us see what are the possible contributions to F and V 
and whether they can satisfy the conditions (43) and (44). As 
far as the tensor Fis concerned, the only contribution which 
meets the condition (43) is Eq. (41). All other contributions 
which can contain different combinations of Kronecker 
symbols, metric tensor, Ricci tensor, and curvature are not 
appropriate. Some of them, IFp D"pya/3 or DrYp Day pPP, though 
they have the correct transformation property, do not play 
any role because they disapp~r due to e,Qs. Q4) and (35). 
The other terms like 8rY D PR u/3 or Y R o:/3R ryp or 
/'.. ""'............. ' f..l v J,LV 

RllvR aaR /3p, which do not disappear due to Eqs. (34) and 
(35), transform with the wrong dependence on e -2u; they 
acquire coefficients e -4u , e -6u , or even e -8u . 

Substituting Eqs. (12), (37), and (41) into Eq. (33) and 
comparing the result with Eq. (42), one can derive the trans
formation rule for fJ. In the course of the calculation it is 
important to notice that because of Eq. (4) the following 
relaton is valid: 

8" fl8/J v y"P(h"y;b Yt.!up yb + ht.!y;b Yaup Yb) = o. 
The other terms give the equation 

A 

hflYZva ay + hvyZflU ay + hyb Vflva ayb + VUpl'/3ha/3e2U 

- U a f3h 
- flV uf3' 

which in more detail reads as 
A 

V a/LV t.!ha/3 = e- 2u [Uu!-'l' Ph a/3 + 2h!-'o:(Tv; a 

+ 2hva (Tp; a + hflv(<Ta; a + 3<Taif)]. (45) 

The general form of [jU,l/ which might be consistent with 
Eq. (44) is 

(46) 

where a, b, c, and d, are arbitrary functions of the space-time 
. • A A A 

vanables. Smce c a /3 = e - 2rYCa /3 and Y R a/3h 
flV /-LV JlV 0/3 

= e 2uY!-'v(R at.! - 2if;t.! + 2ifq!3 _ (Tp/ya/3 

- 2<Tpo"ya/3)ha/3 = e -2uY!-'vR a/3ha/3' the functions c and d 
are not restricted by Eq. (45) and they can remain arbitrary. 
As for the functions a and b, they are determined after substi-
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tution ofEq. (46) into Eq. (45) and they must be a = 1/6, 
b = -1. 

Thus, the general form for conformally invariant equa
tions for a second-rank symmetric tensor field h!-,v is 

hpv;u;a + ~ hill' - hpaR crv - hvaR up + CYpvR a/3ha/3 

+dcu!-,/hu/3 =0. (47) 

These equations and the auxiliary conditions (3) and (4) are 
conformallv invariant ifEq. (16) is satisfied. 

For an easier comparison ofEq. (47) with Eq. (10) we 
can rewrite the former one in the form 

hfll';a;a - 2Ra!-'vf3h ap - iRhflv - !kYflvR a/3ha/3 

+ lCuflYt.!h a/3 = 0, (48) 

where k and I are arbitrary functions. Multiplying this equa
tion by Y flY we obtain its consequence 

2(1 - k )h aPRat.! = 0, 

which says that either k = 1 and then Ra/3h a/3 is not neces
sarily equal to zero, or h a/3Ra{3 = 0 (what has been true for 
the linearized Einstein equations) and then we can put k = O. 
In any case, it is seen from Eqs. (48) and (10) that the most 
important difference between them is the term t,RhiJ.v' The 
lack of this term was the cause of conformal non in variance 
of Eq. (10).23 

One should remember that the conditions (43) and (44) 
were obtained as a consequence of a desire to keep the opera
tor hl'v;a ;0: in the equations. So ifthere exist any other con for
mally invariant equations, different from Eq. (48), it does 
not include this operator. 

We have considered the conformally invariant coupling 
of haP to curvature. There must exist conform ally invariant 
equations which describe the coupling of ha/3 to curvature 
and other fields. Derivation of the general form of such equa
tions is a complicated problem, so we shall restrict ourselves 
to a specific example. This is provided by the equation 

(49) 

where q; is a scalar field. This equation transforms into 

- iT'a a/3 q;;a' ( ~ ) e hflv;a' - 2Ruflv/3h - -;- hl'l' = 0, (50) 

under the transformation rules fP = e - U q; and Eqs, (11) and 
(12), and the conditions (16), (34), and (35). Since the scalar 
field q; transforms with the correct dependence on the con
formal factor, it may obey the conformally invariant equa
tion as well, In that case Eq. (50) can be represented in terms 
of the background variables only, since (q;;a ;a)/q; = R /6. 

It is interesting to note that Eq. (49) can be obtained 
from Eq. (10) as a result of applying the conformal transfor-

. .............A ""'2"'" 
matI on hl'V = q; hfJ.v, Y,tv = q; YfJ.v· 

V. NONEXISTENCE OF A GRAVITATIONAL THEORY 
WITH CONFORMALL Y INVARIANT LINEARIZED WAVE 
EQUATIONS 

Equation (10) was derived from the Einstein equations 
in the linear approximation. Let us see ifEq. (48) can be 
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derived in a similar way from some exact equations which 
generalize Einstein's equations. 

Suppose that the generalized equations have the follow
ing form: 

NI'l" ==R I'" - !gl'" R + Agl", + F,,,, = ~'v' (51 ) 

where F"v is a symmetric tensor, constructed in an arbitrary 
way from the exact metric gl.V(gILV ~YI'" + hI''') and its de
rivatives. In principle, among possible contributions of F"v 
could be terms like RR,l" , Ra(JR "1'/' etc. We do not assume 
that N

I
, ",,,=0 should hold necessarily, at least for the time 

being. 
In analogy to the way in which Eq. (10) was derived 

from the first variation of the Einstein equations, Eq. (48) 
should follow from the equations 

- (YI", oN," + YvaDN" a) = 0 (52) 

and the auxiliary conditions (3) and (4). Since the first two 
terms of Eq. (48) follow from the expression - Yf',,(DR,," 
+ AD" a) - y,." (DRp a + ADll "), Eq. (52) can be reduced to 

2oF,,,. -h"I,F"" -h,,"Fall =iRhf'v + (!k-l)y,,,,hu(JRa(J 

- 1Caf'v{3h "fl. (53) 

[Obviously, the background, or "unperturbed," values of the 
curvature enter the right-hand side ofEq. (53) and back-
ground values of F enter the last two terms on the left-hand I'V 

side of this equation.] The question is whether there exists a 
tensor F which is a solution to Eq. (53). First of all, one can ILV 
notice that since the right-hand side of Eq. (53) is linear in 
the background curvature, the tensor Fl'v can only consist of 
terms which are not higher than quadratic order in curva
ture, or otherwise the variation of Ff'v would give rise to 
quadratic and higher order terms, which are not present at 
the right-hand side ofEq. (53). Secondly, since the right
hand side ofEq. (53) does not contain derivatives of hl'v, we 
should exclude the contributions to Ff'" which could lead to 
them, unless they disappear due to Eq. (4). 

Then, the general form of F,,, which could meet these 
restrictions is F,,, = agf.'" + bRg,,, + eRI'" + mRRw 

+ nR'l OR"" + pR"r;R '\,/ + q4JI(R 2)gw + rR',l;V' where 
all the coefficients are arbitrary functions of space-time and 
4JI (R 2) symbolizes any quadratic function of scalars con
structed out of the curvature tensor. A more detailed analy
sis shows that, in fact, none of the terms with coefficients, e, 
m, n,p, q and ris useful because the variation of each of them 
gives either (i) the second (or higher) derivatives of hI"" 
which cannot be cancelled out, or (ii) the terms which are 
quadratic in the background curvature. Both these cases 
contradict the form of the right-hand side ofEq. (53). Thus, 
we should seek among the terms with coefficients a and b. 
The term with coefficient a (like the cosmological term in the 
Einstein equations) does not play any role because the left
hand side ofEq. (53) calculated from this term is identically 

I 

equal to zero. The term with coefficient b, for b = ~ - !k, can 
give rise to the second term on the right-hand side of Eq. 
(53). However, this term cannot explain the appearance of 
the first and the third term. Since I is an arbitrary coefficient, 
we can choose I = O. However, the presence of the term 
iRhl" is a real obstacle. 

To demonstrate this in a more straightforward way we 
will choose I = k = Oin Eq. (48). Then, a consequence of this 
equation and Eq. (3) is h a(JR"fl = 0, and hence DR is equal to 

. .l:R h R a/3 h:a h (J ;a E t' zero, SInce u = - afl -;a + a;(3 . qua lon 
(53) can now be rewritten in the following form: 

(54) 

One can solve Eq. (54) with respect to quantities OFfl a which, 
by assumption, should be variations of some tensor. Howev
er, from the very way of constructing the solution to Eq. (54) 
it is clear that this solution is not a variation of a tensor. 
Thus, conform ally invariant Eqs. (48) cannot follow in a 
linear approximation from any tensor equations of the form 
ofEq. (51). 

VI. CONCLUSIONS 

It seems that one is left with two options, though each of 
them looks interesting. One ofthem is to agree that the equa
tions which govern weak gravitational waves in a curved 
space-time are not conformally invariant. Then, it means 
that on both levels-classical and quantum-gravitons be
have drastically different from other massless particles. 
Classical gravitational waves can be amplified and gravitons 
can be created (contrary to other massless fields and parti
cles) in a nonstationary isotropic gravitational field, particu
larly in the strong gravitational field of the early Universe. 
The other option is to try to endow gravitons with the same 
kind of coupling to the external gravitational field that other 
massless particles have. Then one has to find some nontrivial 
generalization of the Einstein equations. 
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APPENDIX 

We will give here the transformation rules for different 
terms which could enter the linearized Einstein equations. 
The background metric tensor Y;,rJ and the field variables 
((1 transform as follows: 

where k is an arbitrary constant. We denote a" =a.,,; notice 
also that a,,,,. = a,,'I' . Then, 

-- (h 2h'h~ . ;a = h ;a + 2(k _ 1) h . a" + (k 2 - 2k - 2) h ,a a" 
~lv;a pV;(l jlv,a J-ll a 

+ (k -2)hf.' v a"," + 2au (h IL ";V + h"a"J -2(h,,";aa,, + h"'\,, a!') - 4aa(h!-,"o-v + hvaa,J 

+ 2Y/l,hn{3a"afl + 2haJla", 
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- e --(k - 2)u Ral'y{3h a{3 = - Ral'y{3h a{3 + h a{3(uau{3 - ua;(3)rI'V + hl'Yuaun + hI' au v;a 

+ hyaUI';a - ua(hl' aUy + hyaul') + h (UI'Uy - UI';V - rl'vua un), 
- (k - 2)UhA a , , - e p'u'v 

= -ha,,;~;V' -(k-3)hal';aUy +hav;aul' -ha{3;/JuarI'Y -(k+2)hal';v ua -(k 2-k-6)h a"uau y 

-(k+2)hal'ua;V +(k+2)hayuaul' -(k+2)h a{3uau{3rI'Y +h,vul' +h [UI';V +u"unrl'v + (k-4)ul'uv ], 

e - (k -2)Uh:l':v = h;l';v + (k - 3)(h,l'uv + h,vul') + rl'vh,au" + (k - 2)h [(k - 4)ul'u" + UI';" + uau"rI'Y]' 

e - (k - 2)U(h
A 

"R'" + hA 

aR'" ) = (h aR + h aR ) + 2(h a + h a ) 
I' av v "I' - I' av v al' I'U,,;a "UI';a 

- 2ua(hl' au" + h"aul') + 2hl'''(Ua;a + 2uaun). 
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On a class of solutions of the Krook-Tjon-Wu model of the Boltzmann 
equation 
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The construction of the solutions of the Krook-Wu model of the nonlinear Boltzmann equation 
(elastic differential cross sections inversely proportional to the relative speed of the colliding 
particles) is reduced to the resolution of a nonlinear first order differential system for functions 
which are related to the moments of the Boltzmann distribution functions. These functions 
depend upon only one variable, the time, and are the coefficients in the Laguerre expansion of the 
Tjon-Wu distribution function. We explicitly show how to construct the solutions of the 
nonlinear differential system and study the properties of the corresponding Tjon-Wu distribution 
function. 

1. INTRODUCTION 

Recently Krook and Wu I and Tjon and Wu2 have pro
vided a model of the nonlinear Boltzmann equation for the 
relaxation towards equilibrium of a spatially homogeneous 
and isotropic gas with one species of molecules. As usual 
only binary elastic scattering is taken into account and they 
further assume that the elastic cross section is inversely pro
portional to the relative speed. In their model the Boltzmann 
distribution function F (x, t) (t being the time and x = v2/2, v 
being the velocity) can be obtained from two independent 
although equivalent formalisms: firstly, by solving directly 
the nonlinear integral differential Boltzmann equation2

; sec
ondly, they have shown both that the Boltzmann generating 
function satisfies a well defined nonlinear equation 1 and that 
F (x, t) can be obtained from the Inverse Laplace transform 
of the Boltzmann generating functional. 2 They were able to 
exhibit an explicit particular solution which was also found 
by Bobylevl and they have conjectured and investigated 
whether some features of this particular solution are also 
present in the more general case. In this paper, using mainly 
the second formalism, we extend their recalled results and 
give the method in order to get the solutions while in a com
panion paper,4 an independent study is performed with the 
help of the first formalism. 

The existence of the two above formalisms means that 
the resolution of either the nonlinear integrodifferential 
Tjon-Wu model or of the nonlinear partial differential 
Boltzmann generating function are two complementary 
views of the same underlying problem. This view is strength
ened when we realize that the resolution of the same nonlin
ear differential equation (with only one variable) solves both 
problems and we sketch here very briefly the key equations 
to be considered in order to understand this point. 

There exists a straightforward connection between the 
normalized moments M" (t) of the Boltzmann distribution 
function and the distribution function F (x, t) of the Tjon
Wu model. Let us define 

fl -t 2 

an(t) = 2: (-1) QC':, n M" +2 _q (t), (1) 
q -- (l 

where C% are the usual binomial coefficients; then the (an l 

satisfy a nonlinear differential system 

dan 
(n +3) - + (n +1) an 

dt 

2: aMaN , n=O,I, ... , a,,(t)-..O, (2) 
,W+N=n-,2 t .... c:r 

whereas F e x has an expansion in Laguerre polynomials with 
coefficients ( -1) " a" : 

eXF(x,t) = 1 + i (-1) na"Ct)L" t-2 (x). (3a) 
n....:...::O 

On the other hand, the (a" l enter into the Taylor expansion 
of a function H (u, t) associated to the generating functional 
of the Boltzmann moments 

H(u,t) = f u" +2 a"Ct) 
o 

= -1 + ! u"(1 + u) - (n-+IlMn (t), 
o 

which satisfies a nonlinear partial differential equation 
(n.l.p.d.e.) 

( a a') -+ -- (u+uH)=(1+H)2 au au at 

(4) 

(5) 

and which is also connected to a power series expansion of 
e"F: 

eXF(x,t) = 1 + ! ~ (~H(u,t )') (3b) 
" -~ () (n!)- ax" ,,- I 

In other words, if we solve Eq. (2) and substitute the an's into 
the expansion (3.4), we have both a class of solutions of the 
Tjon-W u model and of the Boltzmann generating functional 
n.l.p.d.e. [Eq. (5)]. 

The aim of this paper is to solve the system (2) for the 
l a" (t) l and to study the corresponding properties for 
F(x, t). In the second section we recall briefly the general 
formalism from which we have taken here in Eqs. (1)-(5), 
the key equations. In Sec. 3 and 4 we study the general struc
ture ofthe solutions ofEq. (2) and some general properties of 
F(x, t). 

We quote here the more salient features: 
(i) Due to the particular form of the linear part of Eq, 
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(2) (l.h.s.) and the fact that the r.h.s. can be recursively deter
mined we easily see that an (t) (n fixed) is a superposition of a 
finite number of terms carrying only discrete well-defined 
time dependence, the less decreasing one being 
exp[ - [en + l)/(n + 3)]t j. This property is fundamental 
for the reconstructed F(x, t) because the only time depen
dence is provided by the set [an (t) j. Consequently, an (t)-o 
when t~oo and the Maxwellian behavior equivalently 
eX F~ 1 at large x (but a priori finite) is automatically satisfied 
at equilibrium. Investigating the reason for this important 
property of the formalism, we find that it is a consequence of 
the conservation of mass and energy and allowing a violation 
of energy conservation we show a corresponding violation of 
the asymptotic Maxwellian behavior. 

(ii) Due to the explicit form of the expansion (3b) we see 
that the initial conditions on eXF(x, 0) can equivalently be 
replaced by the yield ofa set of values of H ( -1,0) and of its 
derivatives. We establish a set of sufficient conditions in or
der that the series in Eq. (3b) be absolutely convergent and 
define, for any t value, an integer function in the x plane. 
From Eq. (3a) we remark that ex /2F is a series of Laguerre 
orthogonal functions. For these orthogonal functions we 
show that a finite number of terms in their Taylor series 
provide lower and upper bounds which can be carried out in 
eX !2Fwhen the coefficient an (t) possess well defined positiv
ity properties. 

(iii) Investigating the properties of the integrodifferen
tial Boltzmann equation corresponding to the Tjon-Wu 
model, we study under what conditions the positivity of 
F(x, t) at t = 0 can propagate at positive t values. 

(iv) Still due to the fact that the r.h.s. of Eq. (2) can be 
recursively determined, it is clear that an (t) depends at most 
upon n independent arbitrary constants which are intro
duced by integrating either the first, the second, ... , the nth 
equation of the system. These constants appearing either at 
the origin an (0) or at infinity an = lim,._oo an (t) 
X exp[(n + I)/(n +3)]t, this gives us the possibility to clas
sify the solutions in two different classes. 

In the first class (see Sec. 5), the fundamental solutions 
called "pure solutions" are those having all constants an =0 
except one ano #0. They possess very interesting properties. 
For any n there exists only one term in an and so only one 
time dependence multiplied by a constant which can be de
termined recursively. They lead in Eq. (5) to "solitonlike" 

. solutions with the meaning that these solutions for H depend 
in fact upon only one variable linear combination oflogu and 
t. We can also define the mixing of a fin ite number of such 
solutions requiring that all limt-oo an (t) 
Xexp(n +I)/(n +3)]t = 0 except for two (no, n\), three 
(no, nu n2), .. ·values. The particular Krook-Wu solution 1 is a 
particular mixing solution for flo = 0 and n 1 = 1 having the 
interesting property that for t larger than some well defined 
to value, the F(x, t) remains positive. Unfortunately, when 
the [an), corresponding to other solutions than the Krook
Wu one, are substituted into the expansion (3), we have not 
found any other example whereF(x, t) remains positive for t 
large. Consequently, we must look at other classes of solu-
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tions of the system (2) or at an infinite mixing of pure 
solutions. 

In the second class (see Sec. 6), the fundamental solu
tions called "positive solutions" are those having all a" (0) 
= 0 except one a" (0)#0. Then we can control the positivity 

property of the Laguerre expansion at t = O. Fortunately, 
these positivity properties subsist at higher t values in such a 
way that we can construct positive F (x, t ) solutions. Howev
er, their explicit construction is cumbersome. For a" given 
there is not a unique time dependence but a finite number of 
terms carrying different time dependences. However, we can 
still provide a recursive scheme in order to construct explic
itly the solutions. We can also define the mixing of such 
positive solutions having only two, three, ... an (0)#0 and 
carrying positivity properties for the F (x, t ). For an infinite 
mixing it is not very easy to find at t = 0 the conditions on 
the set [a" (0)] ensuring the positivity of the sum of Laguerre 
polynomials eXF(x, 0). However, with the help of the gener
ating functional of the Laguerre polynomials we can con
struct exemples of expansions (3a) at t = 0 where the sum is 
given in closed form so that we control easily the positivity. 
Finally, as an illustration of our method we quote some nu
merical examples of solutions for t = 0 and t # O. 

2. THE FORMALISM 

Here we recall briefly the Krook-Tjon-Wu formalism 
while in the companion paper4 a more general derivation is 
performed. We consider the Boltzmann equation for a spa
tially homogeneous and isotropic gas and assume that the 
elastic cross sections of binary collisions are inversely pro
portional to the relative speed. We consider the Boltzmann 
distribution function/(v, t) (v being the velocity, t the time, 
and x = v2/2 the energy) and the units are such that 
exp( - x) corresponds to a Maxwellian distribution. To/(v, 
t) we associate the momentsMn (t) normalized in such a way 
that lim,.x Mn (t )= 1 if/(v, t) tends to a Maxwellian distri
bution at infinite time. We define G, a generating functional 
of these moments, which can also be considered as a trans
form of/(v, 1): 

G(t,t) = !t"M,,(t). (6) 
o 

rx ( 2"n' ) G ({;,t) = 41TJo V2,,~o -(2-n-+-'-I)-! (tv
2
)" lev, t) dv. 

(7) 

The moments M" must satisfy well-defined constraints: 
Mo==l for the conservation of masses, 1'.11==1 for the conser
vation of energy, and the requirement of a Maxwellian distri
bution at equilibrium 

(8) 
/-·00 

Taking into account these constraints we define a new gener
ating functional H, a new variable u, and a set an (t) deduced 
from the Mn (t) following the relation (I): 

H(u,t) = - Mo + (1 - t)G(t,t) 

=a·l(t)u + f U"+2a,,(t). 
o 
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Mo==l, ;(1+u-1)=I, a_1=MI-MO='=0, a~(t)_O, 
t~oo 

n +2 

M,,(t) = 1 + I C~an_2_q (t), n>2. (1') 
q~O 

Krook and Wu have shown that the moments M" (t) satisfy a 
nonlinear system of equations 

d (n -1) 1 n-l 
-Mn +Mn = -- I MkMn_ k, 
dt (n+l) n+l k=1 

(n>2) 

from whichs follows that G satisfies an nJ.p.d.e. 

( arat + ~ );G = G2
, (5') 

which reduces to the n.1.p.d.e. (5) for the H (u, t) generating 
functional. If we substitute H (u, t) having the particular ex
pansion (4) into Eq. (5): 

I U(2 r n)[ (3 + n) da;;t) + (n +1) an(t)] 

= (I u2+
n
an (t)Y 

(2') 

we are reduced to a problem depending upon only one vari
able t. We have to solve the nonlinear system (2). Once this 
system has been solved we substitute the an (t ) into G: 

G~,t)=(I-;tl[1 + !.an (t)(;(l-S-YI)n+2], 

(4") 

and the Boltzmann distributionJ(v, t) can be obtained by 
inverting the transform (7). 

Due to the complexity of this transform (7), Tjon and 
Wu have defined a new distribution function F(x = v2/2, t) 
through inverse Laplace tranfsorm: 

(9) 

In order to compare the two distribution functionsJ and Flet 
us define new moments Mn(t) = s; xnF(x, t )dx and from 
Eqs. (9) and (6) we get n!Mn = Mn. It follows that 
Mo = MI = 1 and the same conservation laws hold. Further
more, from Eqs. (5') and (9) it follows that F satisfies an 
integrodifferential nonlinear equation 

~ (e'F(x,t» at 
= e- / (~d~' (dx" F(x' - x",t)F(x",t) dx". (10) 

L x Jo 
Recently Tjon and Wu2 have given the necessary assump
tions in order to derive Eq. (10) directly as a particular case 
of the nonlinear Boltzmann equation. 

In this paper we shall not try to solve Eq. (10) directly 
although our main interest will be the study of the Tjon-Wu 
distribution F (x, t ). Our strategy will be to solve the system 
(2) for the (an), substitutethean into G given by Eq. (4"), and 
get F (x, t ) throught the inverse Laplace transform ofEq. (9). 
Let us remark that the inverse Laplace transform of ( _ ~)" 
(1 - 0 (n 'I) is just the Laguerre polynomial L"(x) 
= ~~ c 0 ( -1) qxqc % (q!)-I multiplied by e -- x and it follows 

that 
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e»F(x,t) = 1 + !. a"(t)( -1) nLn+2 (x). (3a) 
o 

From the explicit expression of the L n (x) in power of x we 
can formally rewrite Fe» as a power series (assuming that we 
can interchange the order of summations) 

eXF(xt)=l+ f ~(~H(U,t») (3b) 
, q = 0 (q!)2 auq 

u ~ --I 

~q H(U,t)\ au u = -I 

= (-1) qI (n +2)(n +1)n"-(n +3 - q) (-1) nan(t), 

which can be justified only after a study of the properties of 
the [an l or of the [H(qJ(u = -1)l. Sufficient conditions for 
absolute convergence in Eq. (3b) will be established later. If 
whent-oo ,an(t )-0, then for xlargebutfinite,F(x, t ) tends 
to the Maxwellian distribution e - x. The power series (3b) 
explicits the link between the two formalisms discussed in 
the Introduction. We have the relation 

~ (F(x,t)ext=o = (q!)-l ~H(u,t)u=_1 . (11) 
Ju q auq 

3. GENERAL STRUCTURE OF THE SOLUTIONS OF THE 
NONLINEAR DIFFERENTIAL SYSTEM (2) FOR THE 
(an(t)} 

If in Eq. (2') we require for each power un +2 that the 
coefficient (which depends only on t) is identically zero, we 
get two linear differential equations for ao and a, and the 
nonlinear system (2) for n>2: 

dao da l 3 - + ao = 0, 2 - + a, = 0, 
dt dt 

dan " 3 (n +3) -- + (n +1) an = ~ amap , n = 2, ,oo •. 
dt m+p=n-2 

(2) 

For n = 0 and 1 we integrate directly and get ao(t) 
= aoexp( - t /3),a l (t) = alexp( - tl2), whereaoandal are 

arbitrary constants. Let us define two sets of constants an 
= lim/_."" an(t) exp[ - ten +l)/(n +3)] andan(t = 0). 
For n = 0 and 1 these constants are identical although this is 
not true for n>2. For n>2 the r.h.s. ofEq. (2) gives a known 
contribution when the am with m<n -2 have been pre
viously determined. In this way we get 

a2 = a 2exp( -3t /5) - 3a~exp( -2t /3) 

= alO)exp( -3//5) + 3a6 
X [exp( -3t /5) - exp( -2t /3) ], 

a) = aJexp( -2 t /3) -2 aoulexp( -51/6) 

= alO)exp( -2t /3) -2 aval 
X [exp( -5t /6) - exp( -2t /3) ], 

and we verify that an 1= an (0). We could go on recursively for 
higher n values and write explicitly an; however, a general 
framework for the solutions can be established. Let us define 

an (t) and integrate formally Eq. (2): 

an (t) = (n +3t
l 

[exp( : :~ t Yf am (t )a" -2 - m (t)). 
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an(t)=exp[ -(::~ )t][an + L an(t')dtl (12) 

an(t) = exp[ - (: :! )t Han (0) + L an(t')dt'], 

where the constants an and an (0) verify the relation an 
= all (0) + S; an (t )dt. The validity of the first representa
tion in Eq. (12) requires limr-+co an (t) = 0 and we shall first 
prove this property. Ifthis is true, then liml-CO an (t) = 0 and 
from Eq. (1') we see that the asymptotic conditions 
lim,. 00 M n (t ) = 1 are automatically satisfied. Secondly, the 
most general solution an (t) depends upon n arbitrary con
stants and we shall classify different classes of solutions. 
Thirdly, we emphasize that the property Mn (t )---» 1 [or 
all(t )-0] when t---»oo is in the present formalism a conse
quence of the conservation laws Mo==MI = 1. We explicitly 
show that a violation M\ =1= 1 leads to an -/-.D and consequent
ly to a violation of the asymptotic Maxwellian behavior in 
Eq. (3). 

A. an(t) when t~oo decreases at least like 
exp( - [(n + 1)/(n + 3)]t} 

We shall prove this property by induction. It is true for 
Il = 0, 1; let us assume that the property holds for n = 0, 1,2, 
... , n -2, and try to prove it for n. am decreases at least like 
exp[ - t (m + 1 )/(m +3)] for m <,n -2; then an decreases 
at least like exp( - bt) with 

m +1 n -1 - m n +1 
b=--+ 

m +3 n + 1 - m n +3 
or 

b = (n -2) (m(n -2 - m) + n +6 ) -7m(n -2 - m) +3 

(n +3)(m +3)(n +1 - m) 
>0 Vm<,n -2. 

Consequently, we can integrate an (t) when t----+ 00, the repre
sentation (12) is valid, and an (t) decreases at least like 
exp[ - (n +1)t I(n +3)]. As a by-product an is really de
fined as lim t .", an(t) exp[«n +1)/(n +3»t]; further, 
all (t )----+0 and thus the boundary conditions (8) for the mo
ments are satisfied. 

B. Classification of the solutions (an) following the yield 
of the arbitrary integration constants 

all depends upon n arbitrary constants ao, al, ... ,an , or 
equivalently ao(O), a, (0), an (0), or equivalently by n con
stants where for each p value p<,n we choose either ap or 
ap (0). If the solution is known for m<,n -2, then we deter
mine an and deduce all' Because the number of arbitrary 
constants increases with n, it follows that there exists an 
infinite number of solutions and if we substitute these an into 
Eq. (4) or (3) we get an infinite number of solutions for Eq. 
(3)-(10). In order to clarify the discussion we shall define 
two bases characterized either by {an 1 or by (an (0) l. 

(i) In the first basis, the fundamental solutions, called 
pure solutions, are defined by having only one an, #0. In 
that case the an (t) have only one term, only one time depen
dence, and the constants can be determined recursively. In 
this way we can also mix two, three, ... , an infinite number of 
such solutions with only two, three, ... , an infinite number of 
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an # O. Iffor all n we take an # 0, we reconstruct of course the 
general solution. These pure solutions are in some way simi
lar to "solitons" with the meaning that for Eq. (5) they de
pend in fact upon only one variable linear combination of u 
and t. These solutions are studied in Sec. 5. The particular 
solution found by Krook and Wu is a particular mixing of 
two such pure positive solutions which leads to a positive 
F (x, t) for t higher than a well-defined to. Unfortunately, 
when these pure solutions (or a finite mixing of them) are 
substituted into the expansions (3a) for F(x, t) we have not 
found any other example where F (x, t ) remains positive for t 
sufficiently large. 

(ii) In the second basis, the fundamental solutions, 
called positive solutions, are defined by having only one 
an(O)#O. In that case for any finite n, an is a sum of a finite 
number ofterms with different time behavior and always one 
term decreases like exp[( - (n +1)/(n +3»t]. Then the 
computation of an' which can also be done recursively, is not 
so easy as in the previous case. We can also define the mixing 
of two, three, or an infinite number of such solutions requir
ing that only two, three, or an infinite number of an (0) are 
different of zero. Clearly, also if all (0)#0 for all n, we recon
struct also the general solution. The great advantage is that 
we control the positivity at t = 0 and by substitution into Eq, 
(3a) we can start with solutionsF(x, t) > Oat t = Oand which 
remain positive for positive t. These solutions are studied in 
Sec. 6. In fact, the positive solutions can be built up from an 
infinite mixing of pure solutions and conversely. Consider 
for instance the positive solution ao(O) #0 [an(O) = 0 for 
n #0]. From Eq. (12) we get a2p + I = 0, a2 = 3a~ and more 
generallya2p = Sa a2p (t, ao, a2,···, a2n _ 2 )dt #0. Converse
ly, the pure solution ao#O (an = 0 for n #0) can be obtained 
requiring aiO) = -3 a~, a2p + I (0) = 0, and azp(O) 
= - S(;' a2P (t, ao' alO), a2n - 2 (O»dt. 

(iii) More generally we could consider another basis in 
the following way: For any n value we associate either the 
pure solution all #0 or the positive solution an(O)#O, the 
rule for such a basis being that the more general solution 
built-up by mixing all the fundamental solutions of the basis 
must contain for an (t), n arbitrary really independent 
constants. 

C. Violation of the energy conservation law M1=1 

As we have seen, the structure of the system (2) is such 
that the property a" (t )---»0 when t----+ 00 is automatically satis
fied. Consequently, in Eq. (3a) at large but finite x and t----+oo, 
then F(x, t) tends to the Maxwellian distribution e - x. In 
order to understand more clearly this important property we 
relax the moments conditions M j (t )--1 for i = 1, 2 and con
centrate our attention on the second moment condition. If 
Mo(O) = 1 but M1(O)# 1 as we shall see, Ftends to [MI(O)]-' 
X exp[ - x/ MI(O)] when t----+ 00 and so leads to a violation of 
the Maxwellian distribution at equilibrium. 

Let us start with the representation (4') where M j =k 1, 
i = 1,2 and substituting into Eq. (5') we obtain a generaliza
tion of the system (2): 

(
dan 

(n +3) -+ 
dt 
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a_2 = M o, a_I = MI - M o' n = -2, -1,0, 1,2,..·,(2") 

which reduces to Eq, (2) when Mo=:oM I =1. Ifwe solve the 
two first nonlinear equations for n = -2 and n = -1, we 
get that the two first moments are proportional 

Mit) = MI(t) = [M (0) + (1 _ M (O»)e' ]-1. 
Mo(O) MI(O) a a 

We have two different possibilities: 
(i) if Mo(O) = 1, we see that Mo(t )=1 and 

MI(t) = MI(O); 
(ii) if Mo(O) =1= 1, we consider first Mo(O) > 1 and get that 

Mo(t ), M I (t ) are increasing functions with a discontinuity at 
t = 10g(Mo(0)/(Mo(0) - 1») becoming negative for larger t 
values. Secondly, if Mo(O) < 1, we see that Mo(t) and MI(t) 
are always decreasing, remaining positive and going to zero 
when (--+00. In the following we always consider the first 
possibility Mo(O) = 1 which implies Mo(t )= 1, MI (t) 
=MI(O) = 1 + A, with A not necessarily zero. We put 
a_2 = I, a-I = A, or MI = 1 + A into the above nonlinear sys
tem and get a new one very similar to Eq. (2): 

d 
(n+3)-a,,+(n+l)a,,= I amap , 

dt m +p= II ~2 

with the change that n begins to -1 instead of O. Let us 
write formally an (t) = A" +I8n + btl (t), 8_ 1 = 1, b_I=O, 8n 
being constants, and substitute it into the nonlinear differen
tial system. Then we get two distinct systems. The first one is 
time independent (n + 1)8" = ~ 8m 8" ~2 __ m and gives di
rectly the solution 8" = I whereas the second one is time 
dependent: 

(n +3) !!....b" + (n + l)bn 
dt 

I (b mA P + 2 + bpA m+2 + bmbp ), 

m+-r=n-2 

n= -1,o,1,.··. 

The solution can be written 

b,,(t)=exp [ -(::~ )t][b,,(O) + Lexp(::~)t' 
X [m+ p~" 2 (bm(t ')A

p
+

2 + bp(t '),1 m J-2]1 

+ bm(t ')bpCr ') dt 'J, 
where the arbitrary constants are defined at t = 0. Here also 
the solutions (b" (t») can be obtained recursively. Starting 
with bo = bo(O)e .. , /3 we determine b I' h2,. .. It can be shown 
by induction that if bo(O)=1=0 then the bn (t) decrease at least 
like exp( - t /3). If bo(O) = 0, we get b l = bl(O)exp( - t /2) 
and we still show by induction that btl decreases at least like 
exp( - ( /2) and so on. In conclusion, an (t) - A" +2 tends to 
zero when t--+ 00 . 

Next we substitute into the Laguerre expansion (3b) 
(where the summation now begins at n = -1) neglecting 
the contribution due to (bn (t» and investigate the asymptot
ic behavior when t--+oo. Taking into account the generating 
functional of the Laguerre polynomials5 we get F f!' 
-~~ (- A)n L,,(x) = (1 + A y 1exp(Ax/l + A )if\A\ < 1. For 
the power series expansion (3b) we get 
~ ( - x)q(q!yl~ ( - A )"c~ = (1 + A )-I~ (Axil + A y(q!)-1 
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if \.,1. I < I, leading of course to the same sum. In conclusion, if 
Mo = I,M1(0)=I= 1, then 0 <M1(t)=M1(0) <2andF ...... M 1~1 

exp( - xl M I ) when t ...... oo. We note that in order to build F 
from the (an) we have to consider some restrictions ensuring 
the convergence of the sums in Eqs. (3a) and (3b). In the 
remainder of the paper we always take Mo=M1=:ol. 

4. SOME GENERAL PROPERTIES OF THE T JON-WU 
DISTRIBUTION F(x,tj 

It is outside the scope of the present paper to establish 
the existence and properties of F(x, t) from arbitrary initial 
conditions at t = O. The first property that we investigate is 
the positivity of F(x, t). We shall study under what condi
tions the positivity of F (x, t) at 1 = ° can propagate to posi
tive t values. Both the Laguerre polynomial and the power 
expansions being not very convenient for the positivity prop
erty, we shall use directly the integrodifferential equation 
(10). As a second property we shall establish a set of upper 
and lower bounds for the Laguerre orthogonal functions 
which are useful for the study of F(x, t). 

The third property that we consider is the existence of 
F(x, t) from conditions at F(x, 0) and we can use different 
approaches, 

(i) F is the inverse Laplace transform of G. G is given by 
the expansion (4") and built with the (a n (t ». We can study 
the analytical properties in the; plane and the asymptotic 
growth of G. This requires bounds on (Ian (t)l) from given 
a" (0). Due to the great number of different possibilities for 
introducing the arbitrary constants in the system (2) such an 
approach is not easy if we expect simple cases like the pure 
solutions which is studied directly in Sec. 5. 

(ii) Consider F given by the Laguerre expansion (3a). In 
the case of Laguerre polynomials the region of convergence 
is a parabola around the x > 0 axis with focus at x = 0 and F 
must satisfy certain growth conditions (Szeg05

). 

(iii) Consider the power series given by Eq. (3b) and try 
to obtain sufficient conditions at 1 = 0 ensuring both the ab
solute convergence of the series at any 1>0 and the existence 
of sums F (x, t ) which are entire function in thex plane for all 
(>0. Let us define the following with the modulus Ian (t ) I: 

Nq(t) = I (n +2)(n +1) ···(n +3 - q)1 an(t)l, 

(13a) 

and we get absolute upper bounds for the power series (3b): 

(l3b) 

N q (t) is an absolute bound for theqth derivative of H (u, t) at 
u = -1 or for the qth derivative of eXF(x, t) at x = O. We 
want to get sufficient conditions at ( = 0 such that Nq (t) 
leads to entire x functions for the l.h.s. of Eq. (3b). Assume 
for instance that under well-defined conditions 
Nq (t )«const) qq!, where the constant is t independent; then 
the l.h.s. ofEq. (14) is less than exp\xl const for any t>O. In 
such a case we have absolute convergence for the sum (3b) 
and we can apply the Fubini theorem in order to justify the 
inversion of summations in Eq. (3a) and (3b). In order to get 
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bounds on Nq (t ) we start with Eq. (2') and differentiate 
(q -I) times with respect to u. Equating to zero the coeffi
cient of u3 + n ~ q we get a nonlinear differential system like 
Eq. (2) that we integrate from 0 to t [as Eq. (12)]: 

(n +2)· .. (n +3 - q) an (t) 
= e~ I [en +2) .. ·(n +3 - q) an(O) 

+ q(n +2)- .. (n +4 - q) an (0)] 

- q(n +2) ... (n +4 - q) an (t) + e ~ I 

Xl' e" [2(n +2) ... (n +4 - q) an(t') + :~OC~~I 

X I am(m +2) ... (m +3 -p) 
m+m'=n--2 

Xa m ,(m'+2)···(m'+3-q+l+p) ]dt" (14a) 

We take the modulus of both sides, bound the r.h.s. by the 
sum of the modulus of the different terms, sum over n, and 
find 

Nq (t ) < e - I [Nq (0) + qNq ~ I (0)] + qNq (t) + e ~ I 

X I' e" [2Nq ~I (t') 

+ :%0 C~_I Nq(t')Nq~1 ~p (t')]dt" 

The possibility of obtaining bounds for Nq , recursively, from 
the set! N q (0) J, p<,q and No(t) is clear. 

(iv) It is also interesting to obtain sufficient conditions 
at t = 0 such thatF ex

/
2 [which from Eq. (3) is expanded in a 

series of Laguerre orthogonal functions e ~ x12Ln(x)] is 
square integrable for all t>O: 

fO eX F2(x,t )dx = I a~ (t) = AT (t) (15) 

or equivalently to find conditions such that AT (t>O) < 00. 

This could be the starting point for a study of an expansion in 
L 2 space. However, let us remark that AT (0) is not directly 
related to initial conditions at I = 0 as is Na(O). In the com
panion paper4 we introduce an Hilbert space of solutions so 
that the solution stays in this space at ulterior time if it is 
present at I = O. 

There exists a class of solutions of Eq. (2) interesting 
because the sign of a n (t ) does not change with t and is known 
with n. In these cases the positivity properties ofthean playa 
crucial role for their study and for instance bounds on Nq (I ) 
are easily obtained. 

A. Some results concerning the positivity property of 
F(x, t) for 1;>0 

Because the positivity properties that we shall obtain 
are independent of the choice of the initial positive value to, 
for simplicity we choose 10 = O. 

We integrate Eq. (10) to obtain an equation where 
F(x,O) appears explicitly: 

e'F(x,t) = F(x,O) + A (x,t), 

A (x,t) = L e"(L" ~' f' F(x' - x",t ')F(x",1 ')dX")dt' 

(16) 
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and consider the difference of F at x I and x 2 : 

e'(F(xl,t) - F(x2,t» = F(xl,O) - F(x2 ,0) + B (X I ,X2,t), 

(17) 

i' iX'd' B (x l,x2,t ) = e" ~ 
a x, X 

xf' F(x' -x",I')F(x",t')dx"dt". 

We assume F (x,O) > 0, F (x, 0) -+ 0, and for x >,i fixed, 
x--.. + 00 

F(x,O) is strictly decreasing, F(xl,Q) > F(x2,0) if,i <XI <x2 • 

Further we assume at this stage that there exists a finite in
terval .J 1 as small as we want such that F (x,t ) > 0 for 
O<,t <.Jt. Finally, weassumethatF(x,t )aresmooth continu
ous functions going to zero when X-+oo in order that the 
solutions of the integral equations(IO)-(16) exist. 

First we want to show that the positivity property of F 
and the decreasing property (x > X) at infinity of Fpropagate 
forward in time. At 1 =.Jt these properties are obvious be
cause in A and B (X2 > x I) we integrate with positive func
tions. Now t >.Jt and x finite e '·F is a sum of two terms 
F (x,O) > 0 independent of t and A (x, t) continuous in t and 
such that F (x, .J t ) > O. Consequently, for each finite x there 
exists a finite interval.Jfsuch that F(x,.Jt +.Jf) > 0, Simi
larly, in Eq. (17), F(xl' 0) - F(X2' 0) > 0 and B (x I' x 2, t), a 
con tin uous function of t, is such that B (x I' x 2, .J t ) > O. For 
any couple of x I> x 2 values there exists a finite interval.Jt 
whereF(xl,.Jt +.Jl) - F(x2,.Jt +.Jr) > O. Unfortunately, 
these intervals are (x I' x 2 ) dependent; however, their exis
tence contradicts the existence of a negative part of F for x 
very large and t sufficiently close to.JI because in such a case 
the above inequality between x I and Xl must be reversed in 

order to satisfy F < 0, --+ O. On the other hand, for x finite, 
x- .. oo 

.Jf> 0 is also x dependent; however, its existence shows that 
for 1 sufficiently close to.Jt a zero cannot appear at x finite. 

Secondly, if for some to> 0 and Xo finite, F (xo, to) < 0, 
then the negative property ofF propagates backward in time 
and this property must have appeared first at x = 00. On the 
one hand, in this case A (xo,to) < 0 is larger in modulus than 
F (xo,O); on the other hands, there exists .Ji such that A (x{), 
.Jt +.Jf) > Oand consequently from the continuity property 
there exists t I strictly less than to such that A (x{),t I) = O. 
From Eq. (16)F(x,tl) must have some negative part and let 
us call XI the smallest x value such thatF(xp/,) <0. With the 
same argument at above we define t2(X 2 ) < t I (x I) < to(xo), 
where F (X2,t2) < 0 for the smallest x value and we go on. The 
strictly positive decreasing sequence t, (x,) must have a limit 
tlim' The x values corresponding to tlim cannot be finite oth
erwise F(x,O) > 0 is finite and the argument comparing 
F (x,0) and A (X,llim ) works again and so the only possibility is 
that these x values are going to infinity. If we now let 1 de
crease from llim up to zero, either we find F (x,t ) > 0 or other 
negative parts coming from earlier time at x equals infinity. 
Let us now consider the smallest tlim . It cannot belong to the 
interval.J t. Now we go forward in time and use our previous 
argument. For I < tlim , F(x,t) > 0 and so F(X,llim) > O. For t 
sufficiently close to llim ,F (X,I ) cannot be negative for x finite, 
and F (x,t ) is decreasing for x large in such a way that a nega
tive part of F cannot appear. 
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Concerning the existence of a small Lit domain where 
F (x, t ) > 0, we want to give plausibility arguments from posi
tivity at t = 0 using both continuity property and a first or
der expansion around t = O. From F(x, 0) > 0, 
lim{ .oA (x,t) = O,andthecontinuitytpropertyofA (x,t)we 
see that for x finite, there exists a finite t interval (x depen
dent) such that F (x,O) + A (x,t) > 0 so that F(x,t) > O. Ifwe 
expand Eq. (16) up to order t 2 around t = 0, we get 

e{F(x,t )~F(x,O) + t roc d~' (F(x' - x",O)F(x",O)dx" J x )0 
+ 0(t 2

) (16') 

and we see that the two first order terms are positive if 
F (x,O) > O. From the assumed decreasing property ofF (x, 0) 
for x > X, and lim{ -+0 B (x I' x 2, t) = 0, using the continuity 
property in t we see that there exists a finite t interval (x I' X 2 

dependent)suchthate '(F(xl,t) - F(x2,t» > Owhenx l > x 2 • 

If we expand Eq. (17) around t = 0, we get 

IX'dx' 
=F(xl,O) - F(x 2,0) + t -, 

XI X 

X f F (x' - x" ,O)F (x" ,O)dx" + 0 (I 2) (17') 

and we see that the two first order terms give 
F(xl,t) - F(x2,/) > OforX <XI <X2 orthatF(x,/) is also de
creasing if F (x,O) is decreasing. This excludes the possibility 
of a negative tail at large x [a negative tail and the condition 
F (x,t )-.0 requires that F (x,t ) must be increasing when x is 
sufficiently large and goes to infinity]. As a final remark and 
always at the level of a plausibility argument we observe that 
if we let F(x,O) be zero for a finite number of Xi values (Xi 

finite), then from Eq. (16') the remaining first term propor
tional to t is positive and so for these x{ values and t> 0 
sufficiently small, F (x, t) > O. 

B. A set of inequalities for the Laguerre orthogonal 
functions and application to the determination of a set 
of lower and upper bounds for F(x, t) 

The study is done in Appendix A. Let us define I" (x) 
= e - xl2Ln (x) and consider their Taylor series around 

x = O. We note that the even derivatives atx = o are positive 
whereas the odd derivatives are negative. Ifwe consider this 
Taylor expansion for x > 0 and retain a finite number of 
terms, then we get lower and upper bounds 

If [see Eq. (4d)] we consider the case where the sign of an (t) 
does not change with t and where either an or ( -1) nan orck 

or ( -1) kCk does not change sign, then these inequalities are 
useful. If( -1) nan has always the same sign, then from Eq. 
(15) we get corresponding inequalities for the sum 
eX12(F -1) = l: (-1) nanl n -+ 2 (x) where the derivatives for 
In are replaced by the derivatives of the sum atx = O. Ifnow 
( -1) Dan change sign, we separate the sum in two parts: one 
negative and another positive and we supply the above in
equalities for the two parts. If we have calculated some first 
terms of the expansion (3a), we can apply these results for 
the remaining part of the sum. 

C. Convergence of the power series (3b), existence of fi/(t), and sufficient conditions on the sets I Nq(O) I in order to 
have entire x functions for eXF(x,t) 

We assume that at t = 0 we have absolute convergence in Eq. (3b) with the set N q (0). Equivalently, the r.h.s. ofEq. (l3b) 
has an infinite radius of convergence at t = 0 and we want to establish sufficient conditions in order to have the same property 
at t i= O. First we establish with the help of Eq. (12) bounds on No(t) and N (t ) from conditions on No(O). Secondly, we find 
bounds on AT (t ) from conditions onN (0). Thirdly, we recursively obtain bounds on N q (I ) from conditions on No(t ) and Np (0), 
p<q, with the help ofEq. (l4b). 

1. Bounds on No(t) = ! Ian (t) I and AT = ! a~ (t) from conditions on No(O) 

We put y" = (n + l)/(n~ + 3) in Eq. (12), no b~i~g either 0 or 1 or 2, ... ; we remark that the first nonlinear contribution 
appears for n = 2no + 2 and we have 

lan(t)1 < lan(O)lexp( - y,J), n<2no + 1, 

Ian (t)1 < exp( - y" t)[ Ian (0)1 + (n + 3)-1 L exp(Yn t ') m -+ p~ p -2 lam (t ')llap(t ')Idt'], n>2(no + 1). (l7a) 

We remark that exp( - yt )S~ (expyt ')1 f(t ')Idt' is a decreasing y function and n + 3>2no + 5 in the second inequality; it 
follows 

la" 1< exp( - Yn"t)[ lan(O)1 + (2no + 5)-1 L exp(YnJ)I lam Ilap Idt'], (17b) 

where y" .. = (no + 1)/(no + 3). Summing over n we get a nonlinear integral inequality: 
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No(1 )exPYn, t<.Mo(t), 

Mo(/) = No(O) + (2no +5t1 l' N~(t ')exp(Yn,t') dt'. 

We remark that 

- :t M o-t (t) = (2no +5t l M o-2(exPYnJ)N~ < (2no +5) exp( - Yn,t); 

integrating both sides we get 

No(O)(M{)(t »-1> (I - No(O)(Yn, (2no + 5)tl) + No(O)(Yn, (2no + 5) )-Iexp( - Yno / ); 

if NaCO) < Yn, (2no + 5), we can substitute into the r.h.s. ofEq. (l7c) and finally we find 

N. ( ) 
[(no + l)/(no + 3) ](2no + 5)No(0) 

0 1 <. , 
No(O) + «no + 1)(2no + 5)/no + 3 - No(O» exp[ «no + I)/(no + 3) )t ] 

if 

No(O)<.( no + 1 )(2no + 5). 
no +3 

(17c) 

(17d) 

Thus, if no = 0, 1,2, ... , we must have No(O) <. 5/3, 7/2, 22/5, .. ·. In all these cases we have No(t ) <.No(O); further, the inequality 
N (t) < N~(t) is always true. It follows thatifNo(O)<.[(no + l)/(no + 3)](2no + 5), thenN(t )isless than the squareofther.h.s. 
of the inequality (17b) and N (t) < ! [(no + 1)/(no + 3)](2no + 5) }2. If the inequality for No(O) is strict, then No(t )_0 and 
No(t)-o when t-oo. 

2. Bounds on iJ(t) = .! a~ (t) from conditions on iJ(O) 
n~no 

We start with the system (2), multiply by an' and integrate from 0 to t: 

a;' (t) = a~ (O)exp( - 2Ynl) < a;' (O)exp( - 2YnJ), n<.2no + 1, 

a;' (t) = exp( - 2Ynt) [a;' (0) + (n + 3tl f (exp2Yn l ')(2an (t') m + p~ n -2 arn(t ')ap(t '»dt 'l n> 2no + 2. (17a') 

Using both the Schwartz inequality I}; amap / <}; a~ <Nand majorations similar to the previous case, we find 

a;,(t) <exp( -2YnJ)[a;,(0) +2(n +3tl ]1' (exp2Yot')/a n (t')/N(t')dt', n>2no +2. (I7b') 

Summing over n and using the Schwarz inequality for}; Ian I(n + 3tl, we find a nonlinear integral inequality 

N (t)i Y
" , <.M (t) = N (0) + 2cn , L (exp2rnJ ')N3/2(t ')dt', 

(17c') 

We remark that 

- dM - -M-3/2 _ =2c (exp2r t)N 3/2M-3/2<.2c exp(-y t)· dt no no no no , 

integrating both sides we get 

M- t/2(t) > R-t/2(0) - (cnJYn) + (cnJYnJexp( - rn.t); 

if NI/2(0) < rno /Cn, , we can substitute into the r.h.s. of Eq. (I7c') and finally we find 

N
-( ) ([(no + I)/(no +3) ](lIcno WN(O) 

t<.{ _ 
N (0)1/2 + «no + 1)/ [(no + 3)cn, ] - N (0) 1t2)exp [ «no + l)/(no + 3»t ]}2 

if 

N(o)<. (no + 1)2 ( I p-2) -I. 
no + 3 2n,,+5 

(17d') 

Thus, ifno = ~ 1,2, ... , we must have NoeO) <.0. 502, 1.628,3.063 .. ·· . In all these cases we haveN (t ) <.N(O) and iftheinequality 
is strict then N (t Hr ... ", . 
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3. Bounds on Nq(t), q> 1. 

The study is done in Appendix B and we find sufficient conditions at t = 0 in order that the power series (3b) be absolutely 
convergent for t)O. We find the following theorem from Eq. (14b): 

Theorem: If Nit ),,;;No(O) and if N q (O)";;q! 
No(0)(4 + No(O») q - 1 (No(O) + 2/q) for q) 1, then we have 
fy'q (1) < q! No(0)(4 + NriO)) q. 

We have also a system of inequalities (14b) such that we 
can explicitly construct upper bounds on N q (t) from the 
bounds (17d) on No(t). 

E. Particular properties for solutions satisfying 
assumptions on the sign of the an(t) 

We assume that for n fixed and t)O, the sign of an (t) 
does not change. Further, we restrict our study to three 
classes: (i) in the first class an has the same sign for all n: class 
I(i), an (t) < 0 and class 1I(i), an (t) > 0; (ii) in the second class 
(_1)"a" has always the same sign: class I(ii), 
( - 1)" t 1 an > 0 and class II(ii), ( - 1ran > 0; (iii) in the 
third class the only a" = c, #0 are for n = P - 1 
+ k (P + 1), P integer, and k = 0, 1,2,.·· and ( - l/c k has 

always the same sign:l(iii) ( - 1 )kCk > 0, class II(iii), 
(- 1)kCk > O. 

In all the considered classes the solutions (an) can have 
an infinite number of arbitrary constants introduced either 
with a" or an (0). As an illustration let us show how we can 
construct such examples from the knowledge of the signs of 
an or an (0) and from the recursive properties of Eq. (12). 

First we consider solutions constructed from the a" and 
remark from Eq. (12) that a" (t) has a well defined sign for 
00 if anan (t) < 0: I(i), if an < 0, we get a" (I ),,;;0 and it fol
lows from Eq. (1 ') that M2 > My> ... > Mq (I) > ... ; I(ii), if 
( -1) " I 1 a" > 0, we get ( -1) n + 1 an (t ) > 0; I(iii), the only 
an #0 are for n = P -- 1 + k (P + 1) where P is a fixed inte
ger and k = 0, 1,2,· ... Ifwe define an = ck and an = C,,' we 
get that if ( -1) "ck)O then ( -1) hCk (t ):;.0. 

Secondly, we consider the solutions constructed from 
the an (0) and remark from Eq. (2) that a n (I) has a wel1 de
fined sign for t)O if an (O)a" (t) > 0: II(i), if an (0»0, we get 
a" (1 »0 and from Eq. (1 '), M" (t) > 0; lI(ii), if ( - 1 )na" (0) 
>0, we get ( --1) "a" (t ) > 0; II(iii), the only a" (0) = a k (0) 
TO are for n = P -- 1 + k (P + 1), where P is a fixed integer; 
if( -1)" II ck(O»O, we get (-1) k 11 C, (t»O. 

In all these cases the study is done in Appendix B where 
we find the following: 

In the cases lei), (ii), (iii) we have N q (t ),;;"Nq (0) 
X exp( - t /3),,;;Nq (0). From our assumption about the set 
N q (0) it follows that Eq. (3b) is absolutely convergent for any 
00 and define entire x functions for eXF (x,t). For instance, 
it is sufficient that Nq(O)/q!(No(O») q,,;; any polynomial in No, 
independently of the index q. 

In the lI(i), (ii), (iii) cases we have the following 
theorem: 

Theorem: If N(lt ),,;;No(O) and Nq(O)<q! 
N(><0)(2 + No(O») 'I, then for any t)O we have N q (t) < q! 
NoCO)(2 + No(O)) q. It follows that we have for t)O the abso-
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lute convergenece in Eq. (3b) and Fex is an entire x function. 
Due to the assumed restrictions about the sign of an (t) we 
can, in a way different of the previous one [Eq. (l7d)], derive 
bounds on No(t) [see Eq. (B 11)] which unfortunately do not 
improve the previous ones. Finally, we note that in all these 
cases we find a system of inequalities [see Eq. (B7)] such that 
we can explicitely determine upper bounds on N q (t ) from 
known bounds on No(t ). 

E. Results concerning the existence of N(t) in the case 
of a violation of mass and energy conservation laws 

In Appendix B. 3, it is shown that a2
_ 2 (t) + a2 

_ 1 (t) 
+ Lo a;' (t) is bounded for t> 0 (or even t---+ 00 ) if either 
L'2 a~ (0),,;; 61T-2 or L-z ia" (0)1,,;; 1. 

5. PURE SOLUTIONS 

We consider the class of solutions (an (t» of Eq. (12) 
where we introduce, as arbitrary constants, only the an 
= lim, ~CfC [exp[(n + l)/(n + 3)]t I an (t) and in fact a finite 

number of such an' While these solutions are easily deter
mined recursively, they fail to satisfy F(x, t) > 0 (with the 
exception of the Krook-Wu particular solution). 

A. Fundamental solutions: ap _ 1 # 0, P integer> 1 

The set [an I has only one element a p _ 1 # O. Assuming 

a = D exp( -- t ~)( n + 2) n'2P - 1 
n n P+2 P+l' po 

and substituting into Eq. (2) or (12), we find that all the D" 
can be determined recursively from Dp _ 1 = ap 1 through 
the relation 

[ _ (n + 3) -~ ( n + 2 ) + (n + 1)]0 
. P+2 P+l n 

Il! t- m II 2 

Many on being zero, it is more convenient to consider 

( 
P(k+l») 

a p I, '(/'+11 =dkexp -t P+2 ' k=O, 1,2, ... , 

_ k (k + P 2 - 2 )d = P + 2 I d d ' 
P (P + I) " P (P + 1) '" + on' ~ k _ 1 In m' 

(ISb) 

For k = 0, the l.h.s. of Eq. (ISb) is zero and we put 
do = Gp -I' For k = 1 the I.h.s. is #0, the r.h.s. is propor
tional to d ~, and we obtain d ,. For k = 2 we obtain d 2 from 
do and d I, and so on. All the d k can be calculated from do. Let 
us notice the following scaling property: If we define d k 

= dk (a p _ I)k I- 1 , ~l = I, then the dk satisfy the same rela
tion (ISb). Another way to characterize these solutions is to 
look at Eq. (5). Substituting Eq. (lSa) and (ISb) intoH (u, t), 
we find 

Gp=Idk(UJp)\ H(u,t)=UJpGp, 
k 
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(up=exp[ -(P:2 t-(P+I)IOgU)]. (lSc) 

These solutions depend on only one variable combination of 
logu and t which from Eq. (5) are solutions of the nonlinear 
differential equation 

{ 
a2 (2- P+2 )~+ P+2. Gp}Gp. 

(Up aw;, + PcP + 1) awp PcP + 1) 
=0. 

These pure solutions correspond also to particular con
straints for the moments M" (t). Because ao(t )=a l(t )= ... 
=ap~ 2 (t )=0 for these solutions, then from Eq. (1) we get 
Mit)=M3(t) ... ==Mp(t)==l. 

Investigating the properties of the solutions of the sys
tem (ISa) and (ISb) we easily get for large t 

lan(t)I< an O<a=cle~c,t~l. 
n 

c I and C2 being constants t> to· (lSd) 

It follows that in the u plane the corresponding solutions 
H (u, t) have a finite radius of convergence and, as we shall 
see, in the x plane, the F(x, t) are entire functions. In fact, 
from the power expansion (3b) and the bound (18d) we find 

Ie'F(x,t)i < 1 + constI I ~ Iq ~ 
1 - a q! 

= 1 + const exp( fl:...). (l8e) 
I-a 

In the following we label these solutions ap ~ 1 #0 as 
P /(P + 2) pure solutions, emphazing the fact that the first an 
#0 decreases like exp[ - tP /(P + 2)] while the other an #0 
decrease like powers of this time dependent term. 

B. Mixing of two pure solutions Po/(Po +2), PI /(PI +2), 
Po <PI with only 8po .. 1 ~O, ap,_1 ~O 

Ifwe put 

a (t)=Id(r1exp[-t( Po(n+2) )+{}Y], 
n r n (Po + 1 )(Po + 2 ) 

() = (Po - PI)(PaPl - 2) (I9a) 
(Po + 1)(Po + 2)(PI + 2) 

and substitute into Eq. (12) or (2), we find that the! d ~)J can 
be recursively determined 

[ -(n+3)( Po(n+2) +(}Y)+(n+l)]d~) 
(Po + 2)(Po + 1) 

p -t q ---= n - 2 

s --t t = r 

d C\ld(tl 
qq' (19b) 

The study is done in Appendix C. If {} #0, then the 
number of different time dependences in an (t) cannot stay 
finite when n-+ 00. 

C. Particular mixing of Po = 1 and PI = 2 

From Eq. (19a) we see that {} = 0 if P IP2 = 2 which 
means Po = 1 and PI = 2 and the series for an reduces to one 
term (like the pure solution). For this particular mixing 
Po/CPo + 2) = ~ and PI/(P I + 2) = ~ we rewrite Eqs. (l9a) 
and (l9b) as 
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an(t) = dnexp( - ~ (2 + n»), 

n(n -1)dn = -6 I dMdN • (20a) 
/\1 + III =- n -- 2 

We introduce two arbitrary constants do = ao and d l = al 

and all the d n are determined recursively. If ao = - a~. 
al = 2ab (ao being a constant), then 
d n = ( -1) n + I a~ +2(n + 1) and we recover the particular 
Krook-·Wu solution which thus appears as the mixing of the 
pure 113, 112 solutions with particular relations between ao 
and al' Equation (20a) suggests that there exist for H (u, t) 
solutions with only one variable in the u plane. We define 

H (u, t) = - w2G (w) w = exp[ - (t /6 - logu)] (20b) 

and substituting into Eq. (5) we get 

aG ( d
2 )1/2 

aw =±2G
3
+--f+d 6 ,G=-Idnw". 

(20c) 

If d ~ + 4d b = 0, we recover the particular Krook-Wu so
lution G [aw + 1 ]-2. Otherwise we have the meromorphic 
Weierstrass elliptic function with coefficients determined by 
Eq. (20a). In this case also the series (20c) has a finite radius 
of convergence. Furthermore, whatever values we consider 
for ao and aI' investigating the recurrence relation (20a), one 
can show that Eq. (1Sd) holds, the series (3b) is absolutely 
convergent, and F (x, t) defines an entire function in the x 
plane. 

D. Mixing of q arbitrary pure solutions 8po _ 1 =l 0•8p, .1 

=l0 •... '8Pq_1 =l 0,PO<P1 .. ·<Pq 1 

We define 

a,,(t) = 

" 
j=I •... q{_.1 [ p (11+2) q .. 1 ]} 
Xexp - t __ 0 - --- + I {}jYj ,(21) 

Po+2 Po+I j=J 

(Po - Pi ) (Pi Po - 2) 
{} = , 

I (Po + I)(Po +2)(Pi +2) 

and substituting into Eq. (2) we find that the d :""r" 'can be 
recursively determined (see Appendix C). Only for Po = 1, 
Pi = 2 can we have (}i = O. 

E. Study of the positivity property of F(x, t) for the pure 
solutions 

We consider the pure solutions (ap " _ I #0) and the 
mixing of a finite number of such solutions, We seek whether 
there exists to large but finite such that for (';pto, eXF(x, t) 
remains positive (if the positivity is obtained at to, then we 
can apply the results of Sec, 4 C). The difficulty arises when t 
and x are both large. At fixed x, limt~oo F(x, t )eX = 1 but 
this result cannot guarantee the positivity in all the possible 
asymptotic directions of the (x, t) plane. The positivity prop
erty must remain true when we link t and x, considering for 
instance an xCt ) dependence such that x(t )-+ 00 when t-+ 00 • 

Along this asymptotic direction x(t) we want to define a 
dominant part when t is large and a criteria necessary for the 
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positivity property (but not sufficient). We define a scaling 
variable (tI equal to x multiplied by some decreasing time 
function such that eX F (x,( )==.7 «(tI, (). After that we take 
the limit t- 00 at fixed (tI. If Y «(tI, (= 00) > 0, then by con
tinuity we can hope to find to such that Y(m, t:;;;.(o) > O. If 
.7 (m, t = 00) is not positive, then eX F (x, t ) cannot stay posi
tive for large t. In this way the problem is simpler because we 
are faced with only one variable. In order to understand 
clearly we begin with the Krook-Wu particular solution 
which can be rewritten m = xa, a = ao exp( - t 16), XE[O, 
00 ]: 

.7(cu,t) = eXF(x,t) 

(1 - 2a + (tI(1 - a)-I) [( II )] = exp - (tI - a , 
(l-af 

/7 (m,t = 00) = (1 + (tI)e - "'. 

We get two cases following the sign of ao: (i) ao> 0, then 
(tI > 0 and.7 (m, 00) > 0; reintroducing t -/= 00 or a -/=0, we get 
.r(m, t) > 0 for 2a < 1. (ii) ao < 0; then m < 0 and Y«(tI, 00) 
has always a fixed zero at m = -lor x = ( - aot lexp(t 16). 
Reintroducing t -/=0 we see that the zero does not disappear 
and its location tends to this value at large t. This example is 
an illustration of the fact that while at fixed x, lim, __ .", eXF 
-1, then F (x, t) can violate positivity. 

1. Pure solutions ( P / (P +2) 

We define (tI = ax:;;;.O, a = lap -I I 
x exp [ -- tP I[(P + 1 )(P + 2)] l, and the Laguerre expan
sion (3a) can be written 

c A~) (tIA(k)-q(_a)q (k)-q 
.7«(tI,t)=I+.fd\~o (A(k)-q)! c:i(k) , 

(22a) 
A (k) = (P + l)(k + 1), 

where do is positive or negative depending upon the sign of 
ap -I' Ifwe rewrite Eq. (22a) as a power (tI expansion, from 
the bound (18a) we get absolute convergence, The coefficient 
of mA 

(k ) is a constant plus terms going to zero when t- 00 . So 
we take the limit 1- 00 at fixed (tI and get for the dominant 
part 

(tIA (k) 

.7«(tI,t = 00) = 1 + I d k ( )' 
A (k) ! 

where the coefficients d k are given by the recurrence relation 
(18b) with do = ± 1. (Note that form fixed, t andx can go to 
infinity in a linked way.) 

If do = - 1, then d k < 0, Y(m, t = 00) is strictly de
creasing for m > 0 and has always one zero. If do = + 1, then 
d k alternate [( - 1) kd k > 0]. We have studied numerically 
the function (22b) for do = 1, P = 1,2, ... ,35. We have always 
found at least one zero. For these cases Y«(tI, t = 00) cannot 
always be positive and there does not exist to such that 
e XF(x,t) > 0 for t:;;;.to, Vx[O, 00]. 

2. Particular mixing 1/3 and 1/2 of two pure solutions 

From Eq. (20a), an = (a(t »2 + n d n with 
a = exp( - t 16), we define (tI = xa(t), (tI:;;;'O and substituting 
into the Laguerre expansion we find 
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(23a) 

Using the absolute convergence property of the correspond
ing power m series, we take the limit t_ 00 at fixed (tI and 
obtain 

(24a) 

The analysis of the positivity property is done in Appendix 
C. From numerical analysis we have not found any positive 
Y «(tI, t = 00) solution other than the particular Krook-Wu 
solution. 

In conclusion for the soliton like solutions (pure 
ap _ 1 -/=0 or mixing 1/3, 1/2) we have not found any solution 
displaying the positivity property, except the particular 
Krook-Wu one. 

3. Other mixing (finite number) of pure solutions 

The analysis is done in Appendix C. If we consider a 
mixing ofa finite number of pure solutions PI' P2, ... , Pq , 

rescale the variables in Eq. (3b) introducing appropriate 
scaling variables (tI, there we are faced with a dominant series 
coming from the largest pure solution Pq I(Pq + 2) and thus 
we have not found any positive case. 

Fortunately. for an infinite mixing this rule does not 
apply and we can get positivity property for eX F (x, t) as we 
shall see in the next section when we consider solutions de
fined by the set [a n (0) l. 

F.lnfinite mixing of pure solutions 

If for m <n - 2 the coefficients d ~~) and b ~;,) of 
am (t) = l:r d ~;?exp ( - b ~)t) are known. then it is shown in 
Appendix C that an (t) is still of this type and the correspond
ing coefficients can explicitly be determined. 

6. POSITIVE SOLUTIONS 

We call positive solutions those built in Eq. (12) with 
the arbitrary constants an (0). Although all these solutions 
do not lead toF (x. t ):;;;.0. among these solutions there exists a 
subclass leading to F (x, t ):;;;'0. Following the results of Sec. 5 
they can be generated by conditions at t = 0, i.e., F (x, 0) > O. 

A. The fundamental positive solutions ap,(O)r'O, 

Plnleger :;;;.1 

The set [an (0) l has only one element ap _ 1 (0)-/=0. 
From Eq. (12) we find that only thea n (t )=1=0 are restricted to 
n = P - 1 + (k + l)(P + 1). We define 
A (k) = (k + l)(P + 1), k = O. 1 ... ·;an.~ _ 2 + A (k) (t) = C k (t) 
and substituting into Eq. (12) we find 

co(t) = a p _ I (O)e -- tiP liP + 2) 1, 

1 [( A (k) - 1 
ck (t) = 1 + A (k) exp - A (k) + 1 )t] 

X ('exp[[ A(k)-l ]t'] 
Jo A (k) + 1 
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t=CD 

---
t=2 

I 
,l 
FIG. 1. Evolution in time off(x,t) for a Lix) term at t = O. 

x I Cm (t ')Cm ' (t ')dt' (25) 
m + m' = k-I 

and the Ck can be obtained recursively from co(t). When k 
increases in Ck , the number of terms with different time de
pendences increases also. The least decreasing behavior is 
exp 1 - ([A. (k) -1 ]/[A. (k) + 1 Dt J, leading to exp( - t ) when 
k goes to infinity. In contrast, the fundamental pure solu
tions decrease like the terms of a geometrical series with a 
variable [exp( - const t)]. For k #0 we see that Ck (t )-+0, 
when t-+O or t-+oo. The Laguerre expansion (3a) becomes 

eXF(x,t) = 1 + I C k (t)( -1) A (k )LA(k ) (x), 

eXF(x,O) = 1 + ap _ I (0)( -1) P-I L p + , (x). 

The sufficient conditions in order to get absolute conver
gence for the corresponding (3b) power series have been giv
en in Sec. 4. They guarantee both that e xF (x, t) is an entire 
function in the x plane and the convergence of the expan
sions (3). We add other properties due to the sign of ap _ I (0): 

(i) If a P _ I (0) > 0, from Eq. (25) using induction we find 
that an (t) or Ck (t) are positive and so for the corresponding 
moments we have Mn (t) > O. Further for k #0 we have 
dCk I dt positive at t = 0 and tends to 0- when t-+ 00, whereas 
Co(t) is always decreasing. Further if P is odd, then 
( -1)";' (k ) > 0 and Eq. (26) is a sum of Laguerre polynomials 
with positive coefficients. It follows that for the power series 
associated toF(x, l)e x12, if we retain in this case only an odd 
or even number of first terms, then we get lower or upper 
bounds for the sum. 

(ii) If ap1 (0) < 0, we get that Ck (t)( -1) k +1> 0 and 
for k # 0 the derivative ( -1) k + I (d I dt )Ck (t ) is positive at 
t = 0 and tends to 0- when l-+ 00 . 

Positivity 0/ F (x, 0): When x is large the dominant term 
is ap _ I (O)[x PI- I/(P + I)!] and we must consider ap _ I (0) 
> O. This restriction is not sufficient because Ln (x) has n 
positive zeros and in general F (x, 0) will have negative parts. 
However, when ap _ I (0) is zero, e XF(x, 0) reduces to 1 so 
that for finite P we can always find a P __ 1 (0) sufficiently small 
in order that Fe + x>O. For instance for P = 1 we get 
o <aO<O)<;;I; for P= 2, we get 0<a 1(0)< 1/(1 + V'3), and 
so on. Because the oscillations of L p + I (x) become larger 
when P increases we have to retain smaller a P _ I (0). In Fig. 1 
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we plot the ratio I(x, t) = F (x, t )1 F (x, 00) in the two cases 
e XF(x, 0) equals 1 + L 2(x) and 1 -0.183 Lix) for different t 
values. In Fig. 2 we see that the second zero of/ex, t) -1, 
when t increases from 0, begins to move to the left towards 
smaller x values. This effect leads to a small x interval (for 
not too large t values) w here/ (x, t ) is sligh tIy larger than/ (x, 
0) or lex, 00). In Fig. 1 the zeros of/ex, t) -1 move very 
slowly and we do not observe the preceding effect. 

We have also numerically considered cases where 
F (x,O) can be negative. For ao(O) > I, F (x, 0) is not positive; 
however, then there exists to > 0 such thatF (x, t) > 0 for t>to 
[for instance, for ao(O) = 1,5 we have found to = 1.05]. For 
other fundamental positive P solutions we have also verified 
that when a P _ I (0) > 0 is larger than the value for which 
F(x,O) > 0, then there exists to that F(x, t) > 0 for t>to. 

B. Mixing of different fundamental positive solutions 

Ifwe compute directly Eq. (12) for small m values, we 
verify that am can be written 

am(t) = I d~~hp( - b ~)t), (27) 

where the least decreasing term is 
exp! - [(m +1)/(m +3)]t 1 and the sum over rcontains a 
finite (increasing with m) number of terms. Assuming for 
m = 0, I, ... , n -2 that am is of the Eq. (27) type with known 
(d ~» and (b :;,) it is shown in Appendix C [by substitution 
into Eq. (12)] that an (t) is also of this type and the corre
sponding coefficients can be effectively determined. 

First we consider afinite mixing of fundamental posi
tive solutions. We have numerically calculated the simple 
mixing corresponding to e x F (x, 0) = aO(0)L2 + a 1 (0)L3 and 
we have not found features different from the previous fun
damental solutions. For instance, for ao(O) = 0.9, a1(0) 
= 0.1, then fort #0, eXF(x, t ) develops a behavior similar to 

Fig. 1. Let us notice that for a finite mixing and t = 0, when x 
is large the dominant behavior is provided by the highest 
Laguerre polynomial and the corresponding an (0) must be 
positive in order to get positivity. It follows that the corre
sponding initial conditions are such that e xF (x,O) --+ + 00 

whenx-+oo. Ifwewant to relax this technical constraint and 

I 

/ / 
/ / 

/ / 
;' / 
/ / 
~t,,/ 

/ 
t:::3 

FIG. 2. Evolution off(x,t) for a L,(x) term at t = O. 

t=8 
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1.S 

o.S 

.::;-~---__ 1=8 

'-..... --- 1=3 
.'--..... -------___ 1=1 

'-- ---'-
FIG. 3. Evolution off(x,t) for a product of an exponential by a polynomial 
at t = O. 

include cases where e xF~ when X---+ OC! , we muct necessar
ily consider an infinite mixing. 

Secondly, we consider an infinite mixing offundamen
tal positive solutions (an (0» such that e XF(x, 0) is both posi
tive and decreasing when x---+ OC! • It is not very easy to charac
terize the sufficient conditions on the elements of the set 
an (0) ensuring these properties for the sums of the Laguerre 
polynomials expansions. We follow another simpler method 
where these sums can be written down in closed form. We 
start with the generating functional of the Laguerre 
polynomials 

00 ( D ) 1 + 2:>nLn(x) = (1 - zt'exp -- , Izl < 1, (28) 
, z-l 

where z is a parameter, and get from it simple examples 
where in the Laguerre polynomial expansion the coefficient 
of L,(x) is zero (conservation law for M,). 

(i) We consider linear combinations ofEq. (28) and of 
derivatives with respect to z. For instance, if we take into 
account derivatives of the first and of the second order, we 
get 

1 + ~z7(n -1) (z;n -1 )Ln(X) 

[ 
xz Z2Z~ 

=(1-Z1t2 1-2Z1+ __ 1_+ 
1-z, 1-z, 

X(l-~+ Xl )] exp(~) 
1-z, 2(1-z,f Zl -1 ' 

which are essentially decreasing exponential functions 
(0 < z I < 1) multiplied by polynomials of the second order in 
x. We can go on, take into account higher order derivatives 
of Eq. (28), and get an exponential multiplied by polynomi
als of arbitrary order in x. 

(ii) Another simple family can be obtained from a linear 
combination of Eq. (28) for two different z values: 

1-ZIZ2~Ln(X)L%o zfZ~-P-2] 

= (Z2 - Z 1)-1 [ _Z_2_ exp( -.5....-) 
1-zl zl-l 

- _Z_I _ exp( ~ )], 0 <Zi < 1. (30) 
1 - Z2 Z2 -1 

In these examples Eqs. (29) and (30) represent eX F (x,D) so 
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that the arbitrary parametersz I, Z2 must be restricted in such 
a way that the l.h.s. of these equations corresponds to posi
tive functions for x;;;,O. 

If in Eq. (29) we put Z2 = 0, the polynomial in z at the 
l.h.s. is of first order and we recognize the particular Krook
Wu example eXF at t = O. For this simple case we know 
explicitly the an (t) dependence (Sec. 5) while in the other 
cases we have to use the formalism previously developed in 
order to construct the an (t) from an (0). 

Ifin Eq. (29) either Zl = 1 or Z2 =~, we see that the 
coefficient of either L 2(x) or L/x) is zero. When the corre
sponding l.h.s. ofEq. (29) is given as input; set (an (0» in Eq. 
(12) and then either ao(t) or a I(t ) remains zero for t > O. 

I t is also possible to build examples with ao(t )-a I (t )=0 
starting at t = 0 with Laguerre expansions without Lix) 
and L/x) components. For instance, we can take, as an ini
tial condition at t = 0, an appropriate linear combination of 
Eq. (28) and of the first, the second, and the third derivatives 
with respect to z. In conclusion, if in Eq (29) or (30) we 
restrict z, and Z2 to values such that the r.h.s. are eX F (x,D) 
> 0, put the coefficients of the l.h.s. as initial values in Eq. 
(12) and then generate positive solutions F (x, t) which are 
mixing of an infinite number of fundamental positive 
solutions. 

In Fig. 3 weplotf(x, t) = F(x, t )/F(x, OC!) correspond
ing to z I = ~ and Z2 = ! in Eq. (29). We see that the second 
zero off -1 moves to the right and there is a small energy 
range wheref(x, t) is slightly bigger than its values at t = 0 
and t = OC!. 

In Fig.4we plotf(x, t)correspondingtoz l = ~,Z2 = ~in 

Eq. (30) and we observe the same small effect in the neigh
borhood of the second zero off -1. Let us notice that the 
existence of zeros off -1 is a consequence of the conserva
tion law for the moment M o(t )= 1. 

c. Do there exist general structures suggested by the 
particular Krook-Wu solution? 

If we do not consider too particular F (x, t) soultions, 
then in general they will correspond to an infinite mixing of 
either pure solutions or of positive solutions. For the corre
sponding set an (t), the least decreasing t behavior are pro
vided with iio e - t /3 and iii e -. t!2 and we know that the par-

1.5 

t=", 

~ ~"'.'.' 

'"", --- _...... t::8 

" --...... 
" ................ ""-

'-..... t=3 

t~1'--. 
hO --

o 2 3 4 

FIG. 4. Evolution ofj(x,t) for a difference of two exponentials at t = O. 
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ticular Krook-Wu solution contains both these smallest n 
terms. We recall that it is a particular ao, al mixing and on 
the one hand we have not found other finite mixing of pure 
solutions embodying positivity. On the other hand, if we 
consider the positive solutions basis, we recall that this par
ticular solution corresponds to initial values (an (0)) given by 
Eq. (29) (Z2 = 0,0 < Z 1 < 1) and in particular it contains, like 
many other acceptable solutions, nonnull coefficients of L2 
and Ly However, there also exist families of acceptable solu
tions (possitivity, decreasing behavior ... ) such that either the 
coefficient of L2 or L3 or of both are identically zero for t>O. 
In the last possibility, for instance, both terms exp( - t 13) 
and exp( - t 12) are not present and the least decreasing 
terms are provided by exp! - [(P + l)/(P +3)] J with P> 1. 
The same situation arises with the fundamental positive so
lutions. So it is clear that there exist positive, well-behaved, 
F (x, t ) sol utions with characters different from the particular 
Krook-Wu solutions. [This remains true if we consider a 
larger sense where we retain only the features due to either 
ao(t )=iE0 or a 1 (t )=iE0.] 

Now this discussion can be interpreted in terms of the 
moments Mn (t ): ao 0 is equivalent to Mit )= I; a 1 =0, 
ao#O correspond to M3(t) -3Mz<t) +2-0 and ao=a l 0 
to M 2(t ) M3(t )_1. It follows that if we exclude for the mo
ments Mn (t) the possibility to satisfy these particular con
straints, then we conclude that the set an (t) of coefficients of 
the Laguerre expansion of e x F (x, t) will always contain for 
the least t decreasing behavior either exp( - t 13) or 
exp( - t 12) and that these features are already present in the 
Krook-Wu particular solution. 

7. CONCLUSION 

In this paper and in the companion one4, from the com
plementary point of view, we have established methods in 
order to build the solutionsF(x, t) of the Tjon-Wu model of 
the Boltzmann equation. These solutions can be expanded 
either in power or in Laguerre polynomials6 of the energy 
variables so that the only nontrivial dependence is provided 
by their time dependent coefficients. From our results we 
extract some salient features. 

The time behavior of the coefficients of the Laguerre 
polynomials is of the kind exp( - const t) where the con
stants can only take discrete values. This result can be estab
lished either directly from the Boltzmann integrodifferential 
equation4 or from the structure of the nonlinear equation 
satisfied by the generating functional of the moments Mn . 
For these moments Mn (t) (linear combination of the La
guerre coefficients expansion) this discretization of the time 
behavior subsists and this was previously found by Krook
Wu. 1 If the lowest nontrivial moments M2 and M3 do not 
satisfy particular constraints, then the lowest time decreas
ing behaviors of the Laguerre coefficients expansion are 
exp( - t 13) and exp( - t 12) and these dependence are also 
present (in a well-defined combination) in the particular so
lution of Krook and WU. I .3 .6 .7 

We give strong arguments and conditions in order that 
smooth distribution function solutions positive at t = 0 re
main positive for t> O. We have considered two different 
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bases for our solutions corresponding to the possibility of 
characterizing the coefficients of the Laguerre expansions by 
arbitrary constants either at t = 0 or infinity. In both cases 
we give explicit methods in order to construct the solutions; 
however, the first choice seems more convenient for the posi
tivity property because we control directly this property at 
t=O. 

For the convergence of the expansion in Laguerre poly
nomials, in the companion paper,4 a Hilbert space is con
structed so that the solution stays in this space at ulterior 
time if it is present at t = O. Here, for the power series expan
sion, we give sufficient conditions at t = 0 such that the ex
pansion is still valid at t> 0 and even when t goes to infinity. 
In this way we obtain sufficient initial conditions, at t = 0, 
such that at t> 0 (or even !- (0) the solutions are entire 
functions of the energy variable. Further, for the existence at 
t> 0 (or even t_ (0) of ~ a~ (t ) which represents the sum of 
the square of the coefficients of the Laguerre polynomials, 
we find sufficient conditions at t = O. 

Finally, we note that we have found some examples 
where the distribution function F (x, ! ) is, at finite time and 
for some energy range, slightly larger than the correspond
ing ones both at initial time and at equilibrium. 
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APPENDIX A 

We recall8 that previously were obtained lower and up
per bound for the classical orthogonal polynomials which 
possess a dominant "forward peak." We extend these prop
erties for the Laguerre orthogonal functions (and some gen
eralization of it). 

Weconsiderf(x) having a convergent Taylor expansion 
such thatfand all its derivatives on some interval [0, xo] 
(xo> 0, Xo can be infinite) have values bounded in modulus 
by the corresponding quantities at x = 0: 

l ~f(x)I<I~f(X)) I, q=0,1,2,. .. , XE[O,Xo)· 
Jxq Jxq 

x=o 

(AI) 

We consider for x > 0 and (JP IJxP)f(x)Ix = 0 #0: 

(A2) 

(A3) 
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(a p laxP)f(x) being either positive or negative; it follows that 
always one of these inequalities corresponds to an upper or a 
lower bound off obtained from the Taylor expansion cutoff 
after a finite number of terms. 

We apply to the Laguerre orthogonal functions 
e - x12Ln (x) or more generally to In.a (x) = e - x/2L ~a)(x), 
where L :;tl are the standard9 generalized Laguerre polyno
mials and a = 0, 1,2,..·, positive or null integers. We recall 

~L (0)( ) = (-I)p(n + a)! 
n x <-0 

axp - - (n - p)!(a + p)! 

and the inequalities for x;.O: 

l
e- x/2 ~L ~a)(x) 1< (n + a)! 

axp (n - p)!(a + p)! 

= I JP
p 

L ;;")(X») I, (A4) 
ax x=o 

which are easily obtained from (d Idx)L ~a) = - L ;;"_+/) and 
Ie x/2L :,rJJ(x) I <en + (3)ln!(3!. Atx = 0, the even (odd) de
rivatives of In.a(x) are positive (negative): 

:p In.a(X)lx_co 

= (-I)
P
qto ( + r-qc~ (n ~nq;:: q)! ' 

~I (x) = t (- ~)P-qcqe-x/2.!!....-L~a)(x), (AS) 
axp n,a q ~ 0 2 p axq 

I ~ Ina(X)1 
Jxp , 

<:I (~)P- qcq (n + a)! 
"" q 2 P (n - q)!(a + q)! 

= I (}Pp L ;;")(X») I· 
ax x=O 

with I",a (x) satisfying Eq. (AI), and the Taylor series verify 
the inequalities (A3); if we take an even (or odd) number of 
terms, we get lower (upper) bounds for x > O. 

APPENDIXB 

B I: We get bounds on N q (t )from conditions at t = 0 and 

with Eq. (14b) 

Nq(t)<e '[Nq(O)+qNq_I(O)] +qNq_ I(t) 

+ e - If' e"(2Nq -I (t ') + I (t '» dt I, 
() q 

q" 1 I (t) = I C ~ _ 1 Np (t )Nq -- 1 _ P (t ), 
q q=O 

I = N~(t), I = 2No(t)N1(t)· (Bl) 
1 2 

Theorem: If we assume 

No(t ) <No(O), 
N q (0)<q!(4 + No(OW- l No(O)[No(O) + 21q], q;. 1, (B2) 

then we have for any t 

(B3) 

The proof is obtained by induction. From Eqs. (B 1) and (B2) 
we get the following for q = 1: 
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N1(t) <e -, [3No(0) + N~(O)] + No(O) + (I - e ') 
X (2No(0) + t N~(O» and Eq. (B3) holds. 

For q = 2 we find N 2(t ) < e - '2No(0)(N 6 (0) 
+ 6No(0) + 6) + 2No(0)(4 + No(O» + (1 - e ') 
X (1 + NO<O»2No(0)(No(0) + 4) < 2No(0) 
[N~(O) + 7No(0) + 10 ] < 2No(0)(4 + NoC0W and Eqs, 
(B3) holds, Let us assume that Eq. (B3) holds for 
q = 1,2, ... ,q - 1; we want to show that it holds for q;'2. 
From B (1 -2 -3) we get Nq(t) <Xl + + X 2e - , 

X 3(1 - e I), where qNq -1 (t) <Xl = q! No(0)(4 + e 

No(OW -- I, Nq(O) + qNq -I (0) <X2 

= q!No(0)(4 + No(O»q -2(N6(0) 
+ No(O)(S + (2/q» + (8Iq) + 2(q - 1) ), 2Nq __ I (t) 

+ I C : _ I Np (t )Nq _ I _ P (t ) 

<X3 = q!(4 + NO(oy2 No(0)(N6(0) 
+ No(O)( [4 + (2Iq)] + (8Iq». We find 

X 2 + X3 <q!No(0)(4 + N(0)q-2(N~(0) 
+ No(O)([S + (2/q)] + (8Iq) + (2/(q -1» and finally 

N q(t)<q!No(0)(4 + No(O)q -2(N~(0) 

+ No(0)([6 + (2/q)] + (8Iq) +2/(q -1) +4) less than 
the bound (B3) for q;'2. 

B2: We get bounds on N q (t) at t> 0 from conditions at 
t = 0 in the different cases I(i), (ii), (iii); II(i), (ii), (iii) defined 

in Sec. 4 D. 
We start with Eq. (2.2'): 

[
'" n t-2 ]2 . _ dan 

= L.. u an' an - dt' (B4) 

an +an =(n+3tl[~aman_m_2 +2an]. (BS) 

1. Bounds on Nq(t) in the II case 

Case II(i):la" I = an' We derive (q - 1) times Eq. (B4) 
and take u = 1: 

N q + N q + qNq _ I + (q - 2)Nq -, 1 

p -I 

= I C~ 1 NqNq I_p' 
q --- 0 

(B6) 

From Eq. (BS) we get an + a" > 0, Nq + Nq > 0 and from 
Eq. (B6) a set of inequalities that we can integrate: 

Nq(t) < e - 1 (Nq(O) + So' el '(2Nq _ 1 (t '» 

+ :t;l C~ I Np(t ')Nq IP(t ')dt ,]. (B7) 

Case II(ii): Ian I = ( -1) "an' We derive ( - q - 1) 
times Eq. (B4), take u = -1, and get the relations (B6). 
From Eq. (BS) we get ( -1) nan + ( -1) nan> 0 or 
N + N > 0 and we have the same inequalities (B7). q q 

Case lI(iii): an = c,,' for n = -2 + A (k), 
A (k) = (k +1)(P +1) and ( -1) ~,+I > O. Here we have 

~uA(kl[(A(k)-I)«\ +cd+2(\] = [IU::
k
(k)1 2

, (B4') 

c" +c" =(n+3t
l 

[Icrnc,,- In 1 +2C,,). (BS') 
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Equation (B4/) for uP + I = expi1T leads to Eq. (B6). We dif
ferentiate (q - 1) times Eq. (B4/), multiply by uq 

- I , take 
uP +, = expi1T, and get the other relations ofEq. (B6). From 
Eq. (BS/) we get ( _1)k + '«(\ + ck) > 0 or Nq + Nq > 0 and 
we get the inequalities (B7). 

Theorem: In the II(i), (ii), (iii) cases if the following 
assumptions are satisfied: 

No(t) < NO<O), N q (0) < q!No(0)(2 + No(OW, 

then we have for any t 

N q (t ) < q!No(0)(2 + No(OW· 

(BS) 

(B9) 

The proof is obtained by induction. From the first inequality 
in Eq. (B7) we get 

NI(t) < N,(O)e - , + No(0)(2 + No(O»(1 - e - ') 

< No(O) (2 + No(O» 

and so Eq. (B9) is true for q = 1. Let us assume Eq. (B9) true 
for q = I, 2, ... ,q - 1; we want to show that it holds for q. 
From Eqs. (B7) and (BS) we have 

Nq(t) - Nq(O)e - , 

< (1 - e - ')No(0)(2 + No(O»q -I(q - I)! 

X [ 2 + :~~ No(O)] 

< (1 - e - ')q!(2 + No(O»qNo(O) 

and the result (B9) follows if we take into account Eq. (BS) 
for Nq(O). 

2. Bounds on Nort) 

In the II(i) case an > 0 we get from Eq. (BS) 

3No + No < ~ N6 No(O)/No(t) 

> ~ No(O) + (1 - ~ No(O»exP:t, 

No(t) < i No(O)[ No(O) + H - NO<O) )e' 13]- I 

(BlO) 

(Bll) 

In the II(ii) case we put bn = (-1) nan >0, get Eq. (BlO) 
with the bn instead of the an' and Eq. (Bll) hold. 

3. Bounds on Nq(t) in the I case 

Let us define b" = - an > 0 in the I(i) case, bn 
= (_1)"1 'a" > Ointhel(ii)case, andek = (-1) kCk in the 
I(iii) case where a" = Ck for n = ti (k) - 2, ti = (k + 1) 
X (P + 1). We get N q = ~ (n + 2)···(n + 3 - q )b n in the 
two first cases and Nq = ~k ek (ti (k »(ti (k) - 1) 
···(ti (k ) + 1 - q) in the third case. From Eqs. (BS) and (BS/) 
we get 3b" + bn <0, 3ek + ek <0 or 3Nq + N q <0 or N q 

< 0, and finally N q (t) < N q (O)exp( - t /3). 

B 3: Bounds on N (t ) = ~-2 a~ (t ). In Eq. (2") we put 
bp =an -j2'p>0: 
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bp + bp = (p + It' f bmbp _ m· (BI2) 
m=O 

Firstly, we multiply Eq. (BI2) by bp ' integrate from 0 to t, 
and sum over p: 

N(t )e2' = N(O) + (' e21/I b/p + Itl I bmbp _ m dt /. 
Jo I' 

Using the Schwarz inequality 

we get 

N (t )e21<'N(0) + 21T/y6 L e211 N 3/2(t ')dt / = Sf (I) (B13) 

or 

or 

Sf_1/2'2(N(0)_1/2 - ~) + ~ e- I 

'" y6 y6 ' 
and finally 

N(t)<,N(0)[(1-1T/y6N I/2(0»e' + 1T/y6N I/2(0)]-2, 
if N(0)<,61T-2

• (BI4) 

Secondly, we integrate directly Eq. (B 12), sum over p, define 
N (t) = 1:-2 Ian (t )1, and get 

N(t)e' 

<,N(O) + I (' el/(p + Itl I Ibm Ilbp - m Idt '<,M(t) 
I' Jo 

=N(O) + Le" N 2(t')dt' 

or 

or 

M(ttl>N(Ot l -1 + e- I 

and finally 

N(t)<,N(O)[(1-N(O»e' +N(O)]-', ifN(O)<,l. (BlS) 

Noticing N (t )<,N 2(t ) we conclude that N (t ) < 00 if either 
it (0) < 61T-2 or N (0)<,1. [The last bound cannot be improved 
because if an -2 (0) > 1 we know that an -2 (t) diverges for 
some t value.] 

APPENDIXC 
1. Mixing of two pure solutions: Po < PI' POPI ~ 2 

SPo -1 ~O,iJp, -1 =f0 
(i) The number of different time dependences cannot 

stay finite when n-+ 00. We recall the time dependence for 
pure solutions 

(el) 

and the term aq in the mixing with q = Po -1 + PI(Po + 1) 
= P, - 1 + P o( P, + 1) has two time dependences 

exp( - aJ), a j = P,.I(Pj + 1)(Pj +2), i = 0,1. (ao=fa l if 
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PoPI # 2.) Always in the mixing the term an' n = 2q + 2 [for 
which a! enter into the I.h.s. ofEq. (2)] has at least three time 
dependencesexp( - 2aot ),exp( - 2a lt ),exp[ - (ao + aj)t] 
and the term an' n = 4q + 6 has at least five time depen
dences exp( -4aot), exp( -4a jt), exp[ -2(ao + al)t], 
exp[ - (3ao + a I)t], exp[ - (3a I + ao)t], and so on when 
n-+oo. 

(ii) The coefficients of the mixing can be recursively 
determined. We recall 

a (t)=Id(t)exp[-t( po(n+2) +et)]1 
n r If (Po +2)(po + 1) 

e = _~( p'-'o'----'-p..:..::.j)~( P,-,CP=--:...1 _-_2.::....) _ <;0, 
(Po + 1)(po + 2)(Pl + 2) 

[ -<n+3)( po(n+2) +at)+(n+l)]d~) 
(Po +2)(po + 1) 

(C2) 

= '" d (s)d (t -- .I) 
~ n n-q-2' (C3) 
.S,q 

r = 0 :iip _ I = d~, _ I and d~ through Eq. (C3); t = 1 : 
iip, I = d~,) _I and dSn through Eq. (C3), s = 0,1. 

We get n <PI -1 : d~t) = 0 if t #0, d~O)=I=O if 
n = Po -1 + k (Po + 1), k = 0,1,,,'; the first d~l)#O for 
n = PI -1, n <2PI, d~) = 0 ift #0 and t # 1, and the first 
d ~2) #0 for n = 2Pj • n < PI - 1 + (t - 1)( PI + 1) : d ~ ') = 0 
if t' #0, l, ... ,t - 1, the first d ~)#O for 
n = PI -1 + (t -1)( PI + 1)···, and so on. So [d~J)J are the 
coefficients of the pure Po/Po + 2, a < 0, the least decreasing 
terms (d~:)=I=O t #0) are either pure PI solutions terms or 
mixed terms. 

2. Mixing of q arbitrary solutions: Po < P1 < '" < Pq I' 

8 p" I ;;60,8p , --I ;;60 ... 8 p " ,I ;;60 

We have 

a,,(t)= I d;;"L"t" ,) 

'"t ~{. I. ... ,q [I P (n + 2) q I ] } 
Xexp - t --(-) - --- + I ait) , 

Po+2 Po+l )-1 

(C4) 

The d ~,"t4 ,) can be recursively determined 

{ [ 
P (n + 2) q --I] } - (n +3) __ 0_ --- +I ait) + n + 1 

Po +2 Po+1 )=1 

(C5) 

The arbitrary constants are d ~~:()~i'O) = ii p, __ I , d ~:O,OI .,0) 

= iiI' _ I , ... ,d ~,O,~\ = iip _ I; for these values the I.h.S, 
1 q till 

of Eq. (C5) is zero and leads to (Pi + 2) 
X (p() + 2)(Po + 1)8, = 0 if PoP, = 2. 

3. Positivity property (mixing },--}-) 

We have 

.'7 (UJ,t = (0) = 1 + IdlfUJ" 12«n +2)!)-1, UJ>O, (C6) 

withd" given in Eq. (20a). We putd" = ( - 1)" + 115" (n + 1), 
.'7 = 1 + !.(1- y+I(U"+2(n + 1) XDn«n +2)!)-1 such 
that for Do = 15 1 = 1; then Dn = 1 (Krook-Wu solution) and 
.'7 = (1 + UJ ),e- '" > O. We get in the Do, 15 I plane: (i) Do> 0, 
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15 1 > 0; if 15 1 = AD ~/2, A> 0, then 15" = (const')n (Db!2)n + 2 and 
the scaling UJ-+(UJD (;12) does not modify the positivity; if 
A = 1 we have the positivity of the Krook-Wu solution 
whereas for A # 1, from numerical analysis, we have not 
found any :Y without zeros. (ii) Do> 0, DJ < 0; then 1521' > 0, 
DlP + I < 0, and Y strictly decreasing has one zero. (iii) 
Do < 0; from numerical analysis we have not found any .7 
without zeros. 

4. Positivity property for a mixing of Po, PI' (PoPI ;;62) 
pure solutions, Po < PI 

From Eq. (C2), e < 0, and for n fixed the least decreas
ing term in an corresponds to the largest t value. We rescale 
the series e XF(x, t) = .7(UJ, t) with a new variable 
(j) = x exp( - ct ) such that lim t _ x .7 (UJ, t) is finite and non
trivial. For each power ypUJ P we want yp(t )-+const when 
t-+oo (yp"' .... oo is forbidden). Fora" (t )Ln +2 (x) we want that 
it goes to (const)"UJn + 2 and a scaling compatible with the 
other nth terms. We get three cases following the origin of 
the least decreasing term in a" (t): (i) It is a pure PI solution 
term (coefficient depending only on iiI', __ I ); then UJ p , 

= x exp[ - t [P/(PI + 1)(PI + 2)] J. (ii) It is a pure Po solu
tion term and UJp, = x exp[ - t [Po/(Po + l)(Po + 2)] J. 

However, (up" = (01', exp( - yt )-+0 at fixed UJ p , because 
r "'l.. 

y>O: 

y( Po + 1)( PI + 1)( Po + 2)( PI + 2) 

= ( PI - Po)( PI Po - 2) > O. 

(iii) It is a mixing of Po and PI' Rescaling the corresponding 
a"Ln + 2 with a new variable UJ, we geUu = UJ p , multiplied by 
a factor-+O when t-oo. Finally, eXF = :7 (UJ p , ,f) and when 

t~oc" .(7 ~1 + I d" OJ p , (k + 1)(1', + I) [(k + 1)(PI + I)]!, 
which is the dominant term of the pure PI solution. 

If now we consider a mixing of a finite number of pure 
solutions P I ,P2, ... ,Pq and rescale the variable X-+UJ, then we 
are faced with a dominant series, coming from the largest 
pure solution Pq • 

5. Infinite mixing of pure or positive solutions 

Let us assume that the am (t), m = 0, 1, ... ,n - 2 are of 
the type 

a (t)=)'d(!)e h~:,'t (e9) 
In .. In ~ , 

where the sum over t is finite and the d ~,l,b :;,) are known. 
Substituting into Eq. (12) we find if the introduced arbitrary 
nth constant is an (0), 

a" (t) = (a., (0) 

- I 
[(b:~ +b:, m_2)(n+3)-(n+l») 

(CIO) 
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Because m, tp t2 run over a finite number of values, then Eq. 
(ClO) can be rewritten like Eq. (C9) and the constants enter
ing into an can be determined from those coming from am' 
m = O, ... ,n -2. 

If the introduced nth constant is On' then an (t) is still 
given by Eq. (ClO) with 

an = an (0) 

(CIl) 

On the other hand, for the first m values for which we have 
not both am = am (0) = 0 and where the nonlinear part of 

1193 J. Math. Phys., Vol. 21, No.5, May 1980 

Eq. (12) is present we verify easily the representation (C9). 
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We investigate the evolution of the states of a system of infinitely many anharmonic oscillators via 
a hierarchy of equations similar to the BBGKY one. We prove an existence theorem for the 
solutions in the L I sense for a large class of initial data. 

I. INTRODUCTION 

The BBGKY is a tool to study the time evolution of the 
states of a system of infinitely many classical particles. 1 It is 
an infinite chain of evolution equations connecting the time 
evolved n-bodies correlation functions with higher order 
time evolved ones. 

One would expect that high order truncations of this 
chain do simulate the "true" behavior of the system. It 
means, from a mathematical point of view, that the solution 
of the infinite hierarchy actually exists and moreover it may 
be approximated by solutions of finite number of bodies 
problems. Unfortunately there are very few results in this 
direction, each of them giving the existence of weak solu
tions for the hierarchy associated to a one and two dimen
sional systems in situations near equilibrium. 2 More recent 
announced results can be found in Ref. 3. Stationary solu
tions have also been studied in Ref. 4. 

In this paper we study a hierarchy of equations similar 
to the BBG K Y equations, describing the time evolution of a 
lattice of interacting anharmonic oscillators and we give an 
existence theorem for the solutions of these equations. The 
initial data are chosen in quite a large class. This theorem is 
obtained by means of a limit procedure on the solutions of 
the truncated equations, by explicit estimates, avoiding non
constructive arguments. More precisely we check the con
vergence of the time evolved restricted probability distribu
tions in the L 1 sense. This result of course implies the 
existence of weak solutions (i.e., solutions for the time 
evolved expectation values of local observables) that can be 
obtained in a much more direct way. 

The plan of the paper is the following: In Sec. 3 we give 
the main results. Section 2 is devoted to definitions and preli
minarys. Finally in Sec. 4 are the proofs. 

2. NOTATIONS, DEFINITIONS AND PRELIMINARY 
RESULTS 

We consider a system of unbounded oscillators on a v
dimensional cubic lattice 'I. '". The single oscillator phase 
space is assumed to be JR 1 X JR 1. The phase space of the system 
is /7' = 1 (q"pJliE'l ",p"q,EJR 1 j. For every A C'l'", PC' A 

= I (q"p,)iiEA, p"q,EJR 11 is the phase space associated to 
the region A. X,Y,Z," and XA, YA' ZA , .. denote respectively 

')Partially supported by G.N.F.M. of the Italian C.N.R. 

points of PC' and of ff' A'!? and the ff' A 'sareequipped with 
the usual product topology. If A '::J A the map ff' A • :3 x A . 

-(x A • ),1 EX;I is defined by ignoring all the coordinates of x A . 

outside of A. 
A state P of the system is a family of positive Borel 

functions P A : £17 A -JR, A C'l V, A finite, with the following 
properties: 

(i) f PA (XA )dx,\ = 1 ; 

(ii) f PA (xA)dXA In = Pn«xA)n), A ::Jfl. 

where dx A denotes the Lebesgue measure on ff' A • As is well 
known, such a family of functions define uniquely a Borel 
probability measure, still denoted by P, on ff'. 

The time evolution of the system is described by the 
following family of Hamiltonians: 

HA (x A ) = 2. (p;12m + Aq; + K q; - J 2. qjq,), (2.1) 
~ ~~M 

where A, J> O,kEJR, m > ° is the mass of a single oscillator. 

U, = UE'l'"lli-il = IJ, li-il = sup lia -ial· 
l.;;,;a<:v 

Let q:>:JR_[I, + 00) the following function: 

q:> (k) = max(log2k,I), 

and 

where 

.Y,(xA ) = p~12m + Aq~ + kq; + 1. 

We put 

,'Pu = IXEf?I.Y(x) < + 00 j. 

(2.2) 

(2.3) 

(2.4) 

For every A C'l ", A bounded, tEJR we denote S 1x A the solu
tion of the motion equations with initial point x A Ef? A' gov
erned by the Hamiltonian H A • In the sequel we shall denote 

S1xr =S1(Xr)AUXr,;I, r::JA, 

and S;' = S1" where An = [ - n,n] \'. We denote 

A = sup An,V,rE1R. 
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All the dynamical properties we need in this paper are 
summarized in the following proposition: 

Proposition 2.1: 
(i) For all XE 2"'0 the following inequality holds: 

.2'(S7x)<;eu,t
1 .2'(x). (2.5) 

for some aEIR + . The sequence S 7x is a Cauchy sequence in 
2'" and defines a one parameter group of transformations in 
czv. ex o. 

S,X = limS7x. xE2"'o· 

Moreover there exist positive continuous functions 
c;(t)i = 1.2 .... such that: 

(ii) Ifm > n > I> k>O then 

sup max [lq,(S:""A,X) - q,(S:,,'AkX)I. 
iEA, 

I p;(S:",'AkX) - Pi(S:",A'X)I] 

[c1 (t)<p (n).2'(x)]" -I + 1 

<; , 
(n -I)! 

sup max [lqi(S7x) - q,(S:",A'x)l, 
iEA,,'\..i1, 

IPi(S7x) - Pi(S:",A'X)I] 

[c 1 (t)<p (n).2'(x)]' - k + 1 

<;------~--
(1- k)! 

(2.6) 

(2.7) 

(2.8) 

where qi(X), Pi (X) are the coordinate and momentum of the 
oscillator at the site i. 

(iii) Let A el ", xE2'" 0 and 

nf,(x,t) = max(laqj(s:X) I, laqj(S:x) I, 
aqi api 

laPi(s:x) /,laPJ(s:x) I). (2.9) 
Jqi JPi 

Then: 

(2.10) 

(n - k)! 
(2.11) 

where (/j and Xi are respectively Pj or qj and Pi or qi' and 
0<1. 

The proof of Proposition 2.1 is a consequence of the 
basic estimate (2.5) obtained in Ref. 5. The estimates (2.7) 
and (2.8) are straightforward and sketched in Ref. 6. The 
estimates (2.10) and (2.11) are consequences of the inequal
ity (2.5) and of an integral inequality coming from the defini
tion of the derivatives. The proof of such estimates is essen
tially contained in Ref. 7. 

3. FORMULA TION8 OF THE PROBLEM AND RE8UL T8 

As in the case of particles system the time evolved prob-
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ability distributions defining a state Pwill satisfy a hierarchy 
of equations. In fact, defining: (A,fl e Z v; A,fl bounded) 

P;I(t,xA) = PA (Sl( XA)' if A d ll, 

P;I(t,xA) = J Pn(Sl(xn)dxn,A' 

if A ell (3.1) 

and putting P ;(t,x A ) = P ~"(t,x A)' one obtains, at least for
mally from the Lio~ville equatio~ 

~P;(t,XA) = (L
J
. Pjn)(t,xA) 

at J J 

+ (Cj,}+1 P;+d(t,xA), n>j, (3.2) 

where 

(Cjj+ 1 P;+ 1 )(t,XA ) 

= J dXAj ., ,A) P; + 1 (t,xA j ,,), U (XAj IXAj ",A)) , 

(3.3) 

and [.,.) is the usual Poisson bracket and 

(3.4) 
i,k: 

li- k 1 = 1 

The Proposition 2.1 suggests that for allj the sequence 
[P;(t,.») convergesasn-oo in some sense to a limit {Pj(f,.») 
which satisfies an infinite hierarchy formally similar to (3.2). 
We underline that Eq. (3.2) are nothing else than the Liou
ville equation if n < + 00. If n = + 00 then Eq. (3.2) be
comes a way of describing the time evolution of an infinite 
system in terms of its statistical properties. In this paper we 
develop the above point of view by showing the convergence 
of the sequence [P;(t,·) J in the LI (2"'.1) sense and that the 
limit [Pj(t,.») satisfies (in theL 1 sense) Eq. (3.2) under very 
general assumptions on the initial state. More precisely we 
introduce that class t of states defined by the following 
properties: 

(i) P(xA) > 0 for all XA E2'" A and A elv
; moreover 

thereexistREN such that if A -{iEA Iii - jl<;R ) andfl:JA 
then 

P(XA IXn,A) =P(xA I(Xn)aA)' 

where aA = A '\A, 

P(xA IxA·) = PAuA ' (XA UXA· )/PA' (xA') , 

and A 'nA =</J. 
(ii) There exist a b > 0 such that 

J (exp[b.5t'(xA)]) PA (XA )dxA <; 'G' , 

where C(j > 0 and is independent of A. 

(3.5) 

(3.6) 

(iii) The PA 's are assumed to be at least twice differen
tiable and to satisfy the following inequalities: 

(3.7) 
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,a
2
PA (X A ), [- )f 

ar;a.rj <PA (XA) 7]i"'(x) ~~f q:>(lk I) , (3.8) 

for some 5, t, 7], llER + . 

Remark 1: If PEt' then P (~o) = 1 because inequality 
(3.6) implies that: 

P([xli"'(x»aj)<Ae- ba
, (3.9) 

for some A, bER + . 

Remark 2: From (3.7) and (3.8) analogous estimates for 
conditional probabilities follow. 

Remark 3: We notice that the class t'contains all the 
Gibbs states generated by a family of smooth enough Hamil
tonians [FA J that are short range (to satisfy I), superstable, 
and lower regular in order to satisfy the Ruelle's superstable 
estimate (see Ref. 8) that implies (ii) and finally such that 
their first and second derivatives are bounded by powers of 
2'. 

The main result that we obtain is the following: 
Theorem 3.1: Let PEt; then/or alljEN: 

lim IIPj(t,.) - Pj(t,.) I II = 0, (3.10) 
n • oc 

tn>tI 

(3.11) 
11-"'00 

In> IJ 

(3.12) 

tn> n 

uniformly in t on compact sets. 

Theorem 3.1 will be proven in Sec. 4. We note also that 
the techniqes employed for the proof are based on explicit 
estimates that allow one, at least in principle, to compute the 
velocity of the above convergence. This is interesting from a 
physical point of view because one needs to evaluate the er
ror arising in truncating the hierarchy to some finite order. 
As a consequence of Theorm 3.1 we have 

Thereom 4.2: For all jEN, let Pj (t,.) defined by 

L I - lim P i'(t,.) = Pj(t,.) . (3.13) 
n-_oo 

!,.hen P/t,.) is Ll differentiable and, denoting by ~ and 
Cj,j -+ I the closure of the operators Lj and CjJ + I (such clo
sures do exist), then 

(3.14) 

Proof It is easy to see that the operators Lj and CjJ + I de
fined respectively on CO' (x A ) and CO' (x A ) are closable 
and hence the rhs of (3.14) m'akes sense. F~;thermore it can
not fail to coincide with the strong derivative d Idt (P/t,.» 
that it is shown to exist by standard arguments and by Theo
rems 3.1. 

4. PROOFS 

We need some definitions. Let XaEC O'(R), with the fol
lowing properties: 

(i)Xa(r) = 1,ifrE[ -a+1,a-1]; 
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(ii)Xa(r) = O,ifrE[ -a,a]; 

(iii) Ix ~(r)1 <M, 

for some MER not depending on a. 

(4.1) 

We putx,,(xA) X,,(i"'(xA) andXa(x) = XaCY'(x». 
We finally define: 

Sn.m(t) = fdXnlfdXA",,-nXa(XA) 

X (P;:'(t,xA) - P;;:(t,xAm))l (4.2) 

and 

Tn.m(t) = ~~gf dXn If dXA",,-nXa(XA) 

Xf..l;(XA) [a~; P;:'(t,xA) 

- ~P'::'(t,XA )], 
ax; m 

(4.3) 

wherex; isp; orq;, iEfl and f..l; (xA) = - J'1.jEU,qj + A,q~ or 
f..l;(xA) =p;. 

The strategy of the proof of Theorem 3.1 is based in two 
steps: First we prove Proposition 4.1 below. Then, with the 
aid of the property (3.6) we remove the cutoff X a and prove 
Theorem 3.1 

Proposition 4.1: 

(i) lim Sn.m(t) = 0; 

m>" 

(ii) lim Tn,m (t ) = 0 ; (4.4) 

and both the limits hold uniformly in t on compact sets. 

Proof The proof of Proposition 4.1 consist in estimating 
various terms by using Proposition 2.1. We shall estimate 
only typical terms and we briefly sketch how to obtain the 
other bounds. We start by proving (4.4) (ii): 

Tn.m (t)< T ~.m (t) + T~,m (t), 
where 

I f if ah;:'(t,xA) T n,m = dXn dXA","J1Xa(XA) ax f..l;(X A) 
I 

X (P7n(t,xA) -P;;:(t,xA) I (4.5) 

Here h with some indices and of some argument denotes the 
logarithm of P with the same indices and of the same argu
ments. In the sequel the symbol ah lax; Iy A will denote the 
derivative of log P A with respect to x; at the point y A • In 
order to estimate (4.6) we put 

Zn,m = \ah;:,(t,XAJ _ ah;;:(t,xA) \. (4.7) 
ax; ax; 
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Then: 

Zn.m "Zn.m(P) + Zn.m(q), 
where 

Zn.m(P) = I L (ah m I ap/s;xA) 
foA.. apj S;XA.. aXj 

(4.8) 

_ ahm \ apj(s,;,xA»)\ ' (4.9) 
apj s;"xAm aXj 

and Zn.m (q) is analogously defined by replacingp) by qj' 
Finally 

Zn.m(P)"Z ~.m(P) + Z~.m(P), (4.10) 

where 

Then 

I I ahm I 
Z n.m(P)"J" api s;"XAm 

(
apj n ap/s,;,xA»)! 

X -(S,xA)- ----
ax; aXj 

+ jEA.~A"" I ~:~ I s;"x A ... 

X (ap/S 7XA) _ ap/s,;,xA»)/, (4.13) 
aXj aXj 

defining h (·1·) in a natural way as 10gP ('1')' the short range 
property (3.5) gives: 

hA(YA)=h(Ynl(YAhn)+h(YA,n) 

if A -:Jil. Then, ifjEA m and il = Aj' 

aa
hm 

(YA)= aah (YA1)(YA)aA). 
'Pi 'Pj 

(4.14) 

So by Remark 2 we have. in virtue of (2.11), (2.10), and (2.5) 

sup Z !,m(P) 

.f(x1.)<a 

" n V (1]alj?(n))5[b l cS (t)Ij?(n)a]nl2+1 exp[c4 (t)a"] 

f[n/2]! 
[C6 (t)]k 

+ L <1]alj? (Ijl + R »s L 
i k>UI-r k! 

Iii:> n/2 
X [alj?(k)b2 y/2, (4.15) 

for some constants [b j Ji = 1,2,. .. and with ilCAr. (Here 
f[x] denotes the integer part of xER.) 

Z2 () '" / ap/S7XA) 
n,m P" £.. a 

jEA,,/1 Xi 
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X (ah(YA"dIYaA"/2) I 
apj S;"X A ... 

X ah (y A"/2IYaA"/2) !" )! 
apJ s,x'" 

I 
ap/S7XA ) 

+ L .. 
JEA .. ,A,,/2 aXj 

X (ah(YA .. \A n12 ) 1 _ ah (YA .. ,A,,/) I )1. 
apJ Is~x.,,,, apj s;"x'''' I 

(4.16) 

Z ~,m (P) may be estimated in the following way: The first 
term in (4.16) is convergent by the locality of dynamics [esti
mate (2.7)] that can be applied after controlling the second 
derivatives of h via (3.8), Remark 2, and (2.5), and apj/a,,·; 
via the bound (2.10); the second one has a convergence factor 
apJ / ax; in virtue of the bound (2.10); the remaining term is 
estimated by (3.7), (4.14) and (2.5). Zn,m (q) is estimated in 
complete analogy. 

Hence 

sup f-l;(xA)Zn,m -+ 0 
x,,,,,,:.y~(x;1,,)<(l n-oo 

uniformly on t on compact sets because 

Illj(XA)1 "alj? (Iii + 1) 

and so, to prove (ii) it remains to estimate T !,,,,. To estimate 
T !,m we first observe that, if .2"(xAJ < a, then 

jah':,,(t,xAJI"/L (~/ apj (S7XA) 
ax; J apJ s;'x"", aXj 

ah! aqj
)\ 

+ aqi s;'x"" ax; 

"2: D J.;(t,x)asIj? (UI)s<j; (t,a) , (4.18) 

here and in the sequelJ;(t,a), i = 1,2 ... are continuous func
tions on t and a. Putting 

ah':r,(t,xA ) 
r,;.m(X-1) = Xa(X A ) ax" 1l;(xA ... ), (4.19) 

I 

then 

T~.m(t) = f dXn If dXA""n ~.m(XA) 
X PC«S 7XA)nI2)P «S 7x A)A .... A,,) 

- PC«S';'XA)n12}P «S;"XA)A""A,,). (4.20) 

where 

PC«YA)k) = P«Y)A,IYaA) m > k. 

We have 

T~.m(t)"WI + W2 , (4.21) 

where 

WI = f dxA", ~,m(XAJP«S;"XA)'1".'A,,) 
X /r«S;"xA)n12)-PC«S7xA)ni2)!' (4.22) 
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W2 = I dXn II dXA ... \j] [r::,m (xA)PC«S 7XA)A",) ] 

x [P(S7XA)A",,,-A,,) - P«S;"XA)A",,,-A,,)] , (4,23) 

W2 <W2 + W, + W4 , (4.24) 

where denoting S 7 = S:,,,-a for Ak -:Jil we define 

W2 = I dXAmr::,m(XA)PC«S7xAJn/2) 

X Ip«S;"XA)A","-A,,) - P«S;"XAJAm"-A.) I, 
(4.25) 

W3 = IdXA ... r::,m(XA)PC«S7XA)n/2) 

X Ip«S7XA)A
m
"-A,,) - P«S7XA)A

rn
"-A,,) I, (4,26) 

W4 = I dXa II dXAm ,,-ar::,m(xA)PC«S7xA)nl2) 

XP«S;"XA)Am ,,-A.12 ) - P«S7XA)A m ',A.) I, 
= I dXn I J dXA ... ,,-a P(XAm"-A,,n) 

X [r~~m(S~ 'XA ... )PC«S7S~ 'XA),,12) 
- r::,m (S"- ,x A)PC«S 7S"_ ,x AJ ,,12) ], (4.27) 

where we have used the Liouville theorem. Then 

W4 < W4 + Ws' (4.28) 

where 

W4 = IdXAmP(XAm'\A'/2)r::,m(S~'XA) 
X IpC«S7S~,xAJ"/2) -PC«S7S "-,xA)n/2) I, 

(4.29) 

tV = IdX I I dx x P (x ) 5 {} Am "n Am "Jl ..1 ... "...1,,/2 

XPC«S;'sn_ ,XA),,/2) 

X [r::,m (S"-'- IXAJ - r::,m (S"- ,XA)] (4.30) 

= IdXn I IdXAm,,-n P «S7XA)Am ,,-A,,/2) 

XPC«S7XA),,12) [r::,m(S~ ,S7XA) 
- r::,m (X A)]. (4.31) 

Finally we have 

Ws < Ws + W6 , (4.32) 

where 

Ws = JdXAJr::,m(S~,S7XAJ 
- r.:,m(xA) ]PC«S7XA)"I2) 

X [P«S7XA")A ... "-A,,,) - P«S7XA)A",,,-A,,n)] ' (4,33) 

W6 = I dXAmP«S7xA)Am',An) 

xpC«S7XA),,/2) [r::,m(S~ ,S"_ tXA) 
- r::,m(xA)]. (4.34) 

So T~,m (t )<.1' ~ = I Wi and we estimate such sum term by 
term 

WI <Jz (t,a) J dXAmP(S~ tXA) Xa(xA) 
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(4.35) 

<J2 (t,a) sup 

Y(X"m)<a 

X (S7XA)aAnJ - h «S;"XA)An) I«S;"XA)An)!' 
So, combining (2.7) remark and (3.7) we obtain 

Ih-hJ<[(~ +R rq7(;Y] 
(4.36) 

(4.37) 

is uniformly bounded in nand m and t belonging to a com
pact, while 

sup 11- exp!h«S;"XA)Am"A,,) 

.f(x:'tfI)~a 

(4.38) 

may be estimated by the use of (2.8), (4.14), Remark 2, and 
(3,7)[see also the bound (4.40) below]. W3 is estimated with 
the same arguments that worked for W2 • 

W4 Qs(t,a) J dXAmXa(S~ ,xA)P(S7S "_ ,XA) , 

X 11 - PC«s7S~,XA)"I2) I 
PC«S 7S"_ tXA),,/2) 

I 
P(XAm\A",,) I (4.39) 

X P«S7S "_,xA",k,\A,,) . 

W4 may be evaluated by estimating (K C JRI, K compact) 

sup sup 
tEk x: 

,Y(§'" ,x)<a 

(4.40) 

sup sup 
'EK x: 

./(5'" I x).;.. a 

- h «S7S"- ,XA)A,,) I(S7S"- ,XA)aA,,) I· (4.41) 

To bound (4.40) we observe that if .5t'(S~ ,x)<a, 
JEAm \An/2 

Iqj(S7sn_ tXA) - qj(XA) 1 

= Iqj(S7S "- CXA) - qj(S7S "- ,XA) I 
< L D ;t(t,Si(t»I IPi(S"- CXA) 

j 
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-p;(S"'-IXA )1 V Iq;(S"--IXA ) 
m m 

- q;(sn_lxA)1 J, (4.42) 

where s; (t) is some point in !if? Am for which 
.2"(S;(t »<J6 (l,a). We estimate (4.40) via the bound (4.42) 
which is infinitesimal. In fact we divide the~; in two sums. 

One in which the i's are "far" fromj and soD~" is small. The 
other one in which the i's are "near" to j and so far enough 
from n in such a way that the two dynamics Sand S are 
almost the same and so the term in the brackets in (4.42) is 
small. More precisely by (4.14), (3.7) and remark 2: 

(4.40) < L (1Jaealll<p(UI +R)t 
JEArn ,,;1,,/2 

XL D );"(t,s;(t»{ lP;(sn_ IXA ) 
; 

(4.43) 

Then 

(4.40) <jEA,~A"/2 (;J" + ;~"!(1Jaealll<p (I jl + R»S 
X(D);"(t,s;(t»! ... V··· J. 

The first double sums is bounded by a term converging more 
than exponentially as n-oo in virtue of(2.1O) and (2.5). The 
second double sum is also more than exponentially conver
gent by (2.8), which gives the convergence factor and (2.10) 
to bound the derivatives. 

The same idea, applied to (4.41) [replacing (2.8)] gives 
also that (4.41)-0 as h-oo, m > n. 

W5 «(/,a) J dxA...IXa(XA) - Xu(S"'-IS"--lxA)1 

XP(snx ) 11 - P«S7
X

A)Am',A,,/2) I ' (4.44) 
I Am p«sn) ) 

tXA". Am"A"/l 

so W5 may be estimated as W2 • 

Finally 

W6 < J dXAmP(S~XA)Ir::.mS"'-IS~XA) - r::.m(xA)1 

J ahn 
< dXA P(S~XA )p; ~t,XA ) 

m max; m 

X IXa(S"'-IS~XA) - Xa(xA)1 

+ JdXAmP(sn_IXA)Xa(S"'-IS~XA) 

I 
ah';.,. ah';.,. - - I x p;·--(t,XA )-p;.~t,S"'-IS~XA ). 
ax; max; m 

The first term in virtue of (4.18) is bounded by 

J; (t,a) J P(dx)IXa(S"'-,S 7S"--,x ) - Xa(sn_ ,x)1 

(4.45) 

<fs(t,a) J P(dx)I.2"(S"'-,S7S"--, x ) - .2"cS"--lx )1 . 
(4.46) 

To estimate (4.46) we observe that defining 

- .2"; (x) 
.2"(x) = sup -_-- , 

;eZ' <p (Iii) 
(4.47) 
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where V kER, cp (k ) = max(logk, 1) one easily obtains 

2'(S:x)<ea,2'(x), A cr. (4.48) 

The set l? = (xl2'(x) < + 00 ] satisfies pel?) = 1. 

Then, because of the fact thatifxEl? thenS"'-,S7Sn_,x and 
S "-- IX are in l? in virtue of (4.48), it follows 

J 1

.2";(S"'-IS7sn_IX) 
(4.46)< P(dx) sup. . 

;EA"'j <pCIII) 
.2";csn IX) I J I - - + P(dx) sup 

<p (Iii) itA ,,/2 

X .2";(S"'-,S 7S"-., x ) _ .2";~S"--IX) 1_1_ 
<p (iiI) <p (Iii) logn 

for n large enough. 

The first term is estimated by locality of dynamics [see, e.g., 
estimated (4.43)] and the last term is bounded by 

2ea' Jp(dX)2'(X)' _1_. 
logh 

The last term in (4.45) is estimated as T~,.n [see (4.6) and 
following arguments]. 

Part (i) of (4.4) has already been proven by estimating 
T':r, and so the proof is completed. 

Proof of Theorem 3.1: 

IIPi(t,.) - Pi(t,.) I II < J dxA,IJ dXA",',A,Xa(XA) 

X [P(S;"xA)] - [P(S7XA)]1 

+ J dxA...I(1 - Xu(xA)1 

XP(S;"xA,) 

+ J dxA...I(l - Xu (xA)IP(S7x .1,,). 

(4.49) 

So, to prove (3.10) [by the use of Proposition 4.1 part (i)] it is 
enough to prove that 

(4.50) 

goes to 0 for a_ 00 uniformly in m and h. Here h = m or 
h = n. We have 

(4.50)< J P(dx)(I - Xu (S 7x» 

<P (! xE!if?I.2"(S 7x) > a J) 
<P ({ xE!if?I.2"(x) > (exp - a It I)a J) 
<Aexp(-b'(t).a), (4.51) 

where b I is a continuous function. The last step follows from 
(3.9). The same procedure used above and Proposition 4.1, 
part (ii) allows one to prove (3.12) once one proves that 

J dXAm (1 - Xu (xA» I ~~ (S7X)Pi(X) I ' (4.52) 

goes to 0 for a-oo uniformly in m and n. 

(4.52)< I J dxAm P(S7x A')lp;(xA)1 
lEA", 
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x x?;J(~:~ IS 7
X

'm D1.t(xAj)1 

X I (1 - Xa(XA» I <f P(dx)2"(S"- tX)rp (IiI) 

XiI - Xa(Sh_ tXA)1 L D1.;"(Sh_ tX)(1Jrp(11 I 
lEA", 

Cs (t)k 
+R)2"(S7x Am »s< L L k'. 

IEAmk>li-11 

(4.53) 

xq:!(li+kll I2H
+

1 fp(dX)II-Xa (S~XA)I 
CS (t)k 

X2"k12 H +I(S7x)< L L 
I k>li-11 k! 

Xrp(li + k 1/12 + s+ I L Sk12 + s+ Ie - bs, 

s;;.a(t) 

where Cs (t) is a continuous function and a(t) = e - alt la. 
Since l:sl:ll:k < + 00 the thesis is proven. The statement 
(3.11) follows trivially by the above arguments. 

Remark: The above arguments work also for the "true" 
BBGKY hierarchy of continuous particle systems, ifIinear 
estimates for global quantities [See, e.g., (2.5)] would be 
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known. Unfortunately we have at most polynomial 
estimates. 9 
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A nonstationary thermodynamic theory in general relativity is set up through a hidden variable 
approach. Such a theory, which is especially suited to the description of the behavior of heat 
conducting viscous fluids, considers evolution equations involving the gradient of the hidden 
variables too. The expression adopted for the second law differs from the usual Clausius-Duhem 
inequality because of the presence of an entropy extra-flux. Besides other results it is shown that, 
via a suitable choice of the free energy function, the theory so obtained reduces just to Muller
Israel's one. 

1. INTRODUCTION 

In recent years topics concerning viscosity mechanisms 
in cosmology have become more and more important par
ticularly in connection with the attempt to account for the 
anomalously high entropy per baryon in the contemporary 
universe. I Unfortunately, the customary description of vis
cosity, namely Navier-Stokes' law both in the classical and 
in the relativistic context, suffers from an unpleasant feature 
in that it leads to parabolic differential equations whereby 
disturbances would propagate at infinite speed in contradic
tion with the principle of causality. From the physical stand
point this fact is hardly surprising because the conventional 
theory is applicable only to phenomena which are slowly 
varying on space and time scales characterized by the mean 
free path and mean collision time. Accordingly, the theory is 
inadequate to wave propagation problems as well as to many 
phenomena in high-energy astrophysics involving steep gra
dients or rapid variations. 

Undoubtedly any acceptable theory of nonstationary 
thermodynamics must cure this deficiency besides the analo
gous one occurring in Fourier's theory of heat conduction. 
In this sense, after the paper by Cattaneo, 2 many proposals 
concerning the theory of heat conduction appeared in the 
literature both in the classical and in the relativistic frame
work. 3 On the other hand, as far as we are aware, only very 
few endeavors to eliminate the paradox of infinite speed in 
viscous materials have been presented; among them we cite 
Ref. 4. 

Lately, Israel5 has elaborated a relativistic theory of 
non stationary thermodynamics which gives a unified ac
count of viscosity and heat conduction. The novelty oflsra
el's approach is the abandonment of the usual hypotheses 
whereby the entropy flux is simply proportional to heat flux 
and the entropy density is independent of heat conduction 
and viscosity. Precisely, Israel allows for an entropy extra
flux determined by viscous stresses and heat flux through 
second-order terms.6 The irreversible thermodynamic the
ory so obtained is applicable to nonstationary processes and 
does not violate causality. We remark that Israel's work, 
which has a purely phenomenological character, is corrobo
rated by subsequent papers of Israel and Stewart 7-9 concern
ing kinetic theory. 

The recent scientific literature bears evidence of an in
creasing interest in the hidden variable approach to nonsta
tionary thermodynamics. 10 The utility of this approach has 
been shown by the authors in connection with wave propa
gation in relativistic thermo-viscous fluids. II Motivated by 
the encouraging results achieved so far, in this work we set 
up a relativistic nonstationary thermodynamics with hidden 
variables. In doing this we are concerned with states which 
are arbitrarily away from equilibrium; the generality of our 
approach will allow us to obtain Israel's phenomenological 
equations merely through a suitable choice of the free energy 
function. 

The plan of the paper is as follows. The general descrip
tion of heat conducting viscous fluids via hidden variables is 
delivered in Sec. 2. Then, for the benefit of the reader desir
ing a quick overview and for a motivation of next develop
ments, Sec. 3 assembles the main ideas underlying Muller
Israel's theory. So we are able, in Sec. 4, to incorporate some 
of these ideas in our theory and to complete it by deriving the 
constitutive equations of the fluid through the restrictions 
placed by the second law of thermodynamics. Finally, Sec. 5 
exhibits a detailed comparison between Muller-Israel's the
ory and ours. 

2. HIDDEN VARIABLES IN RELATIVISTIC THERMO
VISCOUS FLUIDS 

Setting aside a formal mathematical account of the sub
ject,I2 we say that a material with hidden variables consists 
of a set of response functions 

¢ = c;6 (y,a), 

and of a function! governing the evolution of the hidden 
variables a through the ordinary differential equation 

Ii =!(y,a), 

a superposed dot denoting the proper time derivative with 
respect to the particle velocity u. The symbol y stands for a 
suitable set of real variables; for instance, when dealing with 
fluids y may be identified with the pair (iJ,r) of the absolute 
temperature iJ and the proper rest mass density r. If, further, 
the problem at hand involves irreversible effects like viscos
ity and heat conduction, we have to account for the depen
dence on the relativistic temperature gradient A" = h" {3 (iJ;{, 
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+ t1u(3),on the expansion 8 = ua;a' and on the shear (7a(3 
= hex Ah(3 fLu(A;fL) - ! 8h a(3' h being the projector onto the 

three-space orthogonal to u. Yet, as shown in a previous 
paper, J3 compatibility with wave propagation at finite speed 
implies that (7, 8, and A cannot enter the argument of ¢ 
though they affect the value of a. Accordingly a model de
scribing a thermo-viscous fluid may be represented by a set 
of equations as 

¢ = ¢ (t1,r,a), 

a = /(t1,r,(7,8,).,a). 

This ansatz appears to be sufficiently general and appropri
ate for wave propagation topics; however, to avoid inessen
tial formal complications, this scheme has been investigated 
in detail by letting / be a linear function and a be the triple 
of a scalar 8 and of a second-order symmetric traceless ten
sor I and a vector A subject to I (3yu y = 0, A YU y = 0. 11 

With a view to the applications we have in mind the 
previous model needs an improvement. Precisely, by anal
ogy with customary theories of nonstationary thermody
namics5

,6 involving spatial gradients of the quantities under 
consideration, a dependence on the spatial derivatives of the 
hidden variables must be taken into account. Yet, in this case 
too, compatibility with wave propagation leads us to assert 
that such a dependence is admissible only in the evolution 
equation. On the other hand, to make an immediate com
parison with Muller-Israel's theory we specialize the func
tion/so as to obtain a proper set oflinear evolution equa
tions. On the basis of these observations, we claim that the 
behavior of a thermo-viscous fluid is characterized by the 
response functions 

¢ = ¢ (t1,r,I,8,A ), 
and by the evolution equations 

(i"fi) = (1I'i,)«(7af3 - I a(3) + a(A a;(3)' (2.1) 

e = (1I'ih )(8 - 8) + bA aa , (2.2) 

h,/A fJ = (l/rc)(Aa - Au) + ha(3(c8,{3 + dI/';fL)' (2.3) 

where (A"f» = !h,/'h(3 V(AfLV + AVfL - ihfLVh pa Ap ,,) and a, 
b, c, d are, as yet, indeterminate coefficients, For the sake of 
definiteness, the symbol ¢ may be thought of as the set 
(l/;,s,S,q) of the specific free energy 1/;, the specific entropy s, 
the stress S, and the heat flux q. The form of the Eqs. (2.1)
(2.3) assigns to the parameters 'i" 'ib , 'ic > 0 the meaning of 
relaxation times. 

It is a noteworthy property of the hidden variables I, 8, 
A, considered as solutions of the evolution Eqs. (2.1)-(2.3), 
that the values I (t), 8 (t), A (t) at the proper time tare inde
pendent of the present values (7(t), 8 (t), A (t). To clarify the 
meaning of this assertion consider, for example, the Eq. 
(2.2); at any particle of the fluid a formal integration yields 

1 i/ 8(t)= - exp[-(t-S')/'ibl 
Tb /" 
X [8(0 + bTbA ";a(O] dS' 
+ 8 (to) exp[ - (t - to)lTb ]. (2.4) 

Now, given a set ofC 1 functions (71,8 1, A1, look at C 1 func
tions (72,82, A2 such that (71 = (72,8 1 = 8 2, A1 = A2 in 
(to,t - E) and (72(t), 8it), Ait) are arbitrary. Then, by virtue 

1202 J. Math. Phys., Vol. 21, No.5, May 1980 

of (2.4), it is evident that the choice of a small enough E 

makes it as little as we please the change of 8 (t ) induced by 
(71,81, A 1--+(72' 8 2, A2 • The same property holds for the tensor 
quantities I, A as well; in this instance the formal integra
tion is to be carried out by referring to the invariant compo
nents of I, A with respect to an orthonormal spatial triad, 

3. RESUME OF MULLER-ISRAEL THEORY 

Before considering the relativistic thermodynamics 
elaborated by Israel, let us cast an eye on the classical theory 
developed by Muller.6 

The starting point for Muller's nonstationary thermo
dynamics is the assumption that the entropy density s de
pends also on the heat flux qi and on the stress tensor - PI) 

= - Pij - 1 P/lDi) besides two extensive quantities like e.g" 
the internal energy e and the mass density p. Then, introduc
ing an entropy extra-flux Ni = - L P"qi - Kpijqj and re
stricting the attention to states which are not too remote 
from equilibrium, Muller achieves an expression of the en
tropy productionp(ds/dt) + (J/Jxi)(q;lT + N

I
) which 

turns out to be identically nonnegative if suitable linear phe
nomenological equations for qi' Pij' and P/l are adopted. 

While writing his paper, Israel was not aware of the 
paper by Muller. Nevertheless, in a sense, Israel's work may 
be viewed as the relativistic counterpart of Muller's theory.7 
In fact, paralleling Muller's classical procedure, it is a simple 
matter to obtain a further motivation ofIsrael's phenomeno
logical laws in the particle frame 

(-Sa(3) = -2YJ«(7CZ(3 +/32( -S,,(3)'-ii 1q";(3)' (3.1) 

1T = - S (8 + /301r - iioq",,), (3.2) 

qa = _ Kh af3 (A{3 + t1iJ1qf3 - t1ii01T.f3 - t1ii 1 ( - Sf/' );/1)' 

(3.3) 

where 1T is the bulk stress and ( - Sa{J) is the shear stress, 
while the symbols /3's and ii's are those used by Israel. 5 

In spite of the formal resemblance between Israel's an
satz (3.1)-(3.3) and our Eqs. (2.1 )-(2.3), the two sets of equa
tions have a deeply different conceptual meaning. Precisely, 
Eqs. (3.1 )-(3.3) are constitutive equations for the response 
functions ( - S), 1T, and q, while Eqs. (2.1)-(2.3) govern the 
evolution of the hidden variables I, 8, A. Yet, a close con
nection between Eqs. (3.1)-(3,3) and (2.1 )-(2.3) is attained if 
direct relations between ( - S), 1T, q andI, 8, A are accessi
ble, This point will be investigated carefully in Sec. 4 where 
such relations are derived through compatibility with ther
modynamics. In passing we note that Eqs. (3.1 )-(3.3) were 
proposed by Israel as purely phenomenological laws; their 
validity was subsequently substantiated by Israel-Stewart's 
works8

,9 concerning kinetic theory arguments. 14 

It is worth remarking that the use of the proper time 
derivative is open to an objection, namely, that such a deriva
tive appears not to be objective. To remedy this unpleasant 
feature, sometimes researchers have recourse to other de
rivatives. 15 Notwithstanding this, the proper time derivative 
is frequently adopted because, to our mind, it gives rise to 
handier formulas in several contexts and, meanwhile, it 
leaves the description of the physical behavior qualitatively 
unaffected. 
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4. HIDDEN VARIABLE APPROACH AND THE SECOND 
LAW OF THERMODYNAMICS 

This section is intended as a completion of the hidden 
variable approach, outlined in Sec. 2, for the purpose of com
paring it with Muller-Israel's theory surveyed in Sec. 3. Fol
lowing along the lines of Muller's work, we assume the exis
tence of an entropy extra-flux N in addition to the flux q/tJ. 
Accordingly, the second law of thermodynamics may be giv
en the form of the inequality 

- r(f; + sJ) + sa{3ua{3 + ! saa e - (l/tJ )qUAa 

+tJNCI,u'/O, (4.1) 

which must hold identically at any particle. Within the pre
sent context, the most natural choice of N involving the hid
den variables .I, 8, A is expressed by 

Net = K.I a{3A{3 + L8A a, (4.2) 

where K, L are phenomenological coefficients; a possible 
connection of K, L with a, b, c, d will be given shortly. Substi
tution of(2.1)-(2.3) and (4.2) in (4.1) provides 

- r(tP,~ + s)J + [sa{3 - (rir,)tPI"" ]ua {3 

+ [rtP, + jS"a -(rirh)tPe]e 

- [(lItJ )q" + (rirC )tP,1,,]Au 

+ r [(11 TJW I"".I a{3 

+ (lITh)Wo 8 + (lITJtPII"Aa] + (tJK.I a {3 - ratPI"'J)Au,{3 

+ (tJL8 - rbtPo}A CIa 

+ (tJLA "- rctPII)8." 

(4.3) 

where the subscripts tJ, r, .I, 8, A denote partial differenti
ations. Owing to the independence of the hidden variables, 
and hence of tP, of the present values -8,O',e, and A, we con
clude that (4.3) holds identically only if 

s = - tPif , (4.4) 

S,,{3 = _ rtP,h a{3 + (rirJtPI"f! + (rITb)tPe h a{3, (4.5) 

q" = - (rlrJtPlI" ' (4.6) 

and if 

r[(1ir,)tPI"'J.Ia{J + (lITh )tPe 8 + (lIT,)tPII"A u ] 

+ ({)K.I,,{3 - ratPI.)Aa;fi + (tJL8 - rbtPe)A U," 

+ (tJLA "- rctPII)8.a + (tJKA a - rdtP1).I,,{3:{3'/0. 
(4.7) 

Each function tP satisfying (4.7) makes the response func
tions s, S, q automatically consistent with the second law of 
thermodynamics in the form (4.1). Among the admissible 
choices of tP, we confine our attention to a free energy leading 
to a scheme endowed with satisfactory physical properties. 
Indeed, letting 

tP = tp (tJ,r) + (lIr)(71T,.Ia{3.I a{3 + i ;Tb 8 2 

+ (KTc12tJ )Aa A a), (4.8) 

the inequality (4.7) is identically true if and only if 1]'/0, ;'/0, 
K'/O, once we introduce the further relationships 
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lJK 
a= --, 

271Ts 

(4.9) 

between the phenomenological coefficients. Also, (4.4)
(4.6), and (4.8) deliver 

and 

(4.10) 

(4.11 ) 

(4.12) 

where p = ,ztPr' Equations (4.11) and (4.12) turn out to be 
the most natural generalizations of Fourier's and Navier
Stokes' laws. In fact, in the case of stationary uniform pro
cesses, asymptotically Eqs. (2.1)-(2.3) yield 

.I=O', 8=e, A =..1" (4.13) 

whereby the hidden variables coincide with the correspond
ing real variables, and what is more Eqs. (4.11) and (4.12) 
reduce to the usual laws of viscosity and heat conduction. In 
this instance the hidden variables disappear at the outcome 
thus allowing us to describe the fluid in terms of real varia
bles only. This feature, occurring here in a trivial manner, is 
true in any general problem in the sense that the hidden 
variables.I, e, A are to be viewed as solutions of the evolu
tion Eqs. (2.1)-(2.3). 

5. CONCLUDING REMARKS 

We are now in a position to examine the connection 
between Muller-Israel's theory and ours. To this purpose 
look at the Eqs. (2.1)-(2.3) and write the expressions for the 
hidden variables.I, e, and A in terms of ( - S ), 
1T = - lS aa - p, and q via the relations (4.11) and (4.12). 
Then it follows at once that the equations so obtained coin
cide exactly with Israel's equations (3.1)-(3.3) provided the 
following identifications 

/30 = Tb l ;, PI = TjKlJ, /32 = TJ271, 

iiu = tJL /;K, iiI = tJK 121]K , 

are made. This precise connection enables us to obtain a 
further significant result in that the estimates ofIsrael's phe
nomenological coefficients, established through Israel
Stewart's kinetic approach,9 apply to our phenomenological 
coefficients as well. 

In conclusion, it seems that two points weigh in favor of 
the hidden variable tool. First, as shown above, once the 
evolution equations are given, the response functions of the 
material are ultimately derived as a consequence of the sec
ond law of thermodynamics. This makes the whole ap
proach automatically consistent with thermodynamics. Sec
ond, the hidden variables allow a very flexible account of 
irreversible phenomena in that any choice of tP, satisfying the 
inequality (4.7), supplies admissible theories. 
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We study some global properties of a self-interacting Dirac field which has been used to construct 
a classical stable model of the hydrogen atom. It is shown that the normalization condition 
produces the correct values of both charge and spin and also the correct Lande factors for the 
states with) = 1/2. The linear limit is given by the branching points of the continuum of 
solutions. 

1. INTRODUCTION 

In a previous paper (Rafiada, 1977),1 to be referred to as 
I, a nonlinear model of the hydrogen atom has been studied. 
Therein the electron is represented by a Dirac field with a 
self-interaction of the type (if¢)2. For a very large interval of 
values of the self-coupling constant, the effect of the nonlin
earity was found to be too small to be appreciated. In spite of 
this and of the fact that the linear theory leads to very good 
results in atomic physics there are some reasons to make 
such a study. For instance, Weyl (1950)2 proposed some geo
metrical arguments which indicate that gravitation induces 
nonlinear self-coupling terms in the equations of motion of 
spin 1/2 fields. Even if the coupling constant were very small 
there is an important qualitative change which must be con
sidered carefully. On the other hand, nonlinear Dirac fields 
have interesting localized solutions (Soler, 1970)3 and can be 
used to construct models of the nucleon (Rafiada et al. 1974, 
(Rafiada and Vazquez, 1976).4,5 We would also like to point 
out that the present interest in nonlinear equations is leading 
to the discovery of completely unexpected results. 

The model was used in I to make some considerations 
on the relation between classical and quantum physics and to 
explore the possibility of a nonlinear quantum mechanics. 
However, the results were based on numerical analysis. In 
this work we study some aspects of the model from a more 
rigorous point of view using an analytical approximation. 

In Sec, 2 we report some global properties of the solu
tions and obtain lower bounds of their radius. 

In Sec. 3 we consider the problem of the bifurcation of 
the nonlinear solutions at the linear value of the frequency. 
For this purpose we use the Ritz-Galerkin method and find 
complete agreement with the previously obtained numerical 
results. 

2. CLASSICAL NONLINEAR CHARGED DIRAC FIELD IN 
A COULOMB POTENTIAL 

We consider the atom described by the Lagrangian 

y = ~ {ljry'"ap.¢ - (a"if)y'"¢} 

- mtjJ¢ - etjJyD¢Ao + A (tjJ¢)2, (2.1) 

"'Present address: Physics Department, Joseph Henry Laboratories, Prin
ceton University, P.O. Box 708, Princeton, NJ 08540. 

in which the Dirac field for the electron is physically inter
preted so that 

Pe Pe(r,t) = er/l¢ (2.2) 

represents the electric charge density at (r,t ). 
Ao is the electrostatic potential created by the nucleus 

and the quadratic term is the dominant part (in the weak 
field limit) of the one suggested first by Weyl (1950) as a 
dynamical consequence of the spin. 

Out notation will be 

gI'p. = (1, -1, - 1, -1), fz = 1, c = 1, e = - lei, 
a = e2/41T, (2.3) 

yD = (1 0), r" = (0 ak
), 

o -1 -ak 0 

a k being the well-known Pauli matrices. 
From (2.1) we obtain the field equation 

iy'"ap. ¢ - m¢ - eAoyD¢ + 2A (if¢)¢ = 0, (2.4) 

as well as the corresponding equation for the adjoint spin or 

- iap.1fr'" - mif - eAoW + 2A (if¢)tjJ = O. (2.5) 

Both of them produce the conservation law for the electric 
current 

(2.6) 

so that the well known conservation of the electric charge 

Q = e ( r/l¢d 3r , (2.7) 
JR' 

for the case oflocalized solutions is not spoiled by the nonlin
ear term. 

We are interested in the behavior of stationary solu
tions; therefore we study solutions factorized in spherical 
coordinates in the form 

¢ = ¢./. = e ~ hut [g(r) ~?l ] (2.8) 
J J3 if(r) ~}:l' 

restricting ourselves to the case in which) = !, ~;~ being the 
spinor spherical harmonics, and I' depending on I and) in the 
usual way. 

The change of variables 

(
2m1T) 1/2 

(g,J) = !AT (G,F), p=mr, 

eAo = mV, and fJ = UJ/m (2.9) 
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leads to the equations 

F' + 1 - K F _ (l - il + V)G + sigA (G 2 - F2)G = 0, 
P 

(2.10) 

G' + 1 + K G _ (l + il - V)F + sigA (G 2 - FZ)F = 0, 
P 

K being defined in the usual way (Sakurai 1973).6 
The electrostatic potential is given by 

a 
V(p) = - -, P>Po, 

P 

V(p)= _ !!-.-(~_ ~(!!..-)2) P<Po, 
Po 2 2 Po ' 

(2.11) 

Ro = polm being the radius of the nucleus which we regard 
as a sphere with a homogeneous charge density distribution. 

The energy of any given solution is 

E = ~ (ilII + ! sigAI2), 

1..1 1m 
as shown in I, where 

/ 1 = fO(G2+F2)p2dP, 

and 

12 = i oo 

(G 2 _ F2)2 p2 dp, 

the corresponding norm being 

N=~I 
1..1 1m2 

p 

the usual L 2-norm. 

(2.12) 

(2.13) 

(2.14) 

Several families of solutions have been obtained nu
merically in I corresponding to the waves IS 112, 2s 112 , 2P1I2' 
3S 1/2 , and 3P1I2' To prove their existence remains an open 
question although it is possible to obtain some global condi
tions which are useful to check the accuracy of the numerical 
solutions (Vazquez 1977).7 

Lemma 1: The localized solutions of (2.10) are the criti
cal points of the functional I (F,G) = S;;'(G 2 - F2fp2 dp. 
subject to the constraint 

i~ {(il- V)(G 2+F2)_(G z _F2) 

_ 2K;G +GF'-FG' }p2 dP = -R, R>O. 

(2.15) 

Proof If(G,F) is a critical point of the variational prob
lem, then 

£' + 1 - K £ _ (l _ il + V)G +2M sigA (G2 - £Z)G 
p 

=0, 
(2.16) 

G' + 1 + K G _ (1 + il - V)£ +2M sigA (Gz - £Z)£ 
p 

=0, 

where M sigA must be a positive constant in order to satisfy 
the constraint. Let us remark that sigA does affect only to the 
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sign of the Lagrange multiplier. Thus, (21M I)I/Z.(F,G) satis
fies (2.10). 

Lemma 2: The localized solutions of (2.10) satisfy the 
following integral conditions: 

K fO (F2 + G 2)p dp = i oo 

2(il + I VI)FGp2 dp, (2.17) 

G - K) i oo 

(F2 - G 2) dp = 2 i oo 

(il + I VI)FGp dp, (2.18) 

i oo 

(il _1)G 2p2 dp + i oo 

(il +1)F2p2 dp 

+ i oo 

(G 2 + F2)1V1 p2 dp 

(2.19) 

Proof Equations (2.17) and (2.18) can easily be ob
tained by multiplying the field equations (2.10), respectively, 
by F and G, subtracting them from each other, and after
wards integrating over R3 using p2 dp and p3 dp as integra
tion kernels. 

and 

They give lower limits on the size of the atom: 

( ) ( I) I 1 - a 
p > p~ ~ > !fiT ' 

(p2»(p~2)~I> q-~~(~2-a) , 

with the usual definition 

< 
k)= S;;'(F2+G 2)pk+2dp 

p - , 
So(F2 + G 2)p2 dp 

having used the inequality 

(pk Hp- k»I, 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

which follows immediately from Holder's with P = 2, if both 
mean values are finite. 

Thus, the mean radius and the mean square radius of 
the solutions are bounded below, which solves in some way 
the classical problem of the "shrinking" of the atom (see also 
Lieb, 1976).8 

Equation (2.19) can be obtained using Vazquez's exten
sion ofa theorem by Rosen (Rosen 1969, Vazquez, 1977)9.10 

The stationary solutions of (2.4) allow the action to be 
not explicity time dependent so that the following global 
condition has to be satisfied: 

[ ~ I {¢(O' r,t ),Ao(O' r)}] = 0, 
dO' a~1 

(2.24) 

having defined 

1= ( c:f d 3r . (2.25) 
JR' 

It is easy to check that 

1 1 1 1 
Ia = ~ IDI + ~ ID2 + ~ liNT + ~ INu (2.26) 

having defined 
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and 

101 = r ~ (¢Y'Jd' - (Jd¢Y't/J) d 3r, 
JR' 2 

102 = r (OJt/J+t/J - m¢t/J) d 3r , 
JIR' 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

from which (2.19) easily follows. Let us remark that this 
result does not depend on the choice for Po because the func
tion V(p) belongs to the class C l (R3

). 

It is now possible to get the following expression of the 
energy: 

E = I;~m [1 00 

(G 2 - F2) p2 dp 

+ 1°C (G 2 +F2)Vpl dp+sigti 100 

(G l _Fl)2p2dP]' 

(2.31) 

which does not depend explicitly on the frequency, thus 
stressing that in this theory the energy is not obtained from 
the frequency as in the Dirac theory. 

The spin can be easily obtained by integrating the corre
sponding density, which follows from the spatial part of the 
energy momentum tensor (lauch-Rohrlich, 1977)11: 

Jk = !Eijk J
i
', 

Jijbeing 

Jif = r (xiT jO _ xjT iO) d 3r , 
JR' 

which in our case leads to the values 

J I =0=J 2 

and 

(2.32) 

(2.33) 

(2.34) 

so that the normalization condition produces the correct val
ues for both charge (2.7) and spin. 

The magnetic moment of the electron is obtained by 
means of the integral 

M= ~ r rxje d3r, 
2 JIl' 

je being the spatial part of the electric four current. 
In our case it is easy to obtain that 

M I =0=M 2
, 

and 

(2.35) 

(2.36) 

M3 = - IA21:2 ' :: 100 

FGp 3 dp (nS 1l2 states) (2.37) 

and 

M 3 - 211' 2e 1'" VG. 3 d ( ) - ---" . - r' p P nplIl states. 
fA- fm- 3m () 

(2.38) 
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Lemma 3: The localized solutions of (2.10) for which 
the condition 

(2.39) 

holds verify the following global condition: 

_ ~ (00 (F2 + G2)p2 dp + (1 _ K) roc F2p2 dp 
2 Jo Jo 
+ (1 + K) roo G 2p2 dp -2 roc FGp3 dp 

Jo Jo 
-2 sigti IX (F2 - G 2)FGp 3 dp = O. (2.40) 

Proof The condition is easily obtained by direct integra
tion of (2.40) as in the case of Lemma 2, in this case adding 
both equations and using as integration kernel. All the nu
merical solutions obtained in I verify the condition (2.39). 

Let us remark that (2.40) does not depend upon the 
choice of the spherically symmetric external potential V (p), 
which only has to give rise to the existence oflocalized solu
tions verifying (2.39). 

The condition (2.40) can be used to evaluate the mag
netic moment of the electron, which is 

M3 = _ [1 4 f~"F2p2dp 
3 3 f~(F2 + G 2)p2 dp 

4. S(-;'(F2 - G 2)FGp 3 dp ] 
+ - Slgti Nf.111 

3 Sr';'(F 2 + G 2) p2 dp 
(p states), (2.42) 

For the case of the above mentioned numerical solutions the 
second and third factors are always of order a 1

, or a 3
, so that 

in the first approximation the correct Lande factors g, = 2 
and gp = J are obtained. 

3. THE BIFURCATION OF THE SOLUTIONS 

It was shown in I that there is a family of solutions for 
each bound state of the linear theory depending continuous
lyon the frequency. It was found by numerical analysis that 
when fl-fl, (the linear value of the frequency) the solution 
tends to zero in such a way that the norm is proportional to 
fl - fl,. The nonlinear solution bifurcates from zero at 
fl=fl,. 

Let us now study this problem using the Ritz-Galerkin 
method (e.g., Rose, 1978),12 an iterative method which gives 
an approximate solution as an expansion in the basis of ei
genfunctions of the linear part of the differential operator. 

In the case of stationary solutions, our equation can be 
written as 

iyOyVJd) - yO¢> - Vc/> + sigti (ic/> )y0c/> + flc/> = 0, (3.1) 

where c/> = (2m11'/IA- 1)lf2t/J is a dimensionless spin or and ak 

Antonio F. Rat'lada and Juan M. Us6n 1207 



                                                                                                                                    

= (l/m)(J/Jxk). For simplicity in the following we will 
consider a point nucleus. 

The field equation can be written as 

-L¢ +N(¢) + f1¢ = 0, (3.2) 

where Land N are the linear and the nonlinear parts of the 
differential operator 

L = - iyOr kak + yO + V, 

N (¢ ) = sigA. (i¢ )yO¢. 

L has a well known associate orthonormal set of 
eigenfunctions 

¢n Trr L¢n = f1n¢n' 

We make the expansion 
N 

¢= I ai¢i, 
i= 1 

(3.3a) 

(3.3b) 

(3.4) 

(3.5) 

substitute it in (3.2), and project on ¢k' k = 1, ... ,N. In this 
way, we obtain a nonlinear system of algebraic equations 
which can be solved for a k • Let us consider the ground state 
and take N = 1 as a first approximation. It is very easy to 
show that 

A.<O 

u 

u 

FIG. I. Shape of the functions a ,( U) forA < 0 (a) and A > 0 (b). The physical 
solution corresponds to U = 0.5119 X 105 Am" Similar figures are obtained 
for the other states. 
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TABLE 1. a,/y41T versus U near the linear limit of the ground state. 

a,ly41T 
U Eq. (3.8) 

+0.001 0.278 X 10-4 

+0.0005 0.197XIO-4 

+0.0003 0.152 X 10-4 

+0.0001 0.881 X 10-5 

+0.00005 0.623 X 10-5 

Branching point 
-0.00005 
-0.0001 
-0.0003 
-0.0005 
-0.001 

a2 -,-

0.623 X 10-' 
0.881 X 10-' 
0.152XIO-4 

0.197X 10-4 

0.278x 10-4 

Ua6 

- sigA. f R' (¢1¢1)2 d 3p , 

where U is given by 

Numerical result 

0.279x 10-4 

0.199x 10-4 

0.153x 10-4 

0.914x 10-5 

0.623 X 10-5 

0.578X 10-5 

0.826X 10-' 
0.151 X 10-4 

0.195x 10-4 

0.278x 10-4 

(3.6) 

U= f1-f11 . (3.7) 
a 6 

As a first consequence there is a solution for a given f1 
only, if A. U < 0, a result obtained numerically in I. 

It has an evident physical interpretation because A. > ° 
gives rise to an attractive potential which lowers the frequen
cy of the bound states (Garcia and Us6n, 1979).13 

If this condition is verified, (3.6) can be written as 

a I = 1.7632534 X 10-3 VIUI ' (3.8) 

which coincides up to six figures with the results of I (Fig. 1, 
Table I). To check if N = 1 gives a good approximation let us 
consider N = 2. This gives two equations for a l ,a2 from 
which it can be shown that if I U I < 105

, then 

(3.9) 
a, 
As in the physically interesting solutions U < 1, the ef

fect of the second wave can be neglected. 
The norm and energy of the solutions are then 

N= ~af = ~(3.109063XlO-6)IUI, 
1,.1,. 1m2 1,.1,. 1m2 

(3.10) 

21T (2 1 4f (i: r/.. )2 d 3 ) E= -- f1a, + -al '1-'1'1-'1 p, 
1,.1,. 1m 81T 

(3.11) 

which can be written as 

E = Nilm(1 + €), (3.12) 

where e:::,dO- 13 1 U I. The correction can certainly be neglect
ed if I U I < 1. In this case the energy has the value 

E = Nil 1m + J.E, 
(3.13) 

J.E = NmUa6
• 

I t is clear that for fixed), the energy and the norm go to 
zero if f1---+il I' This bifurcation phenomenon is represented 
in Fig. 1 in two diagrams (al'U), one for each sign of A.. 

As explained in I, the norm must adjust itself to 1. In 
that case, it follows from (3.10) that 
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Am2 
U= - -----

1.9535 X to-5 • 
(3.14) 

IflA 1m2 < to-5
, thenAE < 2ma6 and U <O.5and thepreced

ing approximations are valid. 
The same results are obtained from the other states. 
In the preceding considerations the value of A remained 

constant. The linear limit should be obtained for ..1.---+0. How
ever, (12) and (14) seem to indicate that in this limit every
thing blows up, the energy and the norm becoming infinite. 
However, if we let ..1.---+0 and f1_f1{ taking into account 
(3.14) which implies that A /Uhas to be kept constant, the 
Dirac solutions and energies are obtained in the limit. This is 
the correct way of obtaining the linear limit. 

In conclusion, the numerical results of I are in perfect 
agreement with those obtained by means of the Ritz-Galer
kin Method. 
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In the present part II of this paper we prove the remaining part of the essential self-adjointness 
theorem stated in part I. This proof makes essential use ofthe maximum principle. 

INTRODUCTION 

In the present part II of this paper we prove Theorem 
4.2 which was stated in part I and which was needed to prove 
the main Theorem 2.1. For convenience we continue the 
numbering of sections, however, we start anew the number
ing of references. 

In Sec. 6 we isolate two consequences of the maximum 
principle.' We start this isolation by formulating the positiv
ity requirements (6.3) and (6.4) on a given potential. These 
requirements were introduced by Friedrichs,,1 and Sears.' In 
Lemma 6.1 we consider a second order differential inequal
ity corresponding to such a potential. Then we introduce a 
class of Cauchy data for which this differential inequality 
has no~, -solutions. The nonexistence of22 -solutions of the 
corresponding differential equation is the key fact in the 
proof of the Dunford-Schwartz version 5f of the Friedrichs
Sears discreteness criterion. The application of the maxi
mum principle allows us to replace this differential equation 
by the differential inequality of Lemma 6.1. It is a conse
quence of Lemma 6,1 that zero is in the resolvent set of the 
corresponding operator. This is the statement of Corollary 
6, I, Lemma 6,2 states that ifp and q are two potentials which 
satisfy the assumptions of Corollary 6.1, and ifp<q, then the 
negatives of the corresponding kernels of the inverse satisfy 
the same inequality. Moreover, these kernels are positive. 
Lemma 6,2 is, essentially, an extended version ofa remark of 
Faris," It is a consequence of the minimum principle' which, 
in turn, is a simple consequence of the maximum principle. ]a 

In Sec, 7 we prove Theorem 4.2. We start this proof by 
introducing the scalar valued potentials p ~ (K). Here, as in 
part I, K denotes the reducing subspace parameter. In Theo
rem 7.1 we estimate the adjusted resolvent of Theorem 4.2 in 
terms of adjusted resolvents of the operators L (p f- (K»). To 
prove Theorem 7.1 we state Lemma 7.1. It is a refinement of 
the well known fact that the square of the free particle Dirac 
operator equals the negative Laplacian plus the identity. 7,8,'>a 

Lemma 7.1 is a refinement inasmuch as it states the corre
sponding fact for the parts of these operators. It says that 
L (P (O,K») 2 + I is the orthogonal sum of L (p t (K») and 

"Supported by NSF Grant MCS78·02199, 
"'Author of Appendix, 

L (p _ (K»). A simple formal computation shows that this 
implies a corresponding orthogonal decomposition for the 
product of the adjoint of the resolvent and the resolvent of 
the operator L (P(O,K»). To make this formal computation 
rigorous we need Corollary 6.1 and an abstract fact which is 
stated in Lemma 7 .2. We complete the proof of Theorem 7.1 
by combining these facts. Theorem 7.2 states that the norms 
of the adjusted resolvents of the operators L (p t (K») are 
small for large IK I. One might be tempted to prove Theorem 
7.2 by introducing the comparison potentials: q T (K) 
= Pi (K) - 1, and apply Lemma 6.2 to them. However, 

zero is in the continuous spectrum of L ( q t (K») and so these 
potentials violate the assumptions of Lemma 6.2. Neverthe
less, using the usual construction for the Green's func
tion, lOh we can define a comparison kernel. In Lemma 7.3 we 
show that this comparison kernel majorizes negative of the 
resolvent kernel of the operator L (p t (K»). Note that by 
Lemma 6.2 this resolvent kernel is positive. Since the adjust
ed resolvent kernel is also positive it is majorized by the ad
justed comparison kernel. In Lemma 7.4 we show that the 
adjusted comparison kernel does define a bounded operator 
and that the norm of this operator is small for large [K[. This 
completes the proof of Theorem 7.2. Then inserting Theo
rem 7.2 in Theorem 7.1 proves Theorem 4.1 of part I. This, in 
turn, completes the proof of the main Theorem 2.1 of part l. 

6. TWO CONSEQUENCES OF THE MAXIMUM 
PRINCIPLE FOR SECOND ORDER OPERATORS WITH 
POSITIVE POTENTIALS 

In this section we isolate two consequences of the maxi
mum principle for second order ordinary differential opera
tors with positive potentials. For this purpose we need some 
assumptions. 

First let p be a given real valued function satisfying the 
basic assumption: 

p is piecewise continuous on ,,"!/? t and bounded on each 
compact subinterval of Y? ~ , (6.1) 

We shall also refer to such a function as a potential. With the 
aid of such a potential and the operators of definitions (4.1) 
and (4.2) of part I we define the operator L (p) to be the 
closure of 

L(p)= _D2+M(p) on (£;~(j?,). (6.2) 
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Note that the basic assumption (4.1) ensures thatL (p)maps 
(£OX (3f +- ) into 22 (.~ + ) and that this operator admits a clo
sure. Also note that replacing the real valued potentialp by 
the matrix valued potential P, the resulting operator is differ
ent from the operator of definition (4.4). To emphasize this 
difference we shall always denote real valued potentials by 
lower case italic letters. Secondly we introduce two positivity 
requirements onp. We assume that 

inf p(5 ) > 0, for each compact subinterval f of g; + , 
SF.7 

and that there is a point S2 such that 

p(5»3/4s 2 for SE(0,S2)' 

(6.3) 

(6.4) 

Lemma 6.1: Let the potential p satisfy assumptions (6.1), 
(6.3), and (6.4). Suppose that the function u is such that 

u is two times piecewise continuously differentiable on 
.vJl t ' (6.5) 

and 

- u" +pu";;'O. 

Suppose further that there is a point SI such that 

U(51 »0 and U'(51 ) < O. 

Then 

u(5) > 0 for SE(0,51)' 

and 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

We prove conclusion (6.8) indirectly. Accordingly we 
assume that there is a point So such that 

So E(0,51) and u(5o ).,;;,0. (6.10) 

Assumptions (6.7) and (6.10) together show that u attains its 
maximum in the interior of the open interval (5o,SI)' Ac
cording to assumption (6.3), the potentialp is positive; hence 
the maximum principle la holds for the solutions of inequal
ity (6.6). Therefore we can conclude la that u is a constant on 
the interval [SO,SI ]. This clearly contradicts assumption 
(6.7) on the Cauchy data. This contradiction shows that the 
indirect assumption (6.10) is false and completes the proof of 
conclusion (6.8). 

To prove conclusion (6.9) first we define the compari
son potential, 

q(5) = min(p(5 ),~ , _1_). (6.11) 
4 S2 

Then we define v to be the solution of the initial value 
problem 

V(5I) = U(5I) and V'(51) = ~ U'(5I), (6.12) 

and 

- v" (5) + q(5 )v(4") = 0 for SE(0,51 ). (6.13) 

Note that according to definition (6.12) the Cauchy data ofv 
satisfy assumption (6.7). Also note that according to defini
tion (6.11) the potential q is positive. Since the proof of con
clusion (6.8) used only the positivity of the potential and the 
Cauchy data of assumption (6.7), these two facts together 
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with equation (6.13) allow us to repeat the proof of conclu
sion (6.8) for the function v. This positivity, in turn, together 
with inequality (6.6) and equation (6.13), allows us to obtain 
the differential inequality for the difference, 

- (u - v)" (5) + p(5 )(u - v)(5) < 0 for SE(O'SI)' 
(6.14) 

We see from the Cauchy data (6.12) and from assumption 
(6.7) that the difference (u - v) again satisfies this assump
tion. Hence we can apply conclusion (6.8) to it, which yields 

(6.15) 

It is not difficult to solve the comparison equation 
(6.13) on the interval (O,min(51 ,52» where q(5) = 3/45 2

• 

We find that there are constants r:, such that 

v(5) = r + S3/2 + r _ S·· 1/2 (6.16) 

The maximum principle la together with the Cauchy data 
(6.12) and assumption (6.7) shows that at each point S3 of 
the interval (O,min(51 ,S2» 

(6.17) 

Inserting relation (6.17) in formula (6.16) we find that r _ is 
strictly positive. Hence v is not in 22 (O,min(51 ,52»' and be
cause of inequality (6.15) neither is u. This proves conclusion 
(6.9) and completes the proof of Lemma 6.1. 

It is a consequence of Lemma 6.1 that under an addi
tional assumption, the operator L (p) is invertible. Since we 
shall make essential use of this fact in the proof of Theorem 
4.2, we formulate it as a corollary. 

Corollary 6.1: Suppose that the potential p satisfies the 
assumptions of Lemma 6.1 and in addition 

(6.18) 

Then the closure of the operator of L (p) is invertible in 
~(.\32 (."l9 + » so that 

OEp(L (p». (6.19) 

To prove this corollary first we claim that this operator 
is one to one. To see this note that according to assumption 
(6.18) the equation, 

r = inf p(5), (6.20) 
SE 1; . 

defines a strictly positive constant. Inserting this fact in defi
nition (6.2) shows that the quadratic form of this operator is 
bounded below by y. In other words, 

L (p)'?rI> 0 on ([0'(.0P -+ ). (6.21) 

It is an elementary consequence of relation (6.21) that the 
closure of this operator is one to one, proving our first claim. 

Secondly we claim that this operator is onto, 

(6.22) 

It follows from relation (6.21) that this range is closed. 
Hence it equals the orthocomplement of the null space of its 
adjoint. 5b Next we show that this null space is trivial. In 
other words, 

f*E'1J(L (p»* and (L (p»*f* = 0 (6.23) 
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implies 

f* =0. (6.24) 

We prove relation (6.24) indirectly. Accordingly we assume 
thatf*=;i=O, and show that this contradicts Lemma 6.1. Since 
the potential satisfies the basic assumption (6.1) we can ap
ply the Weyllemma 5d.11 to the equation of assumption 
(6.23). This shows that the functionf* is a pointwise solu
tion of the equation 

(6.25) 

Since the coefficients of this equation are real, the real and 
imaginary parts off * each satisfy Eq. (6.25). Hence there is 
no loss of generality to assume thatf* is real. Because 
f*E22 (.u~ + ), andf*:t:O the derivative of (1*) 2 cannot be 
nonnegative everywhere. Therefore there is a point 51' 
wheref*(5I) and (1*)'(51) have opposite signs. Hence ei
ther f * or - f * satisfies assumption (6.7) of Lemma 6.1. So 
we can conclude from Lemma 6.1 thatf * is not in 22 (&P + ). 

This contradicts the first half of assumption (6.23). This con
tradiction, in turn, completes the proof of relation (6.24) and 
hence of relation (6.22). 

Thus the operator L (p) is one to one and onto; hence it 
has an algebraic inverse. Clearly the algebraic inverse of a 
closed operator is closed. This fact allows us to apply the 
closed graph theorem10 to this algebraic inverse and con
clude that it is bounded. This completes the proof of conclu
sion (6.20) and of Corollary 6.1. 

As is well known, Lemma 6.1 implies that this inverse is 
an integral operator. IOe In the following lemma we estimate 
its kernel. 

Lemma 6.2: Suppose that the potential p satisfies the 
basic assumption (6.1) and the positivity assumption (6.3). 
Suppose further that the closure of the corresponding operator 
of definition (6.2) is such that 

OEp(L (p». (6.26) 

Then the kernel of this inverse is positive, that is to say 

(6.27) 

Ifin addition q is another potential which satisfies assump
tions (6.1), (6.3) and (6.26) and 

q<,p, 

then 
L (p) .. 1(5,T/)<,L (q) - 1(5,11)' 

(6.28) 

(6.29) 

We prove conclusion (6.27) indirectly. Accordingly we 
assume that there is a point (5o,T/o) such that 

L(p)-I(5o,T/O)<O, (6.30) 

and show that this contradicts the minimum principle. Ib 
The Weyl representation theorem for the resolvent ker

nel 5e shows that this Green's function is continuous. Hence 
the point T/o has a neighborhood A/' such that 

T/E .1' implies L (p) - 1(50 ,T/) < O. (6.31) 

Let fbe a function such that 

fE(fo(,'j? r) f-;;.O suppfCJV, 

and set 

g=L(p)-'j. 
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(6.32) 

(6.33) 

Then clearly 

g(5o) <0. (6.34) 

We show that there is another point 51 in the open axis.7? j , 

such that 

min g(5) = g(5l) < O. (6.35) 
SfC'. // 

To see this we note that definition (6.33) and assumption 
(6.26) togethe yield, 

gE'V(L (p» C 22 (&P I ). (6.36) 

This, in turn, yields 

lim infl g(5) I = o. 
;: .. x 

We claim that 
gE(f(&P + ), 

so that 

lim g(5) = o. 
s .0 

(6.37) , 

(6.38) 

(6.37) I 

To see this recall that we defined '1)(L (p» by closure. Hence 
assumption (6.36) implies that there is a sequence! gn J such 
that 

(6.39) 
n ----or:: 

and! L (p)g" I is a Cauchy sequence. In view of the Schwarz 
inequality these two relations yield sup" (L (p)g" , g,,) < 00. 

Inserting this relation and the positivity assumption (6.3) in 
definition (6.2) we obtain 

sup IIDg" II < 00. 
1/ 

Another application of the Schwarz inequality yields, 

Igl/(52)-gl/(5I)I<,ls2 -511 1!21IDgl/ll· 

(6.40) 

Thus this sequence of functions in equicontinuous. At 
the same time it follows that this sequence is uniformly 
bounded on the interval [0,1]. Hence, according to the Ar
zela-Ascoli compactness criterion 5a there is a subsequence 
which converges uniformly over this closed interval. This 
proves relation (6.38). At the same time remembering rela
tion (6.39) it follows that 

g(O) = lim g" (0) = O. 

This proves relation (6.37) I. Then relations (6.37) I." (6.38), 
and (6.34) together prove relation (6.35). Next we show that 
the minimum principle holds for g. To see this note that 
definitions (6.32) and (6.33) together yield 

L(p)g =/ 
Inserting definition (6.32) and relation (6.38) in this equa
tion we find that 

gE(f2(,:;t? + ). 

At the same time we find that 

L(p)g(5)-;;.O for 5E.'Yl + . 

(6.41 ) 

(6.42) 

The positivity assumption (6.3) and relation (6.41) together, 
allow us to apply the minimum principle Ib to the solution of 
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the differential inequality (6.42). We conclude from this 
principle and from relation (6.3S) thatg is a constant. Be
cause of relation (6.37) I this constant has to equal zero. This 
contradicts the indirect assumption (6.30). This contradic
tion, in turn, proves conclusion (6.27). 

We complete the proof of Lemma 6.2 by showing that 
conclusion (6.27) implies conclusion (6.29). For this purpose 
we need the following version of the second resolvent 
equation, 12 

L (q) I -L (p)-I =L(q)-IM(p - q)L(p)-I, 

on L (p)C£o(:7I + ). (6.43) 

First we note that according to conclusion (6.27) the first 
and third factors on the right of relation (6.43) map positive 
functions into positive functions. Second, we note that ac
cording to assumption (6.28) this also holds for the second 
factor. Therefore, the left member of relation (6.43) maps 
each positive function in L (p)C£o(:7I + ) into another posi
tive function. Since assumption (6.26) implies that this set is 
dense,the validity of conclusion (6.29) follows. This com
pletes the proof of Lemma 6.2. 

7. PROOF OF THEOREM 4.2 

In this section we prove Theorem 4.2. We start this 
proof by formulating another theorem. For this purpose we 
define two potentials for each integer K by setting 

(7.1) 

Clarly these potentials satisfy the basic assumption (6.1). 
Hence the corresponding operator of definition (6.2) admits 
a closure which we denote by L (p ± (K» again. It is also 
clear that for IKI >2, these potentials satisfy assumption (6.4) 
and (6.18). Hence we can conclude from Corollary 6.1 that 

OEp[L(p-+: (K»] andso -IEp[L(p+ (K»]. (7.2) 

The following theorem estimates the norm of the adjusted 
resolvent of the operator L (P (O,K» in terms of the norms of 
the adjusted resolvents of the operators L (p + (K». 

Theorem 7.1: Let L (P (O,K» and L (p ± (K» be the clo
sures of the operators of definition (4.4), (4.7) and (6.2), (7.1), 
respectively. Then for each integerK, with IKI>2 

11M IR (O,L (P(0,K)))11 2 

<max(M IR (- I,L (P± (K)))M -1111. (7.3) 
-+, --

As a first step in the proof of Theorem 7.1 we formulate 
a lemma. To do this recall definition (4.6) of part I. It shows 
that 

(7.4) 

Next let (C -+: denote the corresponding eigenspaces. In oth
er words, 

x _, E'{,', implies C oc x ± = ± x ± . (7.S) 

Lemma 7.1: The operators of Theorem 7.1 are such that 
for each integer K, 

1213 

L (P(O,KW = {L (p + (K» on 
L (p __ (K» on 

(£0' (:71 + ,CG' + ), 

(£o(:7l + ,CG' _). 
(7.6) 
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To prove Lemma 7.1 recall definition (4.7) of part I. It 
shows that 

L (P(O,KW = JDJD + M(P(O,K»JD 

+JDM(P(O,K» +M(P 2(0,K» 
on (£0' (:71 + ,CG' 2)' (7.7) 

The product rule of differentiation yields, 

DM(P(O,K» = M(P(O,K»D + M(P'(O,K» 

on (£(n.W-+:,CG'2)' (7.8) 

Inserting definition (4.3) and relation (7.8) into relation (7.7) 
we obtain 

L (P(O,K))2 

- D2 + [M(P(O,K»J + JM(P(O,K»]D 

+ M (JP '(O,K» + M (P 2(0,K» 

on (£0'(:71 + ,CG' 2)' 

Next we claim that 
P(O,K)J + JP(O,K) = 0. 

(7.9) 

(7.10) 

To see this first we note that setting e = ° in formula (S.II) 
and remembering definitions (4.2), (4.S), and (4.6) one finds 

JCo(O,K) = - KC",. (7.11) 

Since according to these definitions Co (O,K) and C oc are 
symmetric and J is skew symmetric, this yields 

Co (O,K)J + JCo (O,K) = 0. (7. 12)o.J 

Second we note that formula (S.12) and definitions (4.2), 
(4.6), and (4.S) together show that 

JC x = Co (O,!). 

Hence another application of these definitions yields 

(7.12) ".J 

Relations (7.11)0.1' (7.11) =.J and definition (4.7) together 
prove relation (7.10). Inserting relation (7.10) in relation 
(7.9) we find 

L (P (O,K» 2 = - D 2 + M (lP '(O,K) + P 2(0,K». (7.13) 

Definitions (4.S), (4.6), and (4.2) together show that 

Co (O,K)C oc = KJ. 

Hence another application of these definitions yields 

Co (O,K)C oc + C x Co (O,K) = 0. (7.12>0,,,, 

Combining relations (7.11), (7.12)0,0< and definition (4.7) 
with 

C~(O,K) = ~I and C~ = I, 

we find 

lP '(O,K)(5) + P 2(0,K)(5) = (1 + K2/t 2)1 + (K/ t 2)C oc • 

(7.14) 

Combining relation (7.14) in turn, with definitions (7.1) and 
(7.S) we find 

lP '(O,K) + P ZCO,K) = t: ~:~ :: ~ -+: , (7.1S) 

Inserting relation (7.15) in relation (7.13) and using defini
tion (6.2) proves conclusion (7.6). This, in turn, completes 
the proof of Lemma 7.1. 
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Since the operator L (P (O,K» is symmetric we see from 
definitions (4.4) and (4.7) of part I that 

[if - L (P (O,K»] * [if - L (P(O,K»] 

= f + L (P(O,K))Z on CI;(.w + ,15 2 ), 

On the other hand, we see from Lemma 7.1 that 

f + L (P (O,K»2 = [f + (p + (K»] EB [f + L (p _ (K»] 

on (}(~(.9? i ,'t: f) = CI;(.w + ,cr; + )EBCIc';'CW "cr; ). 
Combining these two relations, we find 

[if - L (P (O,K»]*[if - L (P (O,K»] 

= [f+L(p, (K»]EB[f+L(p (K»). (7.16) 

As is well known, IJ if each term of an orthogonal sum of two 
operators is invertible, then so is the sum, and its inverse 
equals the orthogonal sum of the inverses. Clearly the clo
sure of an orthogonal sum equals the orthogonal sum of the 
closures. Since we denote an operator and its closure by the 
same symbol, these facts and relation (7.2) allow us to con
clude from relation (7.16) that 

- ! [if - L (P(O,K»]*[if - L (P(O,K»] J- 1 

= R (-l,L (p + (K») EBR (i,L (p_(K)))*. (7.17) 

As a second step in the proof of Theorem 7.1 we show 
that 

- I [if - L (P(O,K»] *[if - L (P(O,K»] J -\ 

= R (i,L (P (O,K»)R (i,L (P (O,K»)*. (7.18) 

To see this, we formulate an abstract lemma. In this particu
lar lemma we denote the closure of a given operator Tby t. 

Lemma 7.2: Let the operator Ton :£J(T) in S) be closable. 
Suppose that 

OEp(f), (7.19) 

and that 

Because of relation (7.22), relation (7.25) yields 

(T*)-IT*Tg" = Tg". 

Because of assumption (7.19) this, in turn, yields 

(r) I(T*)- IT*Tg" =g". 

Inserting relation (7.26) in this relation we obtain 

(T)-I(T*)-I/=g. 

Hence assumption (7.24) implies that 

(J,g)Cr«T) I(T*) I). 

This, in turn, implies inclusion (7.23) and completes and 
proof of Lemma 7.2. It is an interesting fact, observed by 
Klaus, that assumption (7.19) implies assumption (7.20). 
Since for our operator both of these assumptions will hold we 
shall not use this abstract fact. 

The Rellich-Weidmann relation (4.2) of part I shows 
that the operator 

T=if-L(P(O,K» on CI;(.w, ,'6'2)' (7.27) 

satisfies assumption (7.19). Relation (7.17) shows that this 
operator also satisfies assumption (7.20). Therefore applying 
the abstract Lemma 7.2 to this operator proves relation 
(7.18). Multiplying both sides of relation (7.18) by M I 

yields 

- M - IR (i,L (P(O,K»)R (i,L (P(O,K»*M . I 

= M .. IR (- I,L (p,(K»)M - I EBM- I 

XR (- I,L (p (K»)M· I. (7.28) 

It is well known that the norm of the product of the adjoint of 
an operator and the operator equals the square of the norm 
of the operator. 5g Since the norm of an operator equals the 
norm of its adjoint, 5j for each operator B in ~(.\», 

IIBB *11 = liB 112. 

OEp(T*T). (7.20) Applying this abstract relation to the operator 

Then 

(T*T) 1 =(T)-\T*)-I. (7.21) 

To prove this lemma note that as is well known, 5j as
sumption (7.19) implies that 

DEp(T*). (7.22) 

Hence each of the three operators in conclusion (7.21) is in 
IB(,I». Thus it suffices to show that the right member extends 
the left member. In other words, denoting the graph of a 
given operator B by r (B ), suffices to show that 

r«T*T) .'I)Cr«T) I(T*)- I). (7.23) 

To prove this inclusion, assume that 

(7.24) 

Then we see that T * T g = /. By definition this implies that 
there is a sequence [ gn 1 such that 

g"E:£J(T*T), n = 1,2, ... , (7.25) 

and 

lim gIl = g and lim T*Tg" =/ (7.26) 
" 
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B = M - IR (i,L (P(O,K))), 

we find 

11M .. IR (i,L (P(O,K»)R (i,L (P(O,K)))*M III 

= IIM- IR (i,L (P(0,K)))11 2
• (7.29) 

It is also well known that the norm of an orthogonal sum of 
two operators equals the maximum of the norms. 14 Hence 

11M·' IR (- I,L (p_ (K)))M - I 

EBM IR ( - I,L (p ~ (K»)M . III 

= maxllM IR (- I,L (p . (K»)M III. (7.30) 

Inserting relations (7.29) and (7.30) in relation (7.28) we 
arrive at the validity of conclusion (7.3). This completes the 
proof of Theorem 7.1. 

In the following theorem we show that the right mem
ber of conclusion (7.3) tends to zero as IKI tends to infinity. 

Theorem 7.2: The operators L (p . (K» o/Theorem 7.1 
are such that 

lim 11M IR (- I,L (PI (K»)M III = 0. (7.31) 
IKI' ~,x 
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One might be tempted to prove this theorem by intro
ducing the comparison potentials 

q t (K)(5) = K(K ± l)/S2, (7.32) 

and apply Lemma 6.2. However, these potentials do not sat
isfy assumption (6.26) since 0 is in the continuous spectrum 
of the operator L ( q t (K». Nevertheless we can use the usual 
construction for the -Green's function, 5e, lab, 15 to define a 
comparison kernel. More specifically we define two kernels 
G, (K)(5,T/) for each integer K by the requirements that 

( - :;2 + q + (K)(T/»)G -' (K)(5,T/) = - ~(5 -T/), 

(7.33) 

lim G. (K)(t,T/) = 0, (7.34) 
1/ -0 -

and 

lim G, (K)(5,T/) = o. (7.34) r 

Note that the existence of such a kernel is not evident. Later 
we shall give it explicitly. In the following lemma we show 
that such a kernel majorizes the negative of the resolvent 
kernel of the operator L (p ± (K». 

Lemma 7.3: For each integer K let the potentials p ± (K) 
be defined by relation (7.1) and let the kernels G + (K)(5,T/) be 
defined by relations (7.33) and (7.34) I,r. Then -

0<; - R (- I,L (p + (K»)(5,T/)<;G + (K)(5,T/). (7.35) 

To prove the first inequality of conclusion (7.35) we 
note that relation (7.2) and definition (7.1) allow us to apply 
Lemma 6.2 to the operator L (p ± (K». Then conclusion 
(6.26) yields this inequality. 

To prove the second inequality of conclusion (7.35) first 
we note that this resolvent kernel satisfies the differential 
equation 

( _ d 2, + p + (K)(T/) + I)R ( _ I,L (p ± (K»)(5,T/) 
dT/-

= ~(t - 1]), (7.36) 

for each S in in !!/? + . 5c.IOb Second, we note that as is well 
known Sk 

R ( - I,L (p + (K»)(5;')E~2 (!!/? + ). (7.37) 

Next let k I; (K) be two solutions of the homogeneous differ
ential equation 

( - :;2 + p + (K)(T/) + l)k I,; (K)(T/) = 0, 

such that 

k I, (K)E,\.l2 (0,1) and k r± (K)E~2 (1, (0). 

Elementary algebra shows that then 

limk I, (K)(Tj) = lim k '+ (K)(T/) = O. 
)} .f) II • x - ~ 

Inserting these facts in relations (7.36) and (7.37) yields for 
each S in .w + 

limR (- I,L (p + (K)))(5,Tj) = a (7.38) I 
TT -0 ---
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and 

lim R ( - I,L (P:± (K»)(5,T/) = 0. (7.38)' 

To complete the proof of conclusion (7.35) we intro
duce a notation for this difference. Since this difference in
volves the negative of this resolvent kerneL this yields, 

g;:(Tj) = G t (K)(S;T/) + R ( - 1,L (p t (K)))(S;r/). 
(7.39) 

In terms of this notation the second inequality of conclusion 
(7.35) reads, 

(7.40) 

We prove relation (7.40) indirectly. Accordingly we assume 
that there is a point 1]0 such that 

g,(TJo) <0, T/oE,Wt' (7.41) 

and show that this contradicts the minimum principle, Ih To 
see this first we show that there is another point Tj I in the 
open axis .91... such that 

lim g,,(Tj) = g,,(Tjl) < 0. 
l/E:·;.';', - -

(7.42) 

To see this, in turn, subtract relations (7.38) I., from defini
tions (7.34) 1.', This yields that the function of definition 
(7.39) also satisfies these boundary conditions: 

limgl;(Tj) = 0, 
,/.0 . 

(7.4W 

and 

lim gi;(1]) = o. 
1, -+00 -

(7.43)' 

The Weyl formula for the resolvent kernels,.,ls shows that 
the second term of definition (7.39) is continuous. Since the 
one-dimensional ~ function is the second derivative of a con
tinuous function lOa we see from definition (7.33) that the 
first term in definition (7.39) is continuous. Therefore, 

(7.44) 

Relations (7.44), (7.43) I. r
, and the indirect assumption 

(7.41), together prove relation (7.42). Second, we show that 
for this function the minimum principle holds. To see this 
insert definition (7.32) in definition (7.1). This yields 

p J (K) = q + (K) + 1. 

Inserting this relation in the differential equation (7.36), 
adding the result to definition (7.33), and using the definition 
(7.39), we find 

( - :;2 + q t (K)(Tj)~?(Tj) 
= - 2R ( - I,L (p + (K)))(t,T/). (7.45) 

We have already seen that the right member of this equation 
is continuous. Combining this fact with relation (7.44) and 
definition (7.32) yields 

gsE0:Z(.~ + ). (7.46) 

According to the already established first inequality of con
clusion (7.35) this right member is also positive. Hence 

( 
d2 \~ 

- dTj2 + q I (K)(Tj) fl:;('1]»O. (7.4 7) 
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According to definition (7.32) the potential q l (K) is positive 
and bounded on every compact subinterval of 91 + . This fact 
and relation (7.46) allows us to apply the minimum principle 
to the differential inequality (7.47). From this principle and 
from relation (7.42) we conclude that gs is a constant. Be
cause of relation (7.43) 1 this constant has to equal zero. This 
contradicts the indirect assumption (7.41). This contradic
tion, in turn, proves relation (7.40) and completes the proof 
of Lemma 7.3. 

We return to the proof of Theorem 7.2. Using the com
parison kernel of Lemma 7.3 for each integer K we define a 
pair of kernels by 

K 1 (K)(g,1J) = 5 - IG
i 

(K)(g,1J)1J ... I. (7.48) ± 

Then we see from Lemma 7.3 that 

0,;;; - 5· IR (- 1,L (p ± (K)))(5;1J)1J I';;;Kj (K)(5;1J). 

In other words the kernel of the operator of Theorem 7.2 is 
negative and its absolute value is majorized by the kernel of 
definition (7.48) ~ . 

Hence Theorem 7.2 is implied by the following lemma. 

Lemma 7.4: For each integer K let K ± (K) be the operator 
corresponding to the kernel of definition (7.48) ='= • Then for 
11(1)2 

(7.49) ± 

and 

lim 11K" (K)II = O. (7.50) 

For brevity we prove this lemma for positive integers 
and for the operator K _ (K) only. Then the usual construc
tion for the Green's function IOh yields, 

G 1 {5 K+ 11J\ 1J<5, 
(K)(g,1J) = 2K 1 ~K -K\I ~ - + ~ 1J ,1J >~. 

Inserting this formula in definition (7.48). we find that 

1 ( 1 1) IK (K)(g,17) I d1J = - + -- . 
12K-II K K-l 

According to a result ofSchur-Holmgren 16 this relation and 
the symmetry of this kernel implies conclusion (7.49) . At 
the same time it also implies that 

11K (K)II,;;; 1 (~ + _1_). 
12K-II K 1(-1 

This estimate proves conclusion (7.50) _ and completes the 
proof of Lemma 7.4. Lemma 7.4, in turn, completes the 
proof of Theorem 7.2. 

Inserting Theorem 7.2 in Theorem 7.1 proves Theorem 
4.2 of part I. Therefore the proof of the main Theorem 2.1 of 
part I is complete. 
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APPENDIX: PROOF OF THEOREM 7.2 VIA A HARDY 
TYPE INEQUALITY, BY MARTIN KLAUS 

We start this proof by defining a positive integer I by 

1(I+l)=K(K+l) forK>O, (Al)+ 

and 

I (I + 1) = K(K - 1) for K < O. (AI) 

Then the Hardy type inequality used by Schmincke l7
-

19 and 
definitions (6.2) and (7.1) together imply 

L (p ± (K» + I)! + l(l + I)M- 2 on ~o(.'3f + ), 

1= 0,1,... . (A2) 

Since 

! + l(l + 1) = (21 + 1)2/4 

and the operator M - I is symmetric, relation (A2), in turn, 
implies 

([L(P+(K»)+I]f,f) (2/+1)2 (M-If,M If). 
- 4 

(A3) 

Next we show that 

OEp(L (p * (K) + I» and hence (L (p ± (K») + I) - 1)0. 
(A4) 

To see this relation we note the well-known fact 7b that the 
restriction of the operator - L1 + I to the subspace of mo
mentum I is unitarily equivalent to (21 + I) copies of the 
operator L (p ± (K»). More specifically this holds for the re
striction of the operator - L1 + Ito ~o(.'3f dO J). We know 
that this restriction is essentially self-adjoint. 9b 

We also know that for the closure of this operator, 

OEp( - L1 + J). (AS) 

These facts together prove relation (A4). At the same time 
they show that 

[L (p ± (K» + I ]~o(fJ? + ) is dense in 22 (91 " ). 
(A6) 

As a first consequence of relation (A4) we see that each 
of the two operators L (p ± (K») + I admits a symmetric 
square root. Hence 

(L (p + (K) + I)f,f) 

= ([L (p ± (K») + I f12f, [L (p ± (K») + I ]1/2f). (A7) 

As a second consequence of relation (A4) we see that 

OEp([L (p + (K») + I ]112). (A8) 

Hence defining 

g= [L(P±(K»)+If/2f, 

relations (A3), (A 7), and (AS) yield 

4 (g,g»(M-1[L(pt-(K»)+I]· I12g, 
(21 + 1)2-

M ···1 [L (p ± (K») +1] -1/2g), 

for gE[L (p + (K») + I ]1/2~oU3$l +), (A9) 

We know 9h that a bounded operator which has a dense range 
maps a dense set onto another dense set. Therefore, relations 
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(A6) and (A8) imply that 

[L (p ~. (K» + / ] 1!2~0"(a' +) is dense in 22 (a' + ). 
(AW) 

Similarly to the concluding steps of Lemma 7.2 we see from 
relations (A9) and (AW) that 

IIM--l[L(p+(K)+I)~I]M-l/1< 4 2.(A11) 
~ (21 + 1) 

Relation (All) completes the proof of Theorem 7.2. Inci
dentally note that this estimate for the norm is sharp. 

Notes added in proof 
Remark 1: According to a verbal communication of 

Behncke and Klaus Theorem 2.1 is sharp inasmuch as re
placing the open interval by the closed interval in assump
tion (2.6) conclusion (2.9) need not hold. 

Remark 2: A weaker version of Lemma 7.1 suffices to 
prove Theorem 4.2. To see this, insert relation (7.14) into 
relation (7.13). This yields 

L (P(O,KW 

= -D2+(~f+KC",)M~2+/, on ~0"(a'+,'ti2)' 

As in Sec. 7, this, in turn, yields 

[if - L (P(O,K»]*[i/ - L (P(O,K»] 

= - D2 + (K2/ + KCoo)M ~2 +2/. 
Since C" is Hermitian, we see from relation (7.4) that 

KCoc > - IKlf, on 'ti 2 • 

Inserting this inequality into the previous one, we find 

[if - L (P(O,K»]*[11 - L (P(O,K»] 

> - D 2 + [( I K I - D2 - ;\lM ~ 2 + 21. 
Now we proceed as in the Klaus Appendix by inserting the 
Hardy inequality into this one. Then we find the key 
inequality 

(i/ -- L {P(O,K»]*[i/ - L (P(O,K»] 

This inequihty and relations (7.19) and (7.27) together imply 
that 

I/gW>(IKI - !)211M lR (i,L {P(O,K»gl/2, 

for gE [if - L (P (O,K»] ~/;(.9? i ,'ti 2)' 

and that this set is dense. Hence Theorem 4.2 follows by 
closure. 
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The zero-mass behavior of Feynman amplitudes with or without subtractions is investigated. 
Rules are given to determine the behavior of any Feynman amplitude, in the most general cases, 
when some or all of the masses in the underlying theory become small, in general, at different 
rates in Euclidean space. That we have to consider the approach of such masses to zero at different 
rates as well is clearly essential on physical grounds. Examples are worked out as illustrations for 
the rules. A general rule is also given which gives a sufficiency condition to guarantee the existence 
of the zero-mass behavior of any renormalized Feynman amplitUde under the above same 
conditions which reduces to an elementary and direct inspection of the corresponding Feynman 
diagram. 

I. INTRODUCTION 

The purpose of this work is to investigate, in Euclidean 
space, the explicit zero-mass behavior of any Feynman am
plitude with or without subtractions, where in the original 
Feynman amplitUde all the masses in the underlying theory 
are nonzero and the subtractions are all performed at the 
origin directly on the Feynman integrand. The study is gen
eral enough to deal with the most general cases when some 
(not necessarily all) of the masses involved in the theory be
come small, in general, at different rates. That we have to 
consider the most general cases when (i) some of the masses 
as well and not necessarily all the masses become small and 
(ii) consider the approach of such masses to zero at different 
rates as well is clearly a physical requirement. To avoid prob
lems with theories for which some of the masses are a priori 
zero (at least on experimental grounds), we initially write for 
the denominators of the propagators, corresponding to a 
pole term Q 2, (Q 2 + 11 2) in the Feynman rules. The limit of 
such masses 11->-0 and other masses not a priori zero is rigor
ously studied with the approach to zero of these masses, 
necessarily at different rates. 

In quantum electrodynamics, for example, one would 
be interested in determining the limit of a renormalized 
Feynman amplitude for 11->-0, m->-o, and {J1/m)--+O, which 
is a nontrivial limit, where 11 is a photon mass as defined 
above and m is the mass of the electron. To our knowledge all 
previous studies of the behavior of Feynman amplitudes at 
the zero-mass limit in Euclidean space either have not taken, 
explicitly, into account the complex and nontrivial role of 
subtractions or have considered the case only when all the 
masses in the theory approach zero and all at the same rate 
and were carried out by different methods. 1.2 Finally, we also 
give a general rule as a sufficiency condition for the existence 
of the zero-mass limit of any renormalized Feynman ampli
tude which reduces to an elementary and direct inspection of 
the corresponding Feynman diagram. The analysis is carried 
out with the external Euclidean momenta of a proper and 
connected Feynman graph under investigation being nonex
ceptional, i.e., no partial sums of the external momenta van
ish, and with all the subtractions carried out at the origin 
directly on the Feynman integrand. The degree of diver-

gence of a subdiagram is chosen to coincide with its 
dimensionality. 

II. ZERO·MASS BEHAVIOR 

The structure of a Feynman amplitude A, with or with
out subtractions, is of the form 

A (p, '''''P4m; 11,,112, .. ·,111') 

= f dk, ... dk4n R(p"''''P4m;k" ... ,k4n ;I1,,112,· .. ,l1p )' (I) 

where 

R (p" P2 , ... , P4m; k, ,k2 , ... ,k4n; 11,,112,· .. ,111') 

Al =" m, • . "'.". IT (pT" IT (k,),," IT {J1n r"', (2) 
~ n (Q2 2)G, J 

1 1 + 111 j t n 

ifl > 0 and the sum is over all nonnegative integers m ij' nit' 

Tin' and i; and 

(3) 
j j 

with I PI' P2' ... , P4m J and I k" k 2 , ... , k4n 1 representing 
the sets ofthe external and internal independent momentum 
components, respectively, of a proper and connected graph 
G with which A is associated. TheA ~", . .n."r, 's are suitable 
coefficients. 1111,112'"'' I-lp l denotes the set of the masses in 
the theory appearing in the graph G (11,,40, n = 1,2, ... ,p). 
All subtractions in (1) are supposed to have been carried out 
at the origin as defined3 directly on the unrenormalized 
Feynman integrand. 

We scale the masses in an arbitrary subset 
111, ,112, .. ·,11, J ~ [111,112,· .. ,111' I of the masses as follows: 

11, ->-A 1 111' 

112 ->-A, A2112' (4) 

11, ->-A, A2 · .. As 11.,· 

The masses in the subset I 11, , 112' · .. ,11, 1 have been arbitrar
ily labeled from I to s for convenience. Without loss of gener
ality we may assume that any set of masses which approach 
zero at the same rate have been identified with either 11, , or 
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ft2 , ... , or fts' depending on the rate at which we wish them to 
vanish in comparison to the other vanishing ones. Under the 
scaling (4), each term in the sum of the numerator of R in (2) 
is transformed as follows: 

II (p)rn,) II (k,)"" (ft, )'"" (ft2)'",2 ... (fts)"''' ... (ftp)""P 
j I 

where 

pj = pj/A, A2···As, k; =kJA,A2 .. ·As, 

ft; = ft, / A2 A3 ... As' 

ft~ = ft2/ A3 A4 ... As' 
(5) 

ft;=ftJA,A 2 • .. A" for s<i<p, 

where d (N) is the dimensionality of the numerator defined 
by 

d(N) = (mi' + m ,2 + ... ) + (nil + niL. + ... ) 
+ (Til + TtL. + ... + Tip)' (6) 

and is a fixed number for all i for which A:"" , ... ,nil , ••• ,Til 

,,·=F0. Similarly, the denominator in Eq. (2) is transformed 
as follows: 

n (Q 7 + ft7)"'-(A, A2 ... A,)d(D) n (Q;2 + ft;2),,', (7) , , 
where 

Q; =Q,/A,A2· .. As ' 

and theft;'S are defined in Eq. (5). d (D) is the dimensionality 
of the denominator, i.e., d (D) = 21:, (7,. Accordingly, the 
(renormalized) integrand R is transformed to 

(A, A2 ... As )d(R) R (p; , ... ,P;m, k ; , ... ,k ;n, ft; ,ft; , ... , 
(8) 

where d (R ) = D (N) - d (D). Hence, finally the amplitude 
A is transformed to 

A (p, ,P2 '''''P4m; A,ft,,A, A2ft2 , ... , 

A, A2 ... A,fts, ft, + , ,· .. ,ftp) 

= (A A ... A )d(G)A (-P-' - ~. ~ 1 2 s ,'0.'" 
A, .. ·A, A, .. ·A 5 A2 .. ·As 

ft2 ft., - , fts + , ftp) 
A3 · .. A . , ... , -A-. - , fts' A, .. ·A , ... , A .. ·A 

_ 'j: S .'i 1 s 

=(A,A2···A,)d(G) A', (9) 

where d (G) = (d (N) - n{ (7/ + 4n), which is the dimen
sionality of the graph G, by definition. 

Let the 4n integration variables, the 4m external mo
mentum components' and, for convenience, the masses 
ft, ,ft2 ,. .. ,ftp 1 be considered as the components of a vector P 
in an (4(n + m) + p) Euclidean space R (4(n + m) +p). For 
each line I in G with momentum-mass (Q I , ... ,Q ;,ft,) ~, 
we introduce a vector V, such that V,·p = ~ for each of the 
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five components of ~. Let 1 be an arbitrary subspace4 of 
R (4(" + m) + p) spanned by arbitrarily chosen 4n vectors asso
ciated with the 4n integration variables. We introduce E as 
the complement of 1 in R (4(n + rn) + p) 4 as R (4(n + m) + p) 

= 1 + E, with A (1) as the operator of projection onto E 
along 1. (See Ref. 4 for additional definitions.) In particular, 
we note that 1:~ =, (Vr·p)(Vr·p) = Q T + ftr Let S, kE be 
a subspace spanned by the independent vectors L, ,L2 , ... ,L" 
where L, is with non vanishing componentsp, ,P2"'" 
P4m' fts+' ,· .. ,ftp; L2 with nonvanishing component ft, ; L3 
with nonvanishing component ft2 , ... , and L, with non van
ishing component fti _, . 

To find the behavior of A I with respect to Ai when 
1/Ai-oo we consider the following: 

Let T = I G ;, G;" ... J be the totality of all subdiagrams 
kG (with may include G itself if applicable) such that: 

(i) All the masses in the lines of G / G ;, G / G ;',,,. (for 
those not empty) are in the set Ift"fti +, ,· .. ,ft, I. G /G; is by 
definition the graph G with G; shrunk to a point, i.e., 
1 G = 1 G /G:1 G;' where 1 G denotes the unrenormalized Feyn
man integrand of G. Also, by definition, we have I GIG = 1. 

(ii) G ;,G ;' ,'" contain all the vertices to which the exter
nal momenta (the lines) to the graph G join, i.e., they contain 
all the external vertices (though not necessarily all the lines) 
of G at which the external momenta of G flow. If there is an 
internal vertex in G to which is attached some of the lines in 
G ; , not carrying any external momenta and not forming 
closed loops, then, necessarily, the masses carried by these 
lines must be from the set 1ft, ,· .. ,fti _, ,ftH - , ,· .. ,ftp I· 

(iii) d (G;) = d (G ;') = .... 
(iv) All the lines in G ;, G;',. .. have their V's not orthog

onal to S i , S ;' ,. .. , respectively, with A (J)S i = So 
A (J)S i' = S" ... , where S i, S i',,,, are subspaces of 
R (4("+ m)+p] with which thesubdiagrams G ;,G ;', ... , respec
tively, are associated4 in a convenient notation. 

(v) Any subdiagram Go which respects the conditions 
(i)-(iv) above is such thatd (Go)<d (G n. If d (Go) = d (G f), 
then GoET by definition of such a subdiagram Go. 

Let To = ! S ; ,S ;', · .. 1 denote the totality of the sub
spaces with which the subdiagrams G ;,G ;,,. .. are associated 
as defined through (i)-(v) above. 

Consider the subdiagram G;. Letgi , ... ,gj,. .. be the set of 
all possible proper but not necessarily connected subdia
grams of G; (including G; itself, if applicable) such that 

(vi) Each proper and connected part of each of the sub
diagramsg; , ... ,gj, ... is divergent. (By definition, a proper but 
disconnected subdiagram is meant that the number of its 
connected parts does not increase by cutting anyone of its 
lines.) 

(vii) All the masses in the lines in each of the subdia
grams g; , ... ,gj , ... are necessarily in the set Ifti ,fti +, , .. ·,ft, l· 

(viii) Let S; , ... ,S j +, , ... be the subspaces associated 
with (G ;Ig;),· .. , (G ;Igj), .. ·, respectively, where (G fig;) de
notes the subgraph of G ; with 1 , replaced by 

g, 

Vg; = II Vg;, = n [( - Tg) In (- Tg)1g;,], 
i i Z, gEZ, 

(to) 
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where3 the sum is over all sets Z, of divergent proper and 
connected subdiagrams in gi; and where gi I , gi2 , ... denote 
the (divergent) proper and connected parts of gi. T, , for 

gil 

example, denotes the Taylor operation in the external mo-
menta of the subdiagram gi I up to d (gi I)' [Note that 
d (g; )=:l; d(gi;), by definition.) Hence, I(G ilg;) denotes 

I(G'I ') multiplied by the generalized vertex as defined in Eq. , g, 

(10) as afunction of the external momenta ofg; only, i.e, the 
expression (10) is a polynomial of degree d (g;) in the exter
nal variables of g; . 

Effectively, the subdiagramg; in G; has been replaced 
by a vertex parts Vg; [Eq. (10)] with dimensionalities 

d (gi I)' d (g12)'''' and total dimensionality d (gi). By mo
mentum conservation, the external variables of g;, i.e., of 
g; I' g;2 , ... , will then be written as linear combinations of the 
external variables ofG; and the internal variables ofG ;Ig; 
as usual. We remark that if the subdiagramsg; , ... ,g;,. .. were 
defined by removing the restriction on their masses in their 
lines and the latter were also from the set IJ.lI , ... ,J.l; -I' 
J.ls + I , ... ,J.lp l, which are scaled by the parameter 1/ A; ac
cording to the definition of the amplitude A I, then the dimen
sionality of Vg; with respect to 1/,.1.; would have been 

dim V,<.d(g;) 
1/,1, g, 

- number of internal lines in g; with 
(11) 

masses in the set IJ.lI , ... ,J.l, -I' J.ls + I ""J.lp l' 
if at least some of the external momenta of g; are scaled by 
1/,.1.; as well instead of the higher dimensionality of d (g; ). 
This shows that the dimensionality of Vg ;, with respect to 

1/,.1. i' would have been reduced from d (g; ) if any of its lines 
had masses from the set IJ.lI , .. ·,J.li _ I ,J.ls + I , ... ,J.lp J. This is 
the reason for defining the subgraphs g; , ... ,g; , ... as in (vii) 
above with all their masses in the set l.ui ,· .. ,J.li + I , .. ·,.us J. 

Repeat the above procedure to construct the subdia
grams g;', ... ,gj', ... ; ... and the subspaces S ;, ... ,S i'+ 1'"'';''' by 
considering all the remaining subdiagrams G ;'; ... in T. We 
denote the totality of the subspaces S;, S ~ , ... ,S; + I""; 
S I', S ;, ... ; ... by T. By definition, To ~ T. To recollect, we note 
that S i, S ~ , ... ; S ;',S ;, ... are the subspaces with which are 
associated the subdiagrams G;, (G :Ig;), ... ; G ;', (G ;'Igi'), 
... ; ... , respectively, as defined through (i)-(viii) above with 

A (I)S; = So A (I)S; = Si,'''' 

A (I)S; = S;, ... , 

Accordingly, we can state5
.
4

.
6 the rules for determining 

the behavior of 

A (PI , ... ,p 4m; A I J.lI ,AI Al ,u2 , .. ·,Al ,.1.2 .•• AsJ.ls ,J.ls + 1 , ... ,,up) 

when 1/ A i~ 00 as follows in an elementary fashion: 
Rulesfor determining the behavior of Afar ,.1.;---+0: Let 

T = {G ;,G ;', ... } and gi , ... ,g;, ... ;g;', ... ; ... be as defined 
through (i)-(viii) above, and To = {S;,S i', ... } and 
T = {S;,S ~, ... ; S ;',S ;, ... } as defined below (v) and (viii) 
above, respectively. The asymptotic coefficients5

.
4

.
6 of A . 

with respect to the parameters 1/ Ai are given through 

1220 J. Math. Phys., Vol. 21. No.5. May 1980 

(12) 

and /3[ (Si) is given through the following: Write I as a de
composition to, arbitrarily chosen and arbitrarily labeled, 
one-dimensional 4n disjoint subs paces I = 11 + 12 + ... 
+ 14n , associated with 4n integration variables. Choose ar

bitrarily a subspace S from the set To = {S;,S i',· .. }. Let 
S 1 ,S 2,. .. be all those subs paces in T such that for a fixed 
jE[I, ... ,4n] 

A (1; + ... + 14n )S 1 = A (Ij + ... + h')S 2 

= ... = A (Ij + ... + 14n )S; (13) 

then, 
4n 

/3[(S,) = I Pj' (14) 
;= I 

with Pj = 0, if all the elements in 

{dimA (I) + 1 + ... + 14n )S 1 - dimSi,dimA (1; + 1 + ... 
+ 14n )S2 - dimS" ... ,dimA (1/+ 1 + ... + 14n )S - dimS,} 

(15) 

are equal, and p) = 1 otherwise for eachjE[1,2, ... ,4n]. Here 
dimS denotes the dimension of the subspace S. Hence,5.4h 

A (PI ''''P4m ;A1,u1 ,· .. ,AI ... As,us,,us + I , ... ,J.lp) 
= 0 (AI )d(G /G ;) ... (A,)d(G /G ;) ... (,.1., l(G /G:) 

,,( 1 )1" ( 1 )1'2 ( 1 )1") X Y'~J" In ~ In Arr2 ... In -X;' (16) 

where the sums range over all nonnegative integers 

YI 'Y2 '''''Ys satisfying 

YI <./3 (LI>" .,Lrr), 

Yl + Y2 <.(3 (Ll , ... ,Lrr), 
(17) 

YI + ... + y,<./3(L\, ... ,Lrr), 

where the asymptotic coefficients are arranged in increasing 
order such that 

(3 (LI , ... ,Lrr,)<.(3 (L I , ... ,Lrr2 ,)<. ... <./3 (LI , ... ,Lrr), (18) 

and 1Tl , ... ,1T2 is a permutation of the integers 1, ... ,s. 
In the next section examples will be worked out in detail 

which demonstrates the full applications of these rules. Fi
nally, we wish to remark directly from Eq. (16) the 
following: 

(1) If the set {g; , ... ,;g;', ... }is empty, then no logarithmic 

divergences [(JnllAi )\b, > 0] occurs in reference to the pa
rameter A, when A,~O. 

(2) If the set {g; , ... ;g;', .. .} is empty and d (G ;)<d (G), 
then the limit of A exists (as opposed to the divergence of A ) 
when Ai~O and with Al , ... Ai -1,Ai + 1' .... A, held fixed and 
nonzero. 

By repeating the statement (2) for each of the param
eters Ai> i = 1 ,2, ... ,s, we may readily infer the existence of 
the limit of A when Al ---+O,A2 ---+0, ... ,,.1., -+0, independently. 
In Sec. IV we summarize this result which gives a sufficiency 
condition for the existence of any renormalized Feynman 
amplitude in the zero mass limit and as we see the rule re
duces to an elementary and direct inspection of the graph G. 
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FIG. I. A fourth order electron self-energy graph. 

electrodynamics in Fig. 1, where the denominator Q 2 of the 
photon propagator has been written as (Q 2 + Ji2), i.e., 

DO (Q)-(O GQ/"Qv) 1 
/"v - /"v - ~ (Q2+Ji2)' 

in a covariant gauge with gauge constant G. 
The momenta Qij flowing from the vertex ito j may be 

written as 

QI2 = Akl + Ck2 + 9/2, 
QI3 = - Akl - Ck2 + 9/2, 
Q32 = -(A -B)kl -(C-D)k2' 
Q34 = - Bkl - Dk2 + 9/2, 
Q24 = Bkl + Dk2 + 9/2, 

(19) 

where Q!3 and Q24 denote the photon momenta. In refer
ence to the subgraphsgl andgz , the internal (kg',k g,) and 

the external (r/',r/') variables for gl and gz, respectively, 
may be written 

k;~ =(B- ~)kl +(D- ~)k2' 

k~~ = -(B- ~)kl -(D- ~)kz (= -k;~), 

k~~ =(B- ~)kl +(D- ~)k2 (=k~~), 

k ~', = - (A - ~) k I - ( C - ~) k 2 , 

k f~ = (A - ~) k I + ( C - ~) k2 (= - k fD, 

k ~~ = - (A - ~) k I - ( C - ~) k z (= k fD, 
A C q 

ql~4' = -k +-k, +-3 I 3 ~ 2 ' 

qli,'4' = - ~ k - C k2 +!L 
3 I 3 2 ' 

2A 2C 
- -k --k 3 I 3 2' 
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(20) 

(21) 

" 2B 2D 
~; = -kl +-k2 , 
'~3 3 

where a Taylor operation, for example TIi " is carried out 

with respect to the variables ~~ ,~~ ,~~ up to d (g I ). Let 
II + ... + 14 be arbitrarily associated with the variable k ;~ 

and Is + ... + 18 with k fi, with nonvanishing Jacobian 

J (k l ,kllk ~~,k ~~). The constants A,B,C, and D in Eqs. (19) 

are arbitrary to the extent that k;; #O,k ~( = krJ#O for ar
bitrary kl and k 2 , i = 1.2 and r,s = 1,2,3,4. 

A. Example 1 

Consider the behavior of the renormalized Feynman 
amplitude corresponding to the graph G in Fig. 1 for Ji-+O 
with m#O and q#O (in Euclidean space) and both fixed, 
where m is the mass of the electron. We scale the photon 
mass Ji by A. Accordingly, we have to consider first the be
havior of the amplitude A (qIA,mIA,Ji) in thelimitA-+O. Ac
cording to the rules (i)-(v) in Sec. II, we easily see that 
T= !G j,withd(G) = l,andGisassociatedwithasubspace 
S I spanned by independent vectors LI , ... ,Lg .Lq and one re
presentation of these vectors is LI with nonvanishing com
ponent k : ,Lz with nonvanishing component k ~ , ...• and Ls 
with non vanishing component k i. and finally L9 with non
vanishing components q I ..... q\m. The subspace S', of 
course, does not depend on a particular representation. We 
note that A (l)S '= ! L9 l-S. 

G contains no divergent proper and connected subdia
gram such that the mass in all its lines iSJi [condition (vii) in 
the rules]. Hence. no logarithmic divergences occur in the 
parameter 1/ A and the limit A (q.m,AJi) for A-+Oexists in Eq. 
(16) since d (G IG) = 0, by definition. Technically, 7 = 7 0 , 

and Eqs. (13) and (15) shrink to A (Ij + ... + Is)S I and 
! dimA (Ij + I + ... + I8)S I - dimS l, respectively. for all 

j = 1,2 •... ,8. Hence,pj = 0 in Eq. (14) for allj = 1.2 •...• 8 and 
P/(S) = o. Accordingly 

A (q,m,AJi) = (A )IA (qIA,mIA.Ji) 

=O(A)I(~)I(ln ~)O) 
=0(1). (22) 

i.e .• the limit of A (q,m,Ji) exist for Ji-+O with m #0 and q#O 
(in Euclidean space) and both fixed. 

It is easy to see that the lowest order self-energy graph 
in Fig. 2 also exists in the limit Ji-+O under the same condi
tions as above. For the convenience of the reader we give the 
explicit expression for the renormalized amplitude corre
sponding to Fig. 2 with subtractions at the origin andJi = 0: 

FIG. 2. Lowest order electron self-energy graph. 
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A (q,m,O) = 

(23) 

which is obviously well defined with q 2 > O,m of 0, and both 
fixed. The general rule for the existence of the limit of any 
Feynman amplitude is given in a compact and elementary 
way in Sec. IV. 

B. Example 2 

Consider the behavior of the renormalized amplitUde 
A (q,m,f.1) corresponding to Fig. 1 for m---+O,f.1---+0, and 

{f.1lm)---+O. In this case we have to consider first the behavior 
of A (qIAIAz ,m1A2 ,f.1) for AI---+O,)"z-o. 

In reference to the parameter 1/ A I , we easily see from 
(i)-(v) in the rules that T = [G l, d (G) = 1, and G is associ
ated with the subspace S; = {LI ,L2 , ... ,Ls ,L9}' where 
LI , ... ,L9 are independent vectors, arbitrarily chosen, and LI 
may be chosen with a nonvanishing component k : ,Lz with 
nonvanishing component k i , ... , and Lg with non vanishing 
component k i , and finally Lq with non vanishing compo
nentsql, .... ,q4.ThenA(I)S; =SI,whereSI = [Lql·Asin 

example 1, we may associate II + ... + 14 with k;~ and 

Is + ... + Is with k ~~, for convenience. 
The graph G contains the following divergent subdia

grams which satisfy conditions (vi)-(viii), in reference to 
1/A I : gl ,g2' and G itself, i.e., 7 = {S;,S ;,S ;,S ~}with 
which are associated the diagrams in! G,(G Igi ),(G Igz), 
(G IG) j,respectively. Thesubdiagram(G IG)isageneralized 
vertex defined by 7 

( - TG)[1 - Tg , - TgJIG, (24) 

in the external momentum ql A I , corresponding to A " and 
hence is just a polynomial of degree d (G) in (1/ A I ). The 
subspaces S ;,S ~, and S ~ may be easily defined as follows: 

S; = {a2 LI + /32 Ls ,a2 L2 + /32 Lo ,a2 L3 + /32 L7 , 

a 2 L4 + /32 LH ,Lg }, 

where a 2 and /32 are any consistent and nontrivial solutions 
of 

a 2 (B - A 13) + /32 (D - C 13) = 0, (25) 

where [B - A 13] and [D - C 13] are the coefficients of kl 
and k2 in k ~~, respectively. We note in particular that 
A (Ii + ... + 14 )S; = S; for i = 1,2,3,4. Similarly, S; is de
fined with a 2 replaced by a 3 and/32 replaced by /33 as non
trivial and consistent solutions of 

(26) 

Finally, S ~ is nothing but the subspace SI = {Lg}. It is im
portant to note that these subspaces do not depend on a par
ticular representation of the L vectors, by definition. We 
have only chosen the representations given above only for 
clarity. For example, we could have chosen a representation 
of Ll , ... ,Lx in S; with non vanishing components 

k ;~1 , ... ,k ~~4, respectively. We now readily see that 

{dimA (I2 + ... + 18)S; - dimSl,· .. , 
dimA (12 + ... + 18 )S ~ - dimSl} = [1,0,1,0]' (27) 
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and hence PI = 1, 

{dimA (Ii + 1 + ... + 18)S; - dimSJ = [Ol, (28) 

for i = 2,3,4,6,7,8, andp, = 0, and finally, for i = 5, 

{dimA (Io + ... + 18)S; - dimSl,dimA (I6 + 
... + 18)S; - dimSl} = [5,4l (29) 

8 

and hence Po = 1, i.e., /3I(SI) = I Pi = 2, from Eq. (14). 
i=---l 

Hence 
A (q,A l m,)"IA2f.1) 

= o (AIA2)1(_1 )1(_1 )1 ± an(ln-1 )n) 
Al A2 n ~ 0 Al 

= 0 ( ± an (In _1 )n), (30) 
n ~ 0 Al 

where we have used the result in example 1 for the behavior 
corresponding to A2 = A---+O, and the fact that d (G) = 1. 
This example is rich enough to illustrate the basic rules of 
Sec. II. Needless to say, the above examples have been cho
sen from quantum electrodynamics, but the rules may be 
applied to other theories as well. 

IV. CONCLUSION 

We have given the rules to determine, in Euclidean 
space, the behavior of any Feynman amplitude with or with
out subtractions when the masses of an arbitrary subset of 
the masses in the underlying theory become small and, in 
general, at different rates. The external momenta of the cor
responding graph are non exceptional and all subtractions 
are performed at the origin. These rules are given in Sec. II 
and are straightforward to apply. We summarize these rules 
as follows. 

A. Rules for determining the behavior of A for 
AI ->0, ... ,)" s-+O 

In reference to the parameter Ai(i = 1, ... ,s), let G; be 
any subdiagram of G (which may coincide with G itself if 
applicable) which contains all the external vertices of G 
(though not necessarily all the lines) and is such that (1) all 
the masses in GIG; (if not empty) are in the set [f.1i ,f.1i .,. 1 , 

... f.1s l; (2) if there is an internal vertex in G to which is at
tached some of the lines in G; not carrying any external 
momenta and not forming closed loops, then, necessarily, 
the masses carried by these lines must be from the set 
{u 1 , .. ·,f.1i I ,f.1, + I , ... ,f.1p}; (3) let T denote the totality of all 
subdiagrams {G ; ,G ;' , ... } as defined in (1) and (2) and 
d (G ;) = d (G ;') = ... such that if G is any subdiagram re
specting (1) and (2), then d (G)<,d (G ;). Then, only if 
d (G) = d (G ;), then GET. Let g; ,g;, ... be the set of all possi
ble proper but not necessarily connected subdiagrams of G : 
(which may include G; if applicable) such that (4) each 
proper and connected part of each of g; ,g; , ... is divergent; 
and (5) all the masses in g; g; , ... are in the set 
{ui'f.1, + I , ... ,f.1J. Reconsider the steps (4) and (5) for the re
maining subdiagrams G ;, ... in T. Repeat the above steps for 
each of the parameters A"i = 1,2, ... ,s. The behavior of 
A (PI ""'P4m ,A l f.11 , .. ·,11 ... Asf.1s,f.1s+ I , ... ,f.1p ) is then given by 
Eq. (16). 
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FIG. 3. Some low and high order photon self-energy graphs. 

A proper but disconnected subdiagram is meant that 
the number ifits connected part does not increase upon cut
ting anyone of its lines. For additional details of the above 
rules refer to Sec. II. For applications of these rules refer to 
the examples in Sec. III. 

From remark (2) at the end of Sec. II, we may also 
summarize the rule which gives a sufficiency condition for 
the existence of the limit of A (PI ""'P4m ,). 1111 "",).1 
· .. A.,/..ls,/..ls+ 1 , ••• ,/..lp) for A. 1 -o'·'·,).s-o, independently. 

B. Rule (sufficiency condition) for the existence of limA 

If the following two conditions are true, in reference to 
each of the parameters A. i (i = 1, ... ,s), then the limA exists: 

1223 J. Math. Phys., Vol. 21, No.5, May 1980 

(1) Any subdiagram Go of the whole graph G, which 
contains all the external vertices of G for which (a) all the 
lines in G /Go depend on the masses only from the set 
ff..l;,/..li+ 1 , •• ·,f..ls} and (b) ifthere is an internal vertex in G to 
which is attached some of the lines in Go not carrying any 
external momenta and not forming closed loops, then, neces
sarily, the mass carried by this particular line must be from 
the set ff..ll ,···,/..li --1 ,f..ls+ 1 , ••• ,/..lp}, then Go is such that 
d (Go)<.d (G). Thisinequality must be true for all such Go 'sas 
just defined. 

(2) Only for those Go's as defined in (1), for which 
d (Go) = d (G), then no divergent proper and connected sub
diagram g~ Go results in G with all the masses in g from the 
set ff..li'/..li -I- 1 ,···,f..ls}. 

The above rule is elementary and reduces only to a di
rect inspection of the graph G and needs no reference to any 
other details. As an example, we may apply it again to quan
tum electrodynamics, and we note that photon self-energy 
parts, e.g., a few of which are shown in Fig. 3, exist in the 
photon zero-mass limit since both (1) and (2) in the above 
rule are trivially true (see also example 1 in Sec. III). Other 
examples and theories may be also readily inspected. 
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A formalism is developed for describing Lorentz deformation properties of extended hadrons in 
terms of solutions of the harmonic oscillator equation in the 0(4) and light-cone coordinate 
systems. The physical hadronic wave function discussed in previous papers is written as a linear 
expansion of orthonormal functions in those coordinates which form representations of compact 
groups. The separability of the oscillator equation is shown to play the essential role in developing 
the proposed mathematics. 

I. INTRODUCTION 

In constructing models of relativistic quantum mechan
ics, we face the following two mathematical problems. First, 
the relativistic dynamics should be constructed in a four
dimensional Minkowskian space-time. Second, we have to 
impose a covariant subsidiary condition in order to obtain a 
three-dimensional Euclidean space in which Schrodinger 
quantum mechanics is reproduced. I Because of its math
ematical simplicity, the harmonic oscillator model has been 
very effective in studying these mathematical problems.2

,3 

One of the special features of the covariant oscillator 
formalism is that the starting differential equation is separa
ble in many different coordinate systems.4 As is amply dem
onstrated in the work of Kalnins and Miller,s the technique 
of separating partial differential equations is one of the most 
useful techniques in mathematical physics. 6 While the au
thors of Ref. 5 are primarily concerned with the Klein-Gor
don equation for which the separation problem is that of the 
D' Alembertian, the relativistic oscillator equation contains, 
in addition, the Lorentz-invariant "potential." Since this 
quadratic term is separable in the same coordinate system as 
the Klein-Gordon equation, the techniques developed in 
Ref. 5 can be applied to studying the relativistic oscillator 
equation. 

While this remains as an interesting future problem, we 
should also note the following difference. Unlike those of the 
Klein-Gordon equation which run over the entire space
time, solutions of the oscillator equation are localized within 
a specified space-time region due to their Gaussian factors. 
This localization region, in some cases, undergoes Lorentz 
deformation. The oscillator wavefunctions that were dis
cussed in our previous publications],7 are localized within a 
Lorentz-deformable space-time region, as is demonstrated 
in Fig. I of Ref. 7, and this deformation property has been 
shown to be consistent with what we observe in the real 
world.' 

As was pointed out in Ref. 7, the mathematical formal-

ism of the covariant oscillator model is based on the kine
matics of a moving Lorentz frame in which the hadron is at 
rest. The purpose of the present paper is to discuss math
ematical tools with which we can understand and interpret 
the Lorentz deformation property in terms of solutions of 
the wave equation in more traditional coordinate systems. 
Among several coordinate systems proposed for studying 
relativistic dynamics, the 0(4) and light-cone coordinates 
are frequently discussed in the literature. 

The convenience of the 0(4) coordinate system was 
noted originally by Wick in connection with the study of the 
Bethe-Salpeter equation. 8

,9 Because it includes the time 
variable, 0(4) coordinates are used often for interpreting 
high-energy data or for studying possible new dynamical 
symmetries. 10 There has also been an attempt to employ 
these coordinates to construct a relativistic oscillator mod
el. II In this paper, we study first the Lorentz transformation 
property of extended hadrons using solutions of the harmon
ic oscillator equation in the 0(4) coordinate system. 

Because its Lorentz transformation takes a convenient 
form, the light-cone coordinate system is regarded as one of 
the most promising coordinate systems for constructing rel
ativistic quantum mechanics. I

,12 It is therefore of interest to 
see what form the above-mentioned oscillator wave function 
takes in light-cone coordinates, 

In this paper, we show that the harmonic oscillator 
equation is again separable in both the 0(4) and light-cone 
coordinate variables, and that the original wave function can 
be represented as a linear combination of the solutions in 
these coordinate systems. The mathematics of the harmonic 
oscillator or equivalently ofthe Hermite polynomials and of 
the Gaussian function is well known, as is the kinematics of 
Lorentz transformation. However, the mathematics of oscil
lator wavefunctions combined with Lorentz kinematics is 
not yet well known. We shall develop this relatively new 
mathematics using the technique of variable separation. 

In Sec. II, we write down the harmonic oscillator differ
ential equations in Lorentz-invariant form, in 0(4) coordi-
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nates, and in light-cone coordinates. The problem of this 
paper is then to write the physical wave function represent
ing the Poincare group in terms of the 0(4) and light-cone 
solutions. Section III contains a detailed analysis of the 0(4) 
coordinates. The "moving 0(4)" coordinates are briefly dis
cussed in Sec. IV. Section V deals with solutions of the oscil
lator equation in the light-cone coordinate system. In Sec. 
VI, we discuss mathematical and physical implications of 
the results obtained in this paper. 

II. FORMULATION OF THE PROBLEM 

In our previous paper,? we considered a free hadron 
consisting of two quarks bound together by a harmonic oscil
lator force of unit strength. We started with the equation 

{2[01 +02 ] -(x l -x2)2/16+mn tP(X I ,X2) =0, 
(1) 

where x I and X 2 are the space-time coordinates for the two 
spinless quarks inside the hadron. We then used the two 
usual independent variables: 

X = (Xl + x 2)12, 

X = (X I - x 2)12Vi 
The solution tP (x I ,x2) took the form 

tP (x p x 2) = tP (x,X) 

= ¢(x,P) exp( ± iP·X), 

(2) 

(3) 

where P is the four momentum of the hadron and ¢(x,P) is 
the internal wavefunction describing the motion of the 
quarks inside the hadron. The internal wavefunction satis
fies the differential equation 

(D [0 - x~ ]¢(x,P) = (A + 1)¢(x,P), 

and 

Pl'aZ ¢(x,P) = 0, 

where 

t a 
a/1 = XI' + -. axil 

(4) 

(5) 

In Ref. 7, we showed that normalizable solutions of the 
partial differential equation of Eq. (4) satisfying the subsid
iary condition ofEq. (5) form a representation of the Poin
care group. It was observed there that the solution ¢(x,P) 
takes a very simple form if we use moving Lorentz coordi
nates in which the hadron is at rest: 

X' =X, y' =y, 

z' = (z - {31 )/(1 - {3 2)1/2, 

t' = (I - {3z)/(1 - {3 2)1/2, (6) 

where the hadron is assumed to be moving along the z direc
tion with velocity parameter {3. We showed further that the 
wavefunctions ¢(x,P) are diagonal in the Casimir operators 
of the Poincare group. 

Since we are not yet familiar with the moving coordi
nate variables, we still have to explain the result of our pre
vious paper? in terms of solutions of the oscillator equation 
in more traditional coordinate systems. Because the 0(4) 
coordinates are frequently discussed in the literature, R-II we 
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are interested in describing the Lorentz deformation proper
ty of ¢(x,P) in terms of solutions of the 0(4) oscillator 
equation: 

(1)[ _(V2+ ~22 + (x2 + ( 2)]U(X) = (a+2)u(x). (7) 

Solutions of the above differential equation form a complete 
set in the four-dimensional Euclidean space of X and t. The 
Lorentz deformed wavefunction ¢(x,P) is well localized in 
this space. Therefore, ¢(x,P) can be written as a linear expan
sion of the orthonormal functions satisfying Eq. (7). 

The Lorentz transformation takes a very simple form in 
the light-cone coordinate system. The transformation ofEq. 
(6) can be written as 

X' =x, y' =y, 
(z' + I') = [(1 - {3)/(1 + {3)]1/2(Z + t). 

(z' - I') = [(1 + {3)1(1 -- {3)]112(Z -1). (8) 

Because this light-cone coordinate system is commonly used 
in the literature, we are interested in translating the Lorentz 
deformation of ¢(x,P) into the language of solutions of the 
oscillator equation in the light-cone coordinate system: 

1[ (a2 a2 a2 a2) - - -+ -+ --+ --
2 ax" ay2 at 2 ar!" 

+ (x 2 + y2 + t 2 + rl )] g(x) =~ (E + 2)g(x), 

where 

t = (z' + t ')IVi 
17 = (z' - t ')IVi 

(9) 

(10) 

Here again, solutions of this differential equation form a 
complete set, and the Lorentz deformed ¢(x,P) can be ex
pressed in terms of a orthonormal set of wavefunctions satis
fying Eq. (9). 

Compared with Eq. (4), which serves as the starting 
point for the oscillator formalism, the 0(4) and light-cone 
differential equations given in Eqs. (7) and (9) do not appear 
to carry any direct physical interpretation. However, the ba
sic mathematical advantage of using these equations is that 
their solutions form representations of compact groups. 

III. OSCILLATORS IN THE 0(4) COORDINATE SYSTEM 

The usual approach to the solution ofO(4)-invariant 
equations is to use polar variables: 

t =p cosa, 

x = p sina sinO costP, 

y = p sina sinO sintP, 

Z = P sina cosO. 

We can then write the solution of Eq. (7) as 

u:;~(x) = S/lb(P) Z~'~ I (a,e,tP), 

where 

(11) 

(12) 

Z~~ I (a,e4) = P b-:3/2
1/2 (cosa)(sina) - 1/2 Y,(O,tP), 

and S'lb (p) satisfies the "radial" differential equation 

( ~ + ~..!!-. _ (b + 1)2 - 1 _ p2 + 2(a + 2») 
dp2 p dp p2 
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(13) 

where a = 2/1 + b. The solution of this equation takes the 
form 

(14) 

where L :: t 1 is the associated Laguerre polynomial. 13 

With the above form, it is easy to perform rotations in 
the 0(4) space, and this rotation mixes the spatial coordi
nates with the time variable. It is, however, well known that 
this 0(4) rotation is quite different from the Lorentz trans
formation. The purpose of this section is to see precisely how 
these two transformations are different, using the oscillator 
formalism as an illustrative example. 

The unique feature of the harmonic oscillator "poten
tial" is that the differential equation is separable also in the 
Cartesian coordinate system, where solutions of Eq. (7) can 
take the form 

(15) 

with a = s + w + n + k. 

The.t: ,/", , '" are normalized one-dimensional oscillator 
wavefunctions, and can be written as 

... / 112 2 
/" (z) = (v rr 2"n!) H" (z) exp( - z 12), etc. (16) 

The above solution is not really different from the wave func
tion given in Eq. (12). As in the well-known case of the three
dimensional oscillator, the spherical form is a linear combi
nation of the Cartesian wavefunctions. For /3 = 0, 
s = w = n = k = 0, and the wavefunction becomes 

Ilo(x) = (1/rr) exp( - p2/2) 

= (1/rr) exp[ - (x2 + y2 + Z2 + t 2)/2]. (17) 

Appendix A contains a detailed discussion of the degener
acies in the Cartesian and spherical coordinates for a = I 
and 2. When we discuss Lorentz transformations, it is more 
convenient to use the Cartesian solutions. 

In Ref. 7, the physical wavefunction took the form 

l/;(x) = Rut(r')y;n(8 ',¢ '), (18) 

where r', 8 " ¢ , are the spherical variables in the x', y', z' 
coordinate. Rut is the normalized radial wavefunction for the 
three-dimensional isotropic oscillator, and its form is well 
known. This expression can also be written in terms of the 
moving Cartesian coordinate variables: 

1/;(x) = .t: (x')!", (y')!" (z')fo (t '), (19) 

with 

v=s+w+n. 

.t: ,'" are defined in Eq. (16). The t' excitation is suppressed 
by the subsidiary condition of Eq. (5). 

Our original problem was to express the physical wave
function ofEq. (18) as a linear combination of the 0(4) solu
tions u:;;;(x) ofEq. (12). However, thanks to the separability 
of the oscillator potential, the problem can be reduced to that 
of relating their respective Cartesian forms given in Eqs. (15) 
and (19). We note first that the transverse components can 
be dropped, because they are not affected by Lorentz trans
formations, and write l/;(x) and u(x) as 
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l/;~(z,t) =f,,(z')fo(t'), with A = n, 

u% (z,t ) = fa (z)f, (t ), with a = a + k. (20) 

The problem then becomes that of writing 

l/;~(z,t) = 2:.Bu ""(/3)u~(z,t), (21) 
a,k 

and then of calculating the coefficient B ".' (/3): 

B ;;.,,( /3) = J dt dz u~ (z,t )l/;'f,(z,t). (22) 

The integrand in the above expression contains three 
Hermite polynomials and four Gaussian factors that are 
quite familiar to us. What is new here is that the arguments 
of these functions are the coordinate variables for two differ
ent Lorentz frames. The detailed calculation based on the 
generating function of the Hermite polynomial is given in 
Appendix B. The coefficient B Z·' takes the form 

B~"(/3) =A Z(/3)D"."",, 

where 

(23) 

A % (/3) = /3' (1-- /3 2t, I 1)12 [(n + k )!/n!k !]1/2. (24) 

Equation (21) can now be written as a summation over a 
single index: 

x 

l///i(Z,t) = I A ~ (/3) uZ + '(z,t), (25) 
,~. 0 

with IIAZ(/3)12= 1. (26) 
k 

Ifwe write the above sum explicitly, 

l/;'f,(z,t) 

= (rr2"n!) 112(1 _ /3 2y" t 1)/2 exp[ - (Z2 + t 2)12] 

oc /3 k 

X I -H,,+,(z)Hk(t). (27) 
,~O 2kk! 

The purpose of this section was to construct a represen
tation of the Poincare group describing the hadronic Lo
rentz deformation in terms of the harmonic oscillator solu
tions in the 0(4) coordinate system. We noted first that the 
oscillator equation is separable in the Cartesian variables, 
and then showed that the representation can be constructed 
explicitly. 

It is well known that the 0(4) rotation is quite different 
from the Lorentz transformation. The explicit form given in 
Eq. (27) consisting of an infinite sum of the 0(4) solutions 
indicates precisely how these two transformations are 
different. 

IV. MOVING 0(4) COORDINATE 

If the hadron is at rest with /3 = 0, only the k = 0 term 
contributes in Eq. (27). This term takes a functional form 
identical to that of the physical wave function. This leads us 
to consider the moving 0(4) coordinate system consisting of 
the coordinate variables x',y',z',t', and solutions of the oscil
lator equation 

2.[ _ (V'2 + L) + (.i'2 + t 'Z»)g(X) = (c + 2)g(x). 
2 at ,2 

(28) 
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If we solve this equation with the restriction 

( ~ + t')g(X) = 0, 
at' 

(29) 

then g(x) becomes identical to t/J(x) ofEq. (18). The physical 
wavefunction therefore represents a solution of two entirely 
different partial differential equations. This is because the t ' 
variable can be separated both in the original equation ofEq. 
(4) and in the moving 0(4) equation given in Eq. (27). 

V. LIGHT-CONE COORDINATE 

We noted in Sec. IV that Eq. (28) together with the 
subsidiary condition of Eq. (29) can generate the physical 
wavefunction. Ifwe rewrite Eq. (27) in terms of the light
cone variables of Eq. (10), then the resulting differential 
equation is the light-cone oscillator equation given in Eq. (9), 
with solutions of the form 

(30) 

Here again we can ignore the x and y components. The prob
lem now becomes that of writing 

(31) 
iJ 

and then of calculating the coefficient Cij • 

As far as the Gaussian factors are concerned, we note 
that 

(32) 

As for the Hermite polynomial Hn (z'), we use the addition 
formula 13 

Hn(z') = Hn (ct + 7])N2) 

=( +y12 m~o(:)Hn-m(OHm(7]). 
Thus the explicit form for the physical wavefunction 
becomes 

t/J;(z,t) = ( + Y(lhrn!Y/2 exp[ - (s 2 + 7]2)/2] 

(33) 

X [ "to (:)Hn - m (S )Hm (7])]. (34) 

Unlike the case of the 0(4) expansion, the summation in 
the above formula is finite, and is restricted to the total quan
tum number 

Ii =€= n, (35) 

where Ii and € are defined in Eqs. (4) and (9), respectively. 
The expansion coefficient (::, ) is independent of f3. The de
pendence on this velocity parameter is in the definition of the 
sand 7] variables given in Eq. (10). We realize that a more 
traditional definition of the light-cone variables is to use z 
and t, instead of z' and t', in Eq. (10).1 However, this differ
ence lies only in the elongationicontraction along the S 17] 
axis, as is specified in Eq. (8). 

The purpose of this section was to construct a represen
tation of the Poincare group describing the hadronic Lo
rentz deformation in terms of the harmonic oscillator solu
tions in the light-cone coordinates. This light-cone 
coordinate system is natural for constructing Dirac's "front 
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form" quantum mechanics. 1 For this reason, some authors 
have started their effort from this coordinate system, with 
hopefully a simpler expression for the hadronic wave func
tion. 12 However, the moving Lorentz frame in which the 
physical wave function t/J(x) takes its simplest form is essen
tially the coordinate system for Dirac's "instant form" quan
tum mechanics. 14 The present paper is based on the physical 
prejudice gained from our previous papers3

-4 that the phys
ics starts in the "instant" form. The mathematical formalism 
given in this section can also be used to translate the physics 
from the front form to the instant form, if and when there is 
enough experimental evidence to indicate that the origin of 
physics is in the light-cone coordinate. In either case, the 
physics remains covariant, and the formalism presented here 
remains useful. 

VI. CONCLUDING REMARKS 

Because the Minkowskian world with its hyperbolic to
pology is not convenient for visualization of a distribution 
localized in a specified space-time region, 15 other coordinate 
systems such as the 0(4) and light-cone coordinates are com
monly discussed in the literature. The 0(4) system is conve
nient because it is Euclidean. The light-cone coordinates are 
very attractive because the Lorentz transformation simply 
elongates one light-cone axis and contracts the other. 

In our previous papers,3.4,15 we studied the harmonic 
oscillator wave function, which is compatible with the estab
lished laws of quantum mechanics and special relativity, and 
which can explain the basic hadronic phenomena observed 
in high-energy experiments. This wave function was sim
plest in terms of coordinate variables expressed in the Lo
rentz frame moving with the hadronic velocity. This oscilla
tor wave function is localized in a space-time region and 
undergoes a Lorentz deformation. In this paper, we translat
ed this deformation property into a language based on solu
tions of the oscillator equation in 0(4) coordinates, and into 
that in the light-cone coordinate system. 

Separation of variables is one of the oldest mathemat
ical arts known to physicists. It is also well known that the 
harmonic osciIlator potential is separable in many different 
coordinate systems, including the Cartesian system. In this 
paper, we combined these two well-known features to study 
a mathematical formalism with which we can visualize the 
Lorentz deformation property of relativistic extended 
hadrons. 

APPENDIX A 

As in the well-known case of the three-dimensional iso
tropic harmonic osciIlator, the 0(4) oscillator equation is 
separable in both the Cartesian and spherical coordinate sys
tems. We note that the radial variable p is related to the 
Cartesian variables by 

P=(X2 +y2+Z2+t 2)1/2 (AI) 

and that the ground-state solution is given in Eq. (17). 
The first excited states are 

(A2) 

where Xi = x,y,z, or t. In the spherical coordinate system, 
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(J = b = 1, andfl = 0. Thus the wavefunction ofEq. (12) 
takes the form 

u;;;'(X) = p exp( - p2/2)Z irn(a,8,rp ), 

where 

Z ~(}(a,8,rp) = (2/~)1/2 cosa, 

(A3) 

Z ~n(a,8,rp ) = (S/31T)I!2 sina Y';'(8,rp), with m = 1,0, - 1. 

Here again, the wavefunction is fourfold degenerate. These 
spherical wavefunctions can be written as linear combina
tions of the Cartesian forms given in Eq. (A2). 

For (J = 2, there are four Cartesian wavefunctions of 
the form 

¢i(X) = (lI1T V2) (2x~ - 1) exp( - p2/2), (A4) 

and six wavefunctions of the form 

¢u(X)=(2/1T)x ixj exp(-p2/2), withi#J. (A5) 
There are therefore ten degenerate Cartesian 

wavefunctions. 
Let us now look at the a = 2 states in the 0(4 )-symmet

ric coordinate system. We have to consider here two differ
ent values of the radial quantum number fl: 

(a)fl = 1, with b = 0; 

(b) fl = 0, with b = 2. (A6) 

If fl = 1 and b = 0, the spherical wavefunction of Eq. (12) 
becomes 

(A7) 

If fl = ° and b = 2, the wavefunction is 

u(x) = (p2/V3) exp( - p2 /2)Z ~m(a,8,rp). (AS) 

For I = 0, there is one wavefunction with 

Z~X) = (1/2~)I!2(4 cos2a -1). (A9) 

For I = 1, there are three wavefunctions with 

Z ~n = (16/1T)1!2 cosa sina Y'('(8,rp), m = 1,0, -1. 
(AlO) 

For I = 2, there are five wavefunctions with 

Z~tn = (16/51T)1!2 sin2a Y';(8,rp), m = 2,1,0, -1, -2. 
(All) 

There are therefore ten degenerate 0(4) symmetric 
wavefunctions. 

We can write the above wavefunctions in terms of the 
Cartesian variables ofEq. (11), and as linear combinations of 
the Cartesian wavefunctions given in Eqs. (A4) and (A5). 

APPENDIX B 

In order to evaluate the integral ofEq. (22), we use the 
generating function for Hermite polynomials l6

: 

G (r,z) = exp( - r + 2rz) 

x r 
= L ~Hm(z). 
m~O m! 

(BI) 
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The calculation is then reduced to the evaluation of the 
integral 

1= J dt dz G (r,z)G (s,t )G (r' ,z') 

X exp[ - (Z2 + t 2 + Z'2 + t '2)/2]. (B2) 

The integrand of the above expression is an exponential 
function whose argument is quadratic in z and t. 

We can diagonalize this quadratic form using the light
cone variables. The integral then becomes 

1= 1T(1 _/P)I/2 exp(2.8rs) exp[2rr'(1 -.8 2)1/2]. (B3) 

By expanding the above exponential factors, we arrive at the 
result given in Eqs. (23) and (24). 

Let us next check whether the expansion coefficient 
A k (.8) in Eq. (25) satisfies the unitarity condition. We start 
with 

! IA 'k(.8)12=(1-.8 2)"+1 !f32k(n;~)!. (B4) 
k ~ 0 k ~ 0 n.k. 

However, from the binomial expansion, 

(_1_)(" t I) = oc f32k(n + k)! . 

1 -.8 2 k~O n!k! 
(B5) 

Thus 

! IA Z(.8) 12 = 1, (B6) 
k~O 

and Eq. (27) is indeed an expansion is a complete orthonor
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In the theory of supersymmetric SU(2) Yang-Mills fields described on the 8th dimensional 
superspace, the local gauge transformations constitute a group whose Lie algebra has its 
coefficients in the Weyl-spinorial-Grassmann algebra. The coefficients can be taken to be chiral 
elements, real or complex. This last case is the most general one and contains all others of interest 
for developing physical models. We present here a Baker-Campbell-Haussdorffformuia for the 
complex SU(2) supergroup. The formula gives the finite form for each element of the supergroup 
in terms of the local fields entering into the infinitesimal (complex) superscalar generator. 
Thereafter we exhibit, as a particular case, a BCH-expression for the real SU(2) supergroup which 
completes previous results already reported for the chiral SU(2) supergroups. Moreover, it is 
shown that, despite the appearance of apparently nonperiodic polynomial terms, the global 
variety of the real SU(2) supergroup is contained in a variety having the same compact bosonic 
width as the usual SU(2) pure bosonic variety. 

1. INTRODUCTION II. THE BCH-EXPRESSION FOR SSU(2)c 

Our aim is to give a closed expression for7 e E, Any supersymmetric formulation of Yang-Mills theor
ies 1.2 has to deal with supergroups, that is groups generated 
through the exponentiation of a Lie algebra with Grassmann 
valued coefficients. 

eE
, s=saxa, Xa=2- 1iO'a, (1 a) 

The same initial Lie algebra offers different possibili
ties, according to whether the coefficients are chosen to be 
chiral, real or complex Grassmann elements. 3 

Moreover, it is well known that, besides the local struc
ture of the supergroup, its global structure is also needed4

.
5 

in order to understand some of the physical implications of 
the different supersymmetric models being developed. 

In this article we obtain a closed finite expression for 
any element of the complex SU(2) supergroup (SSU(2)d. 
This expression shows the very different role played by the 
components parallel to the bosonic part of the complex- Lie 
valued- scalar generator compared with their orthogonal 
components. 

As an immediate consequence of the complex case we 
shall write down a BCH formula for the real SU(2) super
group (SSU(2)R) and we shall exhibit a parametrization of 
this supergroup which allows us to show why, in spite of the 
nonperiodic (rational) functions in the BCH-formula, the 
supervariety SSU(2h is contained in the Cartesian product 
of a three-dimensional compact subset K times R 45. This is 
due to a strictly supersymmetric effect responsible for the 
absorption of the non periodic behavior in the purely bosonic 
coordinates by some of the remaining supersymmetric co
ordinates, as it will be shown in Sec. III. 

The whole set of results for SSU(2)c constitute the nat
ural generalization of the simpler results already communi
cated for the case of the chiral supergroups.6 

Section II is devoted to establishing the notation and to 
obtaining BCH formulas for the complex SSU(2)c super
group and, in Sec. III, we carefully discuss the SSU(2) R case 
and some aspects concerning its global structure, as men
tioned above. 

Finally, in the last section we shall summarize and dis
cuss the results already obtained. 

SOXa=;aXa + ;aa()aXa + 1]"p iJt3Xa 

+;a+XaO+ +1]u_XuO_ +;ap()"xa+ 

+ ; a,: XaOa_ + 1]"p+ x a iJt3+ 

+;a+_xao+_ (lb) 

=; ! naXa + naaOaXa 

+ m"piJt3Xa + na+ 0+ Xa 

+ ma
_ 0_ Xa+ 

+ napOpXo + nO': XaOa 

+m~+XoiJt3+ +no+ _XJ)+ _ J, 
nOnboab = 1. 

We shall achieve this goal in two steps: first we will look 
for Lie valued elements Z and 5 ' such that 

(2) 

and thereafter, having Z and 5' that verify Eq. (2) one can 
straightforwardly exponentiate this equation obtaining that 
r has the value 

(3) 

which is easily determined if one is previously able to calcu
late eZ (and e - Z) and es' separately and then making their 
product as indicated in Eq. (3). 

In order to find out Z and 5' which verify Eq. (2), we 
make the ansatz8

: 

Z=5 aO
a + X13 iJt3 + 5 + () + 

+ X - 0_ + sPOp + s".. Oa_ 

+ Xti+ iJti+ + S + _ ° + _ =zaxa, (4a) 

5'=(1 + C)s, 5-SaXa' (4b) 

where we are omitting the internal indices (i.e., 5 "()" 
= so"o"Xa, ... ,s = saXa) and Cbegins with ° 1: 

C=C"Oa+dti013+C+O+ +d_O .. +C"O" 
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+ C"- {),,_ +d'1+ Of3+- + C+ _ ()+ _, (5) 

and the symbol P[Z,A] [Z,[Z,[Z. .. [Z,A ]] ... ] is used to de
note p commutations with the same operator Z acting on the 
left. 

After the definition (2) of S, by virtue of the properties 
of the Grassman coefficients of the Lie algebra which make 
P[Z,5'] = 0 for any p>5, it turns out that 

S = 5' + [Z,5'] + (2!)-1 2[Z,5'] 

+(3!)-1 3[Z,5'] + (4!)-1 4[Z,S']. (6) 

Moreover, in the particular case ofSU(2), as9 

[Z,5'] = - (Z 1\5') exc> Eq. (6) can be written in the form: 
P -0 4 

S=5'+ L (-I)P(p!)-I(P(ZI\)5'YXc' (7) 
p~1 

In order to ease the calculations we restrict the search 
for (Z,5,C) of Z's orthogonal to 5 '10: 

Z'5 = 0 = Z·5'. (8) 

Then S becomes 

S = 5 ' [1 - (2!)-1 Z 2 + (4!Y 1 Z 4] 

+ ( -1 + (3!y IZ2]Z 1\5' (9) 

and, as we stated before, we want to solve Eq. (2) finding out 
suitable Z,5,C such that S (Z,5,C) = E, a fixed element of 
SSU(2)c· 

Taking terms proportional to () ° on both sides of this 
equation we have: 

sa = slla. (10) 

Introduction of this result into Eq. (2) gives us a more 
convenient representation of Eq. (2): 

(1 + CKfill _2- IZ 2 +24- IZ 4] 

+ I -1 +6- IZ 2 jZI\(l + CKIi 

= s (fi + n"{)" + mj30fJ + n t () + + m _ ()_ 

+ nll{)ll + n" ()" _ + m,1+ O~ 
+ n t () + - ] =s \1 + NII)fi + Nd, (11a) 

NJ ·n = 0, (11 b) 

(internal indices have been omitted). 
Projecting Eq. (11) along Ii and along the subspace 

orthogonal to fi two equations are obtained: 

(1 + C)(I - 2- IZ 2 +24- IZ 4) = 1 + Nil' 

(-1 +6- IZ 2)(1 +C)Z=nI\Nj • 

(12a) 

(12b) 

The first one is very simple to interpret: Since Z starts 
with terms which are linear in e, it is straightforward to 
calculate the inverse of 1 _2- IZ 2 +24-IZ 4 

(1 _2- IZ 2 +24- IZ 4t l = 1 +2- IZ 2 +5X24- IZ 4. (13) 

Then, Eg. (12a) establishes a bijective correspondence 
between Nil and C which can be taken in both directions, 
either when having C to obtain Nil' the component of E par
allel to n, or when starting from the value of Nil to get C: 

C = (1 + N!I)(1 +2- IZ 2 +5 X 24- IZ 4) -1. (14) 

In the following we are going to think in terms of E 
being represented by s; n; C and Nl as independent variables. 

Then one has to exploit Eg. (12b) which can be written 
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(1-6-IZ 2)Z= -nI\N[(I+C)-1 A, (IS) 

where (1 + cyl is given in Appendix A and the supervector 
A has the form: 

A =aa{)" + b(JOf3 + a + () + + b _ () _ 

+ all{)f.J + a"_ (),,_ + b(J+ O(J+ + a + _ () + _ , (l6a) 

with its coefficients a",b(J _eo,a., b_ and af.J _eo + ae\ a" 
and b(J+ _eo + ae l + be2 and a+- __ eo + ae l + be2 

+ de3
, where cP represents any homogeneous monomial of 

degree p in the coefficients of C. 
Equation (15) can be solved giving a unique value for Z: 

Z=aa{)a +b(JOfJ+ a +{)+ +b_{)_ 

+ a'l{)'l + (aa_ + 6- 1 b(J(aa.b (J) 

-6- 12- I (bf3 b f3 )aa] {)a- + (bfJt -6- l a"(a".b(J) 

- 6- 12- I (aa.a,,)b(J J O(J+ + 5 + _ () + _ , (16b) 

(here we did not calculate 5 + _ because it is not needed in 
the rest of this article). 

If one be interested in obtaining both Z and C in terms 
of the initially given generator E, one has to substitute the 
value of C given by Eq. (14) into Eq. (12b) and therefore 
solve an equation similar to (15): 

(l +3-IZ 2)Z= -nI\NJ(l +Nllt l. (17) 

Once this equation is solved for Z," going back to Eq. 
(14) and introducing this value of Z, Cis found as an explicit 
function of n, Nil and N. 

We can now proceed to compute eS
, according to Eq. 

(3). First eZ and e- Z are evaluated. Due to the fact that 
Z 5 = 0, these two exponentials take respectively the values 

eZ = (1 - (2!y I2-2Z 2 + (4!y I2-4Z 4)1 

+ i2- I (l - (3!yI2-2z2)zaua=al + i/3zaua , (18a) 

(18b) 

Thereafter one can compute eS' = e(1 + C)'::" 'x,. Since 

[naX",CnhXh ] = 0 
'-n"X "c,"X 

eS = eS'e" "= (cos(S 12) + i sin(S /2)·1i) 
X (1 - (2!tI2-2C2S2 + (4!tI2-4C4S4 

+ i2-'(CS - (3!)-12-2C3s3)1i]=r1 + ion, (19a) 

where 

r=cos(S /2)\ 1 - (2!)-12-2C 2S- 2 + (4!tI2-4C4S4] 

- sin(S 12)(2-ICs - (3!)-12-3C 3CL 
(19b) 

6 =sin(S /2)[ 1 - (2!)-12-2C2S2 + (4!yI2-4C4s4 j 
+ cos(S /2)!2-ICs - (3!t'2-3C3S- 3j. 

Then, substitution of the values (18) and (19) of the 
three exponentials factorizing eS gives BCH-expressions 

e S = r1 + i8(l - 2- IZ 2 + 3-12-3Z 4 )1i + i8(1 - 6-'Z 2)1i 1\ Z 

= r1 + i8(1 - 2- IZ 2 + 3-'2-3Z 4 )1i + i8(1 + CylNl 

=r1+i8(I+Cyl((1+NII)Ii+Nlj. (20) 

The last expression came out from Eq. (12). If C is 
thought of as being solved using Eqs. (17) and (14), this last 
expression is the BCH-formula in term of the original data of 
8. If one concentrates on S-, n, C, and Nl as a good parametri-
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zation of the supergroup, then the second expression is more 
appropriate, where one has to think of Z as the solution of 
Eq. (IS) given in terms of n, Ni and C, as in Eq. (16b). 

Introduction of the value (16b) of Z into Eq. (20) yields 

eE = yl + i8{ 1+2-2 aaau () + +2-2 b[jb[j()_ 

+2- 1 a ba a[jef-t 
u 13 f-t 

- aUb () -2- 1 at-tu[jb a () 
- u- /3 J...L a-

- b[ja + ij[j+ +2- 1 a'-/x[jauaf-t ij[j+ 

+ (2- l aU a +2- l b b[j+2-2 af-ta - Cl 13+ f-t 
- a + b __ 2-4 aClaab[jb[j 

_2-3( b[jaa)(aab[j)fJ + _ lli + i8(1 + C)-Wi' (21) 

where aU,b[j,a + ,af-t,b _ ,a~ ,b[j+ are given in the Appendix 
in terms of C and N J , and y and 8 are determined by Eq. 
(19b). 

This last expression is one of the BCH-formulas for the 
SU(2) complex supergroup which shall be exhibited in this 
article. From this formula similar expressions for SSU(2)R 
and chiral SSU(2)[. (or SSU(2)R) can easily be written, just 
by making the appropriate specialization. 

III. THE UNITARY SUPERGROUP SSU(2)R 

If one demands that eE be unitary 

(eE ) t = e -", = (e"') - I, (22) 

E cannot have the general form (1 b) with all the coefficients 
being arbitrary complex spinors. In order to satisfy Eq. (22) 
E must have the structure 

E = ; uXu +; ua()"Xa + [opijPxo 

+ ; \ () + Xa + [\ () _ Xo 

+ ; Of-t()IIXU +; u~ Xa()a-

+ [/3 _ Xa () (J + +; u+ _ () + _ Xo' (23a) 

E=EaXu:Eo+ =EU with Xu+ = -Xu, (23b) 

; u, ; Uf-t, ; "+ _ reals, (23c) 

which means that the three Grassmann scalars EO are real 
elements of the algebra. 

Reality of Ea imposes reality of Z, s', and C. They re
spectively become 

Z = s"e" + [piif3 + s + e + + t + () _ + Sf-t()II 

+ sa_ ea _ + tf3 _ ii f3+ + S + _ e + _, (24a) 

s· = (1 + C)bn°, ; =(;"; b8ob )I/2, ; real, 

(24b) 

C =ca()a + Cf3ijiJ + C + () _ + Cf-t()f-t 
(l --(3 + C _ ()" _ + C[j _ () + + c+- _ () + _ , (24c) 

with 

sll, S \- _, CII, C + _ real. 

Moreover, Nil and Ni turn out to be real elements too 
and the BCH-formula (21) still holds, with 
A = - n ANi X(I + Ct l being now a real Lie-valued 
element. 

In this case, a natural question can be asked: what is the 
global structure of the SSU(2)R -variety? Since SSU(2)R de
scends from a compact group, whose compactness is strong-
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ly related to the quantization of the charges of the different 
matter gauge fields,4 and since this is the unique unitary 
superextension of the bosonic SU(2) case, we believe it is 
relevant to try answering this question. 

From Eq. (19) we notice that even ifyand8 are periodic 
functions of ;, for a given E =C;, the coefficient of" and 1'1 
shall contain a rational dependence upon; which does not 
allow to say whether the global structure ofSSU (2) R is of the 
type Kbosonic xR 45 or, for instance R 3 xR 45. 

However suppose we take as independent variables 
;,n,E =C; and Mi =(1 + C)"Wi • Then, according to Eq. 
(19): 

y = cos; 12{ 1 - (2!)-12-2E 2 + (4!)-12-4E4 l 
- sinS 12 (2-IE - (31)-12-3E 3 ], 

8 = sin; 12{ 1- (21)"12-2E 2 + (4It I 2-4E 4 l 
- sin; 12 (2-IE - (3!)-12- 3E 3 l. 
Since the vector A has the value 

A= -nAM1--nA{mr()a +iii(J1()P+ m +]()+ 

+ iii +1() + mi()f-t + m~ _ ()" .. 

(2Sa) 

+ iii 1. [jii f3+ +mi+ ()f-.l. (2Sb) 

any of the inner products appearing in Eq. (21) can be re
placed by the corresponding inner products in the M J com
ponents. Therefore eE

, E real, using the ;, n, E, Mi parame
trization can be cast in the form: 

Ereal, eE = y(b,E)1 + i8(b,E){1 + f(M1)1i + Mj l. (2Sc) 

explicitly showing, because the periodic dependence of both 
y(b,E) and 8(;,E) in;, that for a given set (n, E, Ml ) gives all 
the different elements that (2Sc) can provide if; runs over a 
circumference SI oflength 41T. 

It is interesting to point out that M1 fixed, E fixed can 
be obtained if both N j and; vary such that 

M1 = N 12 (l +; 2-
1 E)-I = NlI (1 +; I I Etl. (26) 

Equivalently, if S2 = SI +41T the corresponding increment 
of N j keeping M j constant is 

LiNl =Nl2 - NlI = - EMj 41T; I-I (;1 +41Ttl. (27) 

As both E and M1 start with e I terms, LiM] starts with 
() 2 terms. In terms of the last set of parameters we have intro
duced, E assumes the form: 

E = (b + E)(n + M 1) =; {(l + C)n + N j J, (28a) 

where 

(28b) 

It is worth remarking that E = 0 = E·n gives the super
symmetric generalization of the SU(2) rotation with axis n: 

E = 0 makes the elements eE to have the values 

e"'(E.n = 0) = COss 121 + i sin( 1 + f(M])" + MIL), (29) 

which clearly constitute an additive Abelian subgroup, ho
meomorphic toS I (0,4,1T). They represent the superrotations 
of axis n + Mi' 

In general one could say that E is the more interesting 
element in the analysis of the supergroups, which could be 
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the source of nontrivial intrinsically supersymmetric prop
erties which deserve further studies, specially in the case of 
Yang-Mills models. 

It is also worthwhile to point out that there are similar 
in spirit but slightly different alternative parametrizations 
leading to BCH expressions too which are given in Appendix 
B for the sake of completeness. 

IV. DISCUSSIONS AND COMMENTS 

We have been able to obtain BCH-formulas for the 
more general supersymmetric extension of the local SU(2) 
gauge group, which is SSU(2)c' Therefore and, as particular 
cases, BCH-formulas for the real (unitary) and chiral super
groups arising from SU(2) can be straightforwardly written 
down. 

One of the methods exhibited in this article gave as a 
byproduct a canonical factorization for every element e:E' of 
SSU(2)c which, as Eq. (3) shows up can always be written as 
a "transverse" element times a "longitudinal" bosonic el
ment times the inverse of the same "tranverse" element. 

Then we studied the supersymmetric unitary super
group SSU(2h, specially looking at the connections its glo-_______________________________________1 

APPENDIX A 

bal structure may have with the original bosonic SU(2) local 
gauge group, where we know the physical importance of its 
compactness. 

That point of view led us to look at other parametriza
tions, like (2Sa), which splits up an element of the generating 
Lie algebra into a superscalar times a superaxis n + M j , and 
where the bosonic elements of each factor belong to the par
ent SU(2) variety (a compact one) and the strictly supersym
metric components E and M j range unrestricted over R 45. 

These results confirm and extend the observations already 
made6 for the chiral supergroups. 

Finally, let us express that we conjecture that the BCH
formulas presented here shall be useful when dealing with 
supersymmetric Yang-Mills models, especially regarding 
their quantization, and choosing the appropriate gauges in 
the search of physically relevant symmetric topological 
configurations. 
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Given C = caOa + dr/jr3 + c + ° + + d _ 0_ + d"O" + c
u

_ Oa_ + dr3+ iJr3+ + c -t _ ° + - , 

it is straightforward to obtain (1 + ctl 
It turns out to be: 

(1+Cyl=I-c"8,,-dr3 iJ fJ -(c+ +2- l caca )8+ -(d_ +2- l dr3 d(3)8_ -(d'+co"d)81' 

+ (2cad _ +2- l c" dd + d"all ar3 dr3 + 2-1 call ddr3 o""fJ - ca )8,,- + (2c + dp +2-
l
cc dp 

_ d'c"a
1w

r3 - 2- 1 co" dc"a,wr3 - dr3+ )iJfJ
r + (2- 1 (cc)(dd ) - 2- I (ca

" 
d )(cd' d) - 3 X 2- 1 d"(ca

" 
d) - 2-

1 
d"c

" 
+3X2- l c

t 
dd+3X2- ld_cc+c+d_ +dc+ -cYc y -dr3 + d ll -c+_)8 r (AI) 

In a shorter form: 

O+C)-I=I-c"O,,-dijP - h t O+ -k 8_ -hI'O,,+h"Oa __ +kH+fjfJ-t +h+ _0+_, (A2) 

whereh ·h h ~cl+ac2'ha andk,; _cl+alc2+blc3andh+ __ c l + ... +d"c4,bycl,c2
,. •• ,c4 termshomogeneous 

-+- , 'I! , P + -
in the first power of C are meant, in the second power up to the fourth power in the coefficients of C. 

The BCH expression (21) has been given in terms of A = - n t\ (l + c t 1 N j • 

Replacement in this expression of (1 + cy 1 as above and of N] as obtained from Eq. (11) gives A the value: 

A = - n t\ [n70" + mIl] iJfi + (n +] -I- 2- 1 c"nalW + + (m 1 + 2- 1 
dfJ mf)8 _ + (n'; + 2-

1 
co"m] + 2-

1 
n] 0" d)81' 

+ [n° j _ cam _ 3. - n'{(d _ + 2- 1 dfJd fJ) - 2- I (d' + cd' d )aft a
p
mll1 - 2- 1 nita!, "f3 dr3 ]a,,-

+ [mfJ f 1 - n \ 1 d(i - mr3J (c -+ -I-2- l c"c,,) +2- 1 n~(d' + cd' d)al'uf3 

+2- l c"nj'al"lrj] fjf3+ + (1 +c)-INj ), ° + J, (A3) 

where, for instance, n~' is the projection of n° in the subspace 
orthogonal to nand «1 + ctlN[ ) + does not matter in the 
remaining results. 

APPENDIX B 

We shall sketch here alternative BCH-formulas for 
SSU(2h. We start from the representation II of g; 

where S is the modulus (supersymmetric) of g" and s" the 
unitary vector defined by g", that is, 

1232 J. Math. Phys., Vol. 21, No.5, May 1980 

1 
(B2) 

It is completely straightforward to show that: 

e:E' = cos(2-IS) + isin(2- IS)s"a". (B3) 

From Eq. (BI) 

S 2 = ; 2( 1 + Nil )2[1 + (1 + Nil )"2 N i ]. (B4) 

Then,S = (S2)1/2 andS- 1 = (S 2)" 1/2 can easily be calcu
lated using the fact that (1 + Nil y2Ni starts with e 2; 

S = S + s! Nil +2- 1 N~(1 + Nil yl _2-3 Ni L (BS) 
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S-I =t-I(l +NII )-I{l-2- 1 Nf(I +Nllt2+3X2-3 Nil. 
(B6) 

5=S-12= {l-2- I Nf(l +Nll t
2 +3X2-3NiJ 

x (n + NI (1 + Nil tl). (B7) 

From Eq. (B5) we have that: 

2- 1S = 2- lt +2- It INII +2- 1 N~(1 + Nil )-1 _2-3 Ni J 

=~~+~~ ~~ 
where between Nil' NI and D, PI there is a bijective 
correspondence: 

Nil = t- ID(l-2-1 pD _2- 1 P~ +3 X 2-3 Pi, 

PI==N1(I +NII)-I. 

The unit vector s (B7) can be cast in the shorter form: 

(B9) 

s= 11 _2- 1 P~ +3X2-3 P1l(n + PI)' (BlO) 

As it also straightforward to prove that cos(a + b) and 
sin(a + b) follow the same rule for a,b Grassmannian ele
ments than for a·b real, one has that Eq. (B3) can be written 
down, in terms of t,n,D'PI : 

e:5 = cos(2-IO cos(2-ID) - sin(2- lt) sin(2-ID) 

1233 J. Math. Phys., Vol. 21, No.5, May 1980 

+ ilsin(2- IO cos(2-ID) + cos(2-lt) sin(2-ID)J 

X II _2-1 P~ +3 x2-3 Pi j(n + PI)' (BII) 

which has the advantage, with respect to (B3) that the com
pactness in the bosonic variables appears evident cos(2-ID) 
and sin(2-1 D) are very simple expressions polynomials due to 
the fact that D starts with e I and therefore D 5 = O. 
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Models for SU(N) X SU(N) symmetry breaking with extremum constraints 
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The extremum properties of some functions defined on the compact groups or their 
representations are investigated. The extremum constraints for the vacuum expectation value of 
U(N)XU(N) and SU(N)xSU(N) 0 [ZiP)XZiC)] symmetry breaking perturbation 
Hamiltonian are used to determine the models compatible with nonnegative particle mass 
spectrum in the first perturbation order. Some model-independent properties inferred by 
extremum constraints of chiral and CP-symmetry breaking are also examined. 

1. INTRODUCTION 

In this paper we investigate the extremum properties of 
some functions defined on a compact group (representa
tion). The functions are built up as real parts of the average 
on a fixed vector of a tensorial operator, having both well 
defined transformation properties with respect to the consid
ered compact group. 

In a particular form such a problem has been investigat
ed within the framework of a (3,3*) Ell (3* ,3)-model of the 
SU(3) X SU(3) breaking. 

Some authors succeeded in giving the most general ex
pression of the symmetry breaking Hamiltonian density 
compatible with an extremum principle, showing that the 
breaking of a Nambu-Goldstone realization of 
SU(3) X SU(3) symmetry may be accompanied by a break
down ofCP-invariance. I

.
2 The connection of the mentioned 

results with some observed CP-violating effects have also 
been investigated. 3 

In order to get the best insight into the subject we start 
by studying the extremum properties of some adequate func
tions in the general case of a compact group (representation) 
with special regard to U(N)XU(N) and SU(N)XSU(N). 
We hope that our approach will allow nontrivial applica
tions to some models of large dimensions and reveal some 
model-independent properties inferred by extremum 
constraints. 

This paper is divided as follows: 
In Sec. 2 we formulate the extremum problem and get 

some general properties of the extremum solutions. 
In Sec. 3 we show the connection of this problem with 

the Hamiltonian theories with a spontaneous breaking of the 
symmetry and we define the unitary (chiral) 
(D,D *) Ell (D * ,D )-models for the group (SU(N) 
XSU(N»O(Z2 (P)XZ2 (C». The extremum problem is for
mulated in a suitable for a global approach matricial form 
via a matricial realization of the irreducible representations 
(LR.) of the direct product of unitary groups. Matricial 
equations satisfied by the extremum solutions are 
determined. 

An explicit form of the extremum solutions and their 
properties for the (N,N *) Ell (N * ,N) models in the 
U(N) X U(N)and SU(N) X SU(N)casesareobtainedinSecs. 
4 and 5, respectively. 

In the U(N)XU(N) case the CP-symmetry breaking 
term is eliminated by the extremum condition; the same con
dition might infer a CP-symmetry breaking term with vacu
um symmetry in theE = o limit for the SU(N) X SU(N) case. 

In Sec. 6 we enumerate the physical implication of the 
previous results, like the Okubo-Mathur's4 and Dashen'sl 
extremum domains, the connection between the theory pa
rameters existing for the spontaneous CP-symmetry break
ing and the implications of the vacuum symmetry for the 
extremum solutions. 

2. THE EXTREMUM PROBLEM 

The operators (particularly the Hamiltonian densities) 
with well defined properties with respect to a group G are 
introduced by the usual covariance scheme. 5-8 

Given the (continuous) linear representations T[ of the 
group G: 

TI:GI--+lt'(VI ), 1=1,2, (1) 

by bounded operators in the vectorial spaces VI' we are in
terested in a linear map 

(2) 

equivalent with respect to G, i.e., satisfying the conditions 

T2 (g)F(x)T2 (g - I) = F(x'(g», 

gEG, X, X'(g)EV1 , 

where 

(3) 

(3') 

VI are considered unitary spaces with the scalar products 
(SP) denoted by (-,-) [. Let now WE V2 and VE VI be fixed 
vectors. We build up the function qJ: G~R defined by 

qJ (g)_Re(w,F (V'(g»w) 2 • (4) 

We consider compact the Lie groups such that g = g(y) 
where Y=! Ya I a = l:n are the (real) parameters of the 
and the T[ representations may be taken unitary with respect 
toSP (-,-)[ in V[.5-8 

Instead ofEq. (4) we write 

qJ(y)=Re(w,F(v'(Y»W)2' (5) 

where 

V'(y)=TI (g(Y»V=TI (y)v. (5') 
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Given group G, mappings T[, F and vectors v, w, our prob
lem is the determination of the element v'(yo)on the G-orbit 
of v in such a way that 

q; (Yo) = extremum of q;(y), g(y)EG. (6) 

As, by hypothesis the function q;(y) is defined on a compact, 
it attains its extremum. 

It is obvious that 

(7) 

is a conjugate-linear bounded functional on VI , hence there 
is a unique SE VI such that 

Y(x) = (s,x) I' q; (y) = ReY(v'(y». (S) 

The vector SE VI may be easily identified if we write Eq. (7) 
in an orthonormal basis (o.n.b.) (e j I of VI with respect to SP 
(-,-) I' 

By using the linearity of the F mapping we obtain 

,S'(x) =xrsj = (s,x) I , 

where 

Sj (w,F(e;)w)2 

(9) 

(10) 

are the coordinates of x and S respectively in o.n.b. (e j I and 
the star denotes the complex conjugation. 

Consequently we obtain 

q;(y) = Re(s,v'(y»I' (11) 

If Yo is an extremum point of q;(y), then the function 

¢ (y)=Re(s,TI (y)vo) I 

= Re( T t (y)s,vo) I (12) 

[where 

vo=v'(Yo) = TI (Yo)v] (13) 

attains its extremum for y = 0; hence we obtain the neces
sary extremum conditions 

o¢ (y) I = Re(s'Y-a vo) I 
oyu y~O 

(14) 

where 

Y
a

- oTI (y) I ,a = l:n 
oYa y=O 

(15) 

are the generators of the TI -representation of G. Corre
sponding to the kind of the extremum we shall require that 
the matrix of the second derivatives of ¢ 

02¢ (y) I - Re(I:- Y Y v ) 
- ~'a b 0 I 

0YaOYb y=O 
(16) 

be positive or negative (semi) definite. 
We can reformulate the same problem by using the real 

orthogonal representation associated with the (complex) 
unitary representation TI . This second approach is advanta
geous when we want to deal with Hemitian operatorial im
ages, for intance, in the Hamiltonian theories. 

Let TI :G 1--+.2"(VI ) be aD-dimensional G-representa
tion (unitary with respect to the SP (-,-) I) and let (e j I be an 
o.n.b. (with respect to the same SP) in VI . Then 
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is an o.n.b. with respect to SP 

(XR , YR)=Re(x,y) I (IS) 

in the real 2D-dimensional space VIR associated with VI . 
Here we read X,YE VI and x R ' Y R E VI R with 

XR = (Rex;) ej + (Imx;)e; = xR,fj. (19) 

The linear real 2D-dimensional representation TIR :G 
t-.2"(VIR ) defined by 

TIR (Y)XR = (TI (y)xh = xn (y) (20) 

is orthogonal with respect to the SP(lS). Let TI be the repre
sentation contragradient to TI with TT(g) = (TI (g»*. It is 
simple to show that T1R is complex equivalent to TI G1 Tr, 
the direct sum of representations TI and TT. Hence TIR 
representation is irreducible as a real one. Furthermore, with 
F: VI .-.2"(V1 ) we should associated the linear map 
FR :VIR .-,,:nV1 ) with all FR(xR ) Hermitian defined by the 
law 

FR(XR) the Hermitian part of F(x) = HF(x) + F(x) + J. 
(21) 

The from Eqs. (5), (11), (17)-(21) we obviously obtain 

q; (y)=Re(w,F(v'(Y»W)2 = Re(s,v'(y» I 

= (SR ,vn (y» = (sR,TIR(y)VR) = (w,}~(vn(Y»W)2 
(22) 

and the necessary extremum conditions (14) for q;(y) in the 
point Yo become 

(5R,y~R)VOR) = (y~R) C SR'VOR ) = 0, 

where 

y~R )= OTIR (y) I 
oYa y=O 

(23) 

(24) 

are the generators of the T1R -representation with the action 
on VIR obvious from (20), 

y-~R )xR = (YaX)R' (25) 

By choosing the parametrization Y in such a way that the 
generators Y a ,(.y~R », are anti-Hermitian, (anti-symmet
ric), from (14) [(23)] we immediately read that the extremum 
solution VUR belonging to the G-orbit of v R is orthogonal 
[with respect to the (SP) (1S)] to the (real) linear subspace 
Vs• C VIR spanned by the vectors {y-~R )SR}. 

This property may be obtained in a different way. Let 
o SR be the G-orbit of SREVIR: 

o SR {TIR (Y)SR }CS~1> _ I' (26) 

where S ~~'>- I is the sphere 

Sf7.,_ I ={YREVtR :IIYR II = IIsR II}, 
(27) 

(Obviously we can take from the beginning IlsR II = lor 
Ih II = 1.) In the previous conditions we showed that the 
extreumum solution VOR = TIR (Yo)v R' (5 R), is orthogonal 
to VSR ' (VUn)' the tangent space to orbit 0 SR' (0 v

o
)' in the 

" ." • • f,- - C" c; R ( - C" "R ) If #? ld POlOt Yo I.e., In ~ R e.J 2D I' VOR e.J 2D _ I' U /OR WOll 
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cover the sphere S ~~ _ I (we suppose II v R II = 1) it is well 
known that 

(28) 

the maximum (minimum) being reached for VOR parallel (an
tiparallel) to 5 R ; this means that VO, (VOR ) and implicity the 
operator F(vo), (FR (VOR » have the same stabilizer G as 5, 
(5R)' In this case the tangent space VSR in Yo, orthogonal to 
5 R is (2D - I)-dimensional and as VOR E V tR we get the same 
conclusion. 

Such a situation would occur for instance for the identi
cal N-dimensional representation T of the unitary group 
G = U(N) where6 

T(U) = UEU(N). (29) 

Nevertheless, in the general case the G-orbits do not cover 
the sphere, dim VSR < 2D - I and getting the extremum is 
much more involved. 

As soon as Vo is determined, we get the operator F (vo) 
with the desired properties: 

Re(w.F(vo)w)z = (w,FR(vOR )W)2' 

= extremum(w,FR (T1R (g)VR )W)2 

= extremum Re(w,F(TI (g)v)w) 2 , gEG. 
(30) 

3. THE MODEL 

A similar case to the above formulated extremum prob
lem appears in the Hamiltonian theories with a degenerate 
fundamental (lowest energy) state. I

,9 

Let G be the fundamental symmetry group (of the 
dominant interaction) of the theory. 

The Hamiltonian operators with well defined proper
ties with respect to a group G is introduced by the usual 
covariance scheme. Now consider that the fundamental G
symmetry is broken by two mechanisms. 

We define the intrinsic breaking of the G-symmetry by 
taking the Hamiltonian density of the form 

dr'" = ,jf() + t,jf'B' 

where £"0 (dominant interaction) is invariant with respect 
to G and drJ 

B' in the breaking G-invariance perturbation 
t,W' B, is the Hermitian operatorial image by a map F R of 
some vector VREV1R 

(31) 

On the other hand, we define the spontaneous breaking of G 
supposing that in the t = 0 limit the fundamental state of 
,;¥~, the vacuum WEV2 is G '-symmetric where G'isa proper 
subgroup of G, i.e., 

Tz (g')w = w for all g'EG '. (32) 

As )Y'o is G-invariant, the fundamental state of JY 0 is degen
erate, Tz (g)w (gEG), being also fundamental states. 

Since YY~8 determines which of the vacua of JYo is the 
relevant one [namely w_limHOw(t) where WeE) is the 
unique vacuum state of the operator JY'] it follows that the 
G' -group is not independent of c7t"B. 1 

Conversely, given the vacuum w, out of many 

,'7('~(g)=FR (v~ (g» = FR (T1R (g)vR) 
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= Tz (g)FR (XR )T2 (g - I) = Tz (g)c7t" B Tz (g - I) (33) 

which can be obtained from each other by G-transforma
tions we must select the one c7t"~ 0 =JY~ (go) which extre
mizes the energy,1 namely, 

Eip(go)=(W,Ec7t"~(go)W)z = min(w,Ec7t"~(g)w)2 

= mintip (g), go, gEG; (34) 

or with the parametrization g(y) [see Eq. (5)1 

tip (Yo) = minEip (y), g(Y)EG. (34') 

with Ec7t"~ (go) as a perturbation term, this condition assures 
nonnegative masses in the first order of perturbation theory. 1 

Now we analyze the extremum problem previously for
mulated when the fundamental symmetry group ofthe mod
els is G =(SU(N)xSU(N»O(Zz (P)XZz (C». The sym
bols X and 0 describe standard operations of direct and 
semidirect products respectively.5-H 

TheZz (P) XZz (C) group is constructed on the basis of 
the outer automorphisms C and P associated in the unitary 
models to the discrete transformations of charge conjugation 
and space reflexion respectively, each generating a cyclic 
group of second order, whilst CP = pc. 4

,5 

The discrete transformations C and P induce on 
SU (N) X SU (N) the following outer automorphisms 

C P CP 

(U, V) I--+(V* ,U*). (U, V) 1---+ (V,U), (U, V) 1--+( U * Y*) 
PC 

(35) 

where UYESU(N) hence (U, V)ESU(N)X SU(N).If Tis a 
representation ofSU (N) X SU (N) andX is an automorphism 
of SU(N)XSU(N), then (UY) I-+T(X (UY)}=TX(UY) 
is a representation ofSU(N) X SU(N). In this way we define 
the action of discrete transformations on the SU(N) X SU (N ) 
irreducible representations (IR) set. 

By denoting an IR of SU(N) X SU(N) by the IR's di
mensions of both SU(N) groups we have 

(D j ,Dz)C = (D! ,D f), (D j ,D2)P = (Dz ,D j ), 

(36) 

where D * is the representation contragradient to D. In a 
theory containing SU(N) d invariants where SU(N) d is the 
diagonal SU(N) subgroupofSU(N) X SU(N), we havetoop
erate with representations of the type TIR taking the 
identification 

VIR =(D,D *) EB (D *,D) (37) 

where D is a unitary D-dimensional IR ofSU(N). We saw 
that this is an IR as a real representation ofSU(N)X SU(N) 
(or as a representation of G) associated to the unitary (com
plex) D2-dimensional IR TI :SU(N)XSU(N) 1--+2'(VI 
=(D,D *» ofSU(N)xSU(N). 

The breaking G-invariance dr B is the Hermitian opera
torialimagebyamapFR ofa vector in (D,D *) Ell (D *,D ),i.e., 

YrB = FR(VR), VRE(D,D *) Ell (D *,D). (38) 

The (D,D *) representation ofSU(N) X SU (N) can be conve
niently handled on the D 2-dimensional complex space ~IIDl 
of D X D complex matrices. On a matrix xE..d D", a g 
ESU(N)XSU(N) transformation, described by the pair 
g __ ( U, V) of unitary unimodular N X N matrices, acts as 
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X I---+X'(g) = X'(U, V)=T, (U, V)x 

= t (U)xt (V +) = t (U)xt + (V), (39) 

U and Vbeing represented by t (U) and t (V) in theD-repre
sentation space of SU(N). The T, - representation of 
SU(N) X SU(N) is a unitary one with respect to the following 
scalar product in vIID2: 

(X I ,x2 >=1 Trxlx/, 

InvllD2 we introduce an o.n.b. (with respect to this SP) con
sisting of D 2 Hermitian matrices 

{A jD)}j= I,D 2 ' (40) 

Then {A tl, A jD)'=iA jD)} is an o.n.b. in the 2D 2-dimen

sional real space vIIf of D XD complex matrices with the 
SP (18), 

(X'R 'X2R ) = Re(x, ,x2 ) =! Tr(x, x2+ + X2Xt). (41) 

In the above considered bases we have 

v = (cj + idj)A jD), 

V
R 

= cA (D) + dA (D)' 
J J J ] 

(42a) 

(42b) 

[Summation over repeated (dependent on D )j-indices is al
ways implied.] 

We observe that the (real) subspaces of the Hamiltonian 
and anti-Hermitian matrices, 'if and .# respectively, from 
vii D 2 are in variant with respect to the restriction of represen
tation T" defined in Eq. (39) to SU(N)d={(U,U):U 
ESU(N)} and CP operation acts on vIIf as a Hermitian 
conjugation, therefore the Hermitian and anti-Hermitian 

parts of xEvllf are even and odd, respectively under CPo 
We suppose that (D,D *) EI1 (D *,D)isreduceduptoIRof 

the SU(N) d subgroup ofSU(N)XSU(N) and that in Eq. 
(42a) the vector v is decomposed after the even and odd IR's 
(with respect to CP) of SU(N) d contained in the (D,D *) 
EI1 (D * ,D) representation. In this sense we observe that under 
SU (N) d, A j and A ; =iA j transform in the same way and by 
the previous assumption, according to IR's ofSU(N) d con
tained in (D,D *) EI1 (D * ,D). Then from Eqs. (38) and (42) 
emerges 

cW'B = FR (vR) = CjUj + djVj' (43) 

where uj and Vj are the Hermitian operatorial images of Aj 
and A ; respectively, 

uj FR(A), vj=FR(Aj). (44) 

Hence the CP and SU(N) X SU(N)-properties of Aj and A; 
are transferred to uj and Vj respectively: 

CP CP 

(U.V) 

cW'B ~ cW'~(U, V) = FR (v~(U, V» = cjUj + d jUj' (46) 

where c; and d; are defined by 

v'(U,V)-T, (U,V) v = (cj + id j)Aj' 

v~(U,R) TIR(U,v)VR =cjAj +djAj. 
(47) 

Therefore, the terms dj Vj in cW' Band d; Vj in cW'~ violate the 
CP-invariance. 
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Now we define the spontaneous breaking of 
SU(N) X SU(N) supposing that in the € = 0 limit, the vacu
um w is Gt =QO(Z2(C)XZ2(P»-symmetric, where 
QCSU(N) d. Then the only vacuum matrix elements differ
ent from zero in this limit are 

(48) 

where uj , are Q-singlets, hence the corresponding A j, and the 
associated vector 5 [see Eq. (10)] satisfy: 

t(u)A j~) t(u +) =A IDl, 
t (U)5t (u +) = 5, UEQC SU(N)d, 

in this case 5 being the Hermitian matrix 

5=5j,Aj,. 

(49) 

(50) 

The subgroup QofSU(N) X SU(N) in the stabilizer Gt of the 
vacuum in the € = 0 limit can be used to classify particle 
states. When € is zero we have Q-multiplets of Goldstone 
bosons.l.4 Let {aa}a = I:N2 _ I =a be now a (real) parametri
zation ofSU(N) and let 

Q~N)'= aU(a) I (51) 
aaa a=O 

be a basis of the Lie algebra su(N) ofSU(N) with 

[Q (N), Q (N)'] = f(N) Q (N)' 
a' b abc c • (52) 

We associate with aa's the generators Q ~D)"S of D-dimen
sional IR t of SU(N): 

Q~D)'= at (a) I ,[Q~D)', QbD)'] = f~'t) Q~D)'. (53) 
aaa a=O 

We can take such a parametrization that {Q ~N)'}, 
({Q <,:)== - iQ ~N),}), be an o.n.b. of anti-Hermitian (Her
mitian), traceless matrices in SU(N) and 

(U (a» + = U ( - a), (t (a» + = t ( - a) (54) 

so that Q ~D)' (Q ~D)= _ iQ ~D»), are anti-Hermitian (Hermi
tian), traceless D XD matrices. [In the U(N) case we should 
renounce the traceless condition for the matricial Lie algebra 
elements.]Thenforg=( U, V)ESU(N) X SU(N)weobtain the 
parametrization 

g(y) = (U(a), V(f3», i.e., y=(a,{3). (55) 

Let us return not to the previously formulated extremum 
problem. Weare interested in finding on the G-orbit of v R , 

(v), an element 

vOR==T1R(UO,VO)VR = T1R(yO)VR, 

vo=T\ (Uo,Vo)v = Tl (Yo)v, 

such that 

ip (Uo,vo) 

(56) 

= (w,cW'~(Uo,Vo)w) = (w,FR(vOR)W) = extremum 
ip (U, V) 

= extremum<w,cW'~(U,v)w) 

= extremum(w,FR(V~(U,v»w), 

ip (Yo) = extremum ip (Y), 
where, for our model 

ip (U,V)=Tr[t(U)vt (V +)5 + 5t(V)V + t(U +)], 
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u, VESU(N), (58) 

q; (y)=q; (a,[J) = Tr[t(a)vt ( - {3)S + st (j3)v + t( - a)], 

U(a), V(j3)ESU(N). (58') 

According to Eqs. (46) and (47) the Hamiltonian extremiz
ing the vacuum expectation value has the structure 

JY~o=JY~(Uo,Vo) = FIR (VOR ) = COjUj + dojvj , (59) 

where COj and do) are defined by 

VOR = COjA 5D) + dojA jD)', 

(va = (CO) + idoJA 5D)· (60) 

As the function defined in Eq. (12) is now 

~ (a,{3)=Re Tr t(a)vot( - {3)S 

and attains its extremum for a = {3 = 0, Eqs. (14) and (23) 
take the form 

TrQ~D)'(voS - sVrn = TrQ~D)'(Svo - Vo+ S) = 0 

a = 1:N 1 
- 1. (61) 

We emphasize that the matricial form of the extremum con
dition is suggestive and has all the advantages of a global 
approach, By splitting the matrix Vo in its Hermitian (C) and 
anti-Hermitian (D') components 

Vo = C + D' = C + in, (62) 

where D is Hermitian, From Eqs. (61) we get 

Tr(Q~D), [C'S])=Tr(Q~)'{D',S})=O, 
a = I:N 1 

- 1. (63) 
Let us denote by .'?i' and i5' the real subs paces of all anti

Hermitian and Hermitian D XD matrices respectively, 
These subspaces are orthogonal with respect to the SP (41) 
and, I(~' = ,eI 61 15', Let it be now ,w'I C.'?i' (i5' I C &'), the 
subspace generated by the generators {Q ~D )'}, 
({ - iQ~D)'=Q~D)}), and ,w'2 eel (&' 2 C tn, its ortho
gonal complements in ,eI (3"), with repect to the same SP. 
Then according to Eqs. (63) 

[c,S ]E.el 2 {D ' ,S }E,a72 (64) 

(i[C,S]EI5'2 {D,S-}EW 2 ). (65) 
The subspaces .c! and '15' are invariant under the restriction 
of the TIl< representation to SU(N) d, i.e., when U = Yin Eq. 
(39). Similarly, from the commutation relations (53) for 
Q ~[) it comes out that ,w 1 and if 1 (therefore also the ortho
gonal complements .c! 2 and if 2) are SU(N) d-invariant. 

As {; is Q-invariant and QCSU(N)d, from Eqs. (56)
(58')we deduce that Vo being a stationary solution, then T(u) 
Vo T ' (u), (UEQ) is also stationary because an arbitrary Q
transformations does not change the trace in q; (Uo , Vo ). This 
property could be used in order to simplify the solution va 
and is compatible with Eqs, (63), (64), and (65), 

The Eqs. (63) get the following symmetric algebraic 
form 

f,;~~q~~) h"cp = 0, d~n~q<::')h"dp = 0 (66) 

where {q<::,)}, {h n }, {cp }, and {dp } are the coordinates in the 
basis {A 5D), A jD)} of the matrices Q~D)', S, C andD', (D), 
respectively andf ,;~~ and d ~,~ are components proportion
al to those of the usual anti-symmetric and symmetric 
tensors.5 
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4. THE (N, N *) IF (N * N) MODEL OF UrN) X UrN) 

We now give explicitly the extremum solutions for the 
TIR ==(N,N*) Ell (N*,N) models ofU(N)XU(N) and 
SU(N) X SU(N) withN andN * the mutually contragradient 
fundamental representations of minimal dimensions, given 
up to equivalence by the maps 

t(U)=U, t*(U)=U*, UEU(N) or SU(N). (67) 

In the case when the unitary groups are U(N), the Eqs. (39), 
(58) become 

v'(U,v) = TI (U,v)v = UvV +, (68) 

q;(U,v)=Tr(UvV+S+SVv+U+), U, VEU(N), (69) 

where vE(N,N *) + (N * ,N) is a complex N X N matrix. 
In what follows it is shown that whenever q; (Uo ' Vo ) = 

extremum q; (U,v), then (i) both of the matrices UovVo+ {; 
and SUovVo' are positive (negative) definite for the maxi
mum (minimum) of q; (U, V); (ii) maxq; (U, V) = mih, and 
minq; (U, V) = - mih i where {mJ and {hJi = IN are all or
dered (say in nonincreasing order) eigenvalues of the unique 
positive definite square roots of vv -+- and S{; + , respectively. 

In order to prove these properties we begin by studying 
the maximum of the function 

f(a) Re Trv U (a) = Tr(v U (a) + U +- (a)v t 
) 

= Re Tr U(a)v, U(a)EU(N). (70) 

We simply obtain the necessary extremum conditions 

TrQ~N)(vO -vot)=O, 

where 

f(a o ) = maxf(a), vo=vU(ao)=vUo 

and 

{ (N)'} 
Q a a = 1:/"" ~ 

(71) 

(72) 

are the generators of U(N) group. As {Q ~\)} is a basis in 
.11 s', from Eq. (71) we obtain that Vo is Hermitian. 

Furthermore, va is positive definite and as v~ = vv + we 
conclude that Vl) = vUo = I v I where I v I is the unique posi
tive square root of vv f • Let V = I v I (;2; 0 be the polar decom
position of v, where u2; oEU(N). Then 

(73) 

where {m i } are the eigenvalues of I v I. It is easy to see that 

ReTr Ivl U<;Trlvl, UEU(N), 

the equality holding iff U = ll. Therefore, Uo = u2; (t . Obvi
ouslyifReTrvU() =minf(U),thenvU() = -lvi, U() 
= - Un becausef( - U) = - feU) and minf(U) 
= - max( - feU») = - maxf(U). Let us consider now 

the function in Eq. (69) and take Uo,vo such that 

q;(U(pVo)=maxq;(U,v), U,vEU(N). (74) 

As 

Re Tr UovVo' sW = Re Tr WUovVot- (; 

<q; (Uo,vo), WEU(N) 

and 

Re Tr UovV + S = Re TrSUovV + 
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<tp(Uo,vo), VeU(N), 

we conclude that Uo v V 0+ S and sUo v V 0+ respectively, are 
Hermitian positive definite matrices. (We will suppose v and 
S nonsingular matrices but, by using some well known spec
tral theorems about the normal operators/ the following 
conclusions may be obtained in the general case). Now let U3 

be such that Uo v V 0+ U3 = 'Uo v V 0+ ,. By introducing the 
notations A = , Uo v V 0+ , and B = U 3+ S we see that 
AB= UovVo+s andBA = U/sUOVVo+U3 are Hermitian 
positive definite matrices and as A is Hermitian positive we 
deduce that A and B commute. On the other hand (A, I v I) 
and (B, Is I) respectively have the same eigenvalues with the 
same multiplicities, therefore there is a permutationPso that 
{mjhp(l) } are the eigenvalues ofAB where {mj } and {hj} are 
the ordered (say in nonincreasing order) eigenvalues of I v I 
and Is I respectively. Let U4 be the (unitary) operator de
fined by U4~j = ~P(t) where {;j} are the eigenvectors for 
both A and B. A~j = mj~j and B~j = hp(I)~j' Then we have 

AU4 BU 4-I~p(t) = mp(t) hp(t) ~P(l) 

and as 

TrAU4BU;1 = TrU 4-IUOVVo+ U3 U4 U 3+ S = mjh;. 

TrAB = mj hp(t), 

we conclude that the second sum assumes its possible value. 
namely. m;h; only if the sequences {m;h;} and {m;hp(t)} are 
permutation of each other. Hence the maximality. (minima
lity). of tp (Uo,vo) implies that {mih;}, ({ - m;h;}), is an 
enumeration of the eigenvalues of Uo v V 0+ S. It is possible to 
identify immediately Uo and Vo if in the polar representa
tion6 of v and S we diagonalize the occurring positive definite 
matrices so that 

(75) 

where Vd and Sd are diagonal matrices with ordered both 
sequences {hi land {mi}as diagonals. By taking this decom
position in Eq. (69) we observe that 

tp (U, V) = Re Tr UUI Vd VI V + U2 Sd V2 (76) 

attains its maximum for 

U = Uo = V t U 1+ , V = Vo = U2 VI . (77) 

Therefore, a solution maximizing tp (U, V) is 

Vo = UovVo+ = V 2+Utvvtut. (7S) 

It is easy to check that this Vo is satisfying the equations 

[C,S] = 0, 

{D ',s} = 0, 

(79a) 

(79b) 

which are exactly the Eqs. (63) or (64) [(65)] as in this case 
{Q~N)'}span the whole space~N2 hence d l = d, d 2 

= O. As Q in Gs = QD(Z2 (P)XZ2 (C» is a subgroup of 
U(N)d, at least {w,uN,w)=SN,in Eqs. (48)-(50) [with UN' 
= FR (A N2 -1) a U(N)d-singlet] being different from zero, 

we suppose that the eigenvalues {Hi} of S satisfy the 
relations 

(SO) 

the last equations excluding the accidental relations (sym
metrices), for the parameters of S (5). Then Eq. (79b) implies 
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D' = 0, hence Vo is Hermitian. From Eq. (79a) we deduce 

Vo = C = coigAh' K~o = CO), u),' (SI) 

where {AjJC {A t)}j = I,N' are those (Hermitian) matrices 
(40) commuting with Sand {ujJare the corresponding 
(even) operators. ({A)Jinclose all the generators of Q in Gs 
-the stabilizer of vacuum.) 

IfQ = U(q)CU(N)d, a useful basis in.-H'N' [orin the 
u(N) algebra] is the following sequence of the Hermitian ma
trices Aj (which may be identified with Qt1),j = I:N 2

: 

A N ,=Y2!N 1, 
m-I 

A m'_I:::=Y2!m(m -1) diag {l.I ..... l- (m -I),O,O, ... ,O!, 

m = 2:N, (82b) 

A -Em+I+EP+1 A 
m' + 2p = P + I m + I , m 2 + 2p + I 

- '(Em+1 EP+I) 
=-1 p+1 - m+I' 

p = 0: (m - I), m = I:N, 

where 

(S2c) 

(E::' )kl = DmkDnl' m=:/=n, m,n = I:N. (82d) 

These matrices generalize the Gell-Mann matrices for the 
U(3) case for each unitary subgroup occuring in the canoni
cal chain 

U(2)CU(3) .. ·CU(N - l)CU(N) 

and they have the following properties: (i) {A j}j = I 'q' _ I is an 
o.n.b. of the su(q)Csu(N) algebra; (ii) {A H'; Am' _ I;' 
m = q + I:N} are singlets ofSU(q)CSU(N)d; (iii) the set 
(82b) is a basis of a Cartan subalgebra CC; of su(N). 

If Q = U(q) and use the advantage of the freedom of a 
U(q) transform which does not change tp (Uo, Vo) but it dia
gonalizes vo, we get 

Vo = C = COm' _ lAm' _ I + coN,AN" m = l:N, 

K~o = COm' _ I um ' _ I + CON,UN" 

The previous analysis of the U(N) X U(N) case is giving 
(i) the way of getting the transform (Uo' Vo) selecting the 
extremum solution vO , (K~ 0) on the U(N) X U(N) orbit of v, 
(Ko); (ii) the structure of the extremum solution, depend
ing on properties (symmetry) of S; (iii) the extremum con
straints eliminate the CP-invariance breaking terms even if 
such terms was contained in the initial K o' 

5. THE (N,N*) $ (N",N) MODEL OF SU(N)xSU(N) 

Now let us look for the extremum of tp( U, V) in Eq. (60) 
on the SU(N)XSU(N) orbit of v, (£"0), with U,VeSU(N). 

As the generators {Q~N)'t = IN' _ I ofSU(N) are trace
less, it comes out that the subspace.~ 2 in Eq. (64) is generat-

ed by A ~"1,l'-iY UN 1. Hence we have 

[C,s] = 0, 

{D '.S} = liI1. 

(83a) 

(S3b) 

With the assumptions in Eq. (SO), from Eq. (S3b) we deduce 
that now D ' has the symmetry of S is 1"=:/=0 and D' = 0 if 
I" = O. Therefore, the CP-symmetry breaking part of ,.o/'~o 
has the vacuum (w) symmetry (in E = 0 limit) or it is absent. 
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Indeed, let Ube a (unitary) transform such that 
5' = U5U - 1 is diagonal and let us define D " = UD' U - I. 

The Eq. (83b) may be written as 

D ;;(Hi + H j ) = if.loij (S4) 

and by Eqs. (SO) we obtain 

D " - i .t' --I - -f.l~ . 
2 

(84') 

On the other hand, by Q-symmetry of 5, U may be chosen 
such that 5 ' has the form of diagonal blocks corresponding to 
the IR's ofQCSU(N)d contained in the IR (N) ofSU(N)d; 
the eigenvalues of 5 in each multiplet are equal. Hence D " 
has the same spectral structure of diagonal blocks with equal 
eigenvalues inside a Q-multiplet. The transform reducing 5 
is also reducing D " hence D ' (or D) has the same Q-symme
try as 5. 

Equation (S3a) is the same as Eq. (79a) hence C is given 
by Eq. (Sl) and the extremum solution is 

Vo = CO), A h + do), A I,' dY'~o = COi, U). + do), V j,' (85) 

where A), = - iA ;, are the Q invariant matrices which ap

pear in 5, v), being the (odd) operators associated with A;" 
If Q = SU(q)CSU(N)d and we take the advantage of 

the freedom of a SU(q)-transform, then in the basis (S2) we 
get 

N 

dY'~o =CON'UN, + dON' VN' + I (COm'_IUm'_1 
m~q+ 1 

where UN' and VN' are the only SU(N)d singlets in the (real) 
representation space (N,N *) + (N * ,N). 

We now have to determine the parameters of dY'~o, 
functions of the parameters in dY' Band 5. We start by the 
remark that D and 5 are commuting so that they may be 
simulataneously diagonalized. From Eq. (S3a) we deduce 
that the same transform bringing 5 and D to the structure of 
diagonal blocks is bringing C to a structure of blocks corre
sponding to the IR's of Q contained in the IR (N) ofSU(N )d. 
Therefore, we get 

[C,51 = [D, 5] = [C,D] = [vo, 5] = 0, 
(S7) 

i 
Vo = C + - f.l 5 -- I. 

2 

[This time the matrix C, organized in blocks, can be diagona
lized by a Q-transform which leaves cp (Uo' Vo) unchanged.] 

In virtue of Eqs. (87) we deduce 

cp(Uo,Vo) = Re Tr Vo 5 = Tr C5 = CjHj , (88) 

where Cj andHj are the (real) eigenvalues ofC and 5respec
tively. For given v and 5, the (N + I) parameters Cj and f.l 
should be determined and ordered to make CjHj and an 
extremum of cp(U, V). 

We see that vv + , v + v, vovo-t , and vol- Vo (where Vo 
= UovVot-) have the same eigenvalues8 M j = m; (with the 

same multiplicities), hence 

M
j 

= C 7 + ! f.l2H j- 2, Cj = ± (Mj - ! J.12H j- 2)112. (89) 
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Also we have 

detvo = detv. (90) 

Hence the parameters [ Cj ,J.1 J satisfy Eqs. (S9), (90); J.1 =I-° iff 
M j -1f.l2H j- 2 > ° for all i. Ifwe enumerateHj andMj with 
their moduli in non increasing order, the same is true for Cj 
in Eqs. (89). 

There are many possible cases. The "absolute" extrema 
of Cj and H j are obtained for 

J.1 = 0, C 7 = M j 

sgnCj = sgnHj when CjHj-maximum; 

(9Ia) 

(9Ib) 

sgnCj = - sgnHj when CjHj-minimum. (9lc) 

These extrema are obtained if 1m Detv = ° and if there exist 
the matrices ~ (Selected as the simplest possible), Uo and 
Vo so that 

Vo = Uo v V 0+ = ~ v'"1, - I, [ ~ , 5 ] = 0, 
Uo,voESU(N), (92) 

where v' are diagonal matrices with the diagonal elements 
satisfying (9Ia) and (9Ib) or (91a), (91c). 

If J.1 =I-° and there exist ~, Uo , and Vo to carry v in 

Vo = UovVo+ = uII(C' + (i/2)f.l5 -I)~ - I; 

[uII,5] =O,Uo,VoESU(N), (93) 

where C' are diagonal matrices with the diagonal elements 
satisfying (89) and (9la) or (89) and (9lb), then cp(U,v) in 
Eq. (69) attains its extrema with Uo' Vo, Vo given in Eq. (93). 
Obviously, if such a Vo is inaccessible by SU(N)XSU(N) 
transforms, some Cj in Eqs. (9Ib) or (9Ic) should be modi
fied so that CjHj in Eq. (88) suffers minimal variations with 
respect to the previous extrema and the new extremum to 
become accessible by the SU(N) X SU(N) transforms. 

6. CONCLUSIONS 

In this section we enumerate some well-known results 
oftheories based on unitary models. We have already given a 
natural and straightforward explanation of these models, 
taking as tool an extremum principle on groups. 

I. First of all we remark that the Hamiltonians in the 
usual SU(3)xSU(3)1,5.9.IO and SU(4) X SU(4) 1 1-13 models 
with a SU(q)-symmetric vacuum (q = 2,3,4) belong to the 
class of stationary solutions having the form given in Eq. 
(86) with cm' 1 = ° (m = 3:q) and all d j = 0, the same re
mark holds for the U(3)XU(3t and U(4)XU(4)14 models 
and partially for the gauge SU(4) X SU(4)1' and 
SU(16) X SU(16)16 models. 

Information concerning the parameters are extracted 
from the particle mass spectrum in the first order of pertur
bation theory and from decay amplitudes data. 17 

There are some effects that suggest taking into account 
the last terms in dY'~o in Eg. (86). 

Among these we recall the "nonelectromagnetic" viola
tion of the isospin by the C 1 U J term in the chiral 
SU(3) X SU(3); an alternative motivation for this term may 
be a nonzero amplitude for the medium-strong TJ--+31T 
decay.J·18 

2. An application of the extremum condition would 
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lead, by the above method to the extrmum domain for C; and 
5; in the N = 3 models. Now dr'B is some "vector" in the 
(3,3*) Ell (3*,3) representation space9 and the vacuum is 
SU(3)d or SU(2)-symmetric. 

For a Edr'B and a vacuum SU(2)-symmetric, with th(~ 
usual notation we have l

•
9 

Edr'B =CoUo +csus, (Uo=U9 ) , 

and the only nonzero vacuum expectations values are So and 

5s· 
Therefore, in the Gell-Mann basis [see Eqs. (82)] we 

have 

v = Co Ao + Cs As = ~ Co diag(MI ,Mz ,M3), 

5 = So Ao + 5s As = j So diag(HI,Hz ,H3)' 

where 

MI = Ml = 1 + a, M3 = 1 - 2a, a=cs/\/2'co , 

HI = Hz + 1 + b, H3 = 1 - 2b, b =5sN250 . 
If we define S as 

S=2I M I IIHII + IM311 H31 

we observe that for the U(3)X U(3) case we obtain 

(I) Mintp( U'v) = - yS if Y > 0, 

(II) Mintp(U, V) = ySify <0, y= - ~ Co So' 

with the following orderings of the eigenvalues 

1M; I and IH; I of matrices Ivl and Is I: 

(i) IMI I> 1M3 I, IHI I> IH31, 

(ii) IMI I.;;; 1M3 I, IHI I.;;; IH3 1· 

Looking for (v,s) models with Re Trv 5 = (w,dr'Bw) hav
ing minimum value we remark that M; and H; should have 
the same algebraic signs in the first and opposite ones in the 
second case. These constraints define the extremum do
mains for the parameters y, a, and b. For example, the order
ings (i) with HoM; > ° and MI ,HI> 0, M3,H3 < ° respec
tively, corresponding to some situations of the first case, 
determine the limitations 0 < a,b < land l < a,b < 2, 
respectively. 

Bu enumerating all possible constraints, the Okubo and 
Mathur4 domains for a and b simply result from previous 
discussion. 

On the other hand, given v and 5 with the orderings (i) 
or (ii), according to the results obtained in Sec. 4, the extre
mum solution Vo on the U(3)XU(3) orbit ofv has the form 

Vo = £ ~ Co diag( IMI I sgnHI' 

IMl I sgnHI, 1M 3 I SgnH3 , 

where £ = + 1 if Y < 0 and £ = - 1 if y> O. Therefore, 
Edr'~o = Coo Uo + Cos Us has the same SU(2)-symmetry as 
that of E~B' 

However for other orderings of I M; I and I H; I the ini
tial SU(2)-symmetry of the Hamiltonian is broken. For ex
ample if IMI I> 1M2 I and IHI 1< 1H z I theextremumsolu
tion in the case y> 0 is 
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Vo = ~ Co diag( IMz I sgnHI' 

IMI I sgnHI,IMI I sgnHz 

so that Edr'~o = coouo + Cos Us + C03 U3 • 

In all these cases the CP-symmetry violating terms in 
the extremum solutions are absent. 

Let us consider now the extremum solutions on the 
SU(3)X SU(3) orbit of Edr'B' 

In order to compare our results with those from the 
literature l we will use the parameters 

£5 = (1 + a)(1 - 2a) - I, 1] = (1 + b)(1 - 2b) - 1 

which allow us to put 

v = 3~~ co(1 + 28)-1J/, J/=diag(8,8,1), 

v = 3~~ So (1 + 21]) - I FC", FC" :==diag( 1],1],1). 

Depending on the sign of9y(1 + 28) - 1(1 + 21]) - 1 the 
maximum or minimum of the function Re-
Tr UJ/ V + FC" -tp( V, V) should be reached. The Eqs. (87), 

(89), and (90) straightforwardly give the extremum solution 

// ('p i c.;v - 1 .Alo="b+-I-la , 
2 

where 

(a) I-l = ± 21]8 (I - A1]282)112 # 0 if 1]28 2 < 4, 

Ctff =diag(cp c2 ,c3 ), C I =C2 = -!1]82
, 

C3 = !1]282 
- 1, 

(b)1-l = 0 if 1]282>4, IC I I = Ic2 1 = 181, 
le3 1 = 1. 

In the last case we chose C I , C 2' and c 3 so that detJ/ 0 

= deLA" = 8 2. The discussion is similar to the previous one 
and we do not repeat it here. 

According to Eq. (86) in the case (a), a CP-invariance 
violating part occurs in the Hamiltonian 

EdY'~o = Coo Uo + COg Ug + doo Va + dOB Vg • 

the particular choice 1] = I [corresponding to a SU (d)d - sym
metric vacuum] gives the Dashen'sl solutions with a SU(3)d
singlet as CP-symmetry violating term (dog = 0). 

For the SU(4) X SU(4) I 1-13 models with an SU(4) or 
SU(3)-symmetric vacuum, the general method given above 
can be immediately adapted. 

3. A general feature of all previous introduced models 
and an interesting consequence of the extremum constraint 
is that it may infer a CP-violating part which has the vacuum 
symmetry in the E = 0 limit. In fact this result is a pure math
ematical consequence of an extremum principle in the pres
ence of the outer automorphisms identified with C and P 
transformations. In SU(3)xSU(3) and SU(4)X SU(4) mod
els this part does not contribute to the pseudoscalar meson 
masses but has a nonzero contribution to some decay 
amplitudes. 3

.
13 

However, in the usual models such a CP symmetry vio
lating part implies some difficulties. It is well known that the 
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very small upper limit on the electrical dipole moment of the 
neutron represents a very serious difficulty with the order of 
of magnitude for any theory in which the CP-violating part 
conserves hypercharge. us 

4. It is easy to see that if there is a spontaneous breaking 
of CP-symmetry, that is, there exists an operator W 
ESU(N) X SU(N) (which in general does not leave the vacu
um unchanged) such that jy~o is invariant under the ex
tended CP-operation defined by W(CP)W -1, then jy~o 
belongs to the orbit of an jy B invariant under the usual CP
transformations defined in Eq. (45) and W carries jyB in 
jy~o. (Obviously the CP-symmetry violating part has the 
vacuum symmetry in the E = 0 limit.) 

In this case even if all d j in ~ B are zero we obtain do j 
not equal to zero in jy~ o. However the parameters in jy~ 0 

are not independent; they satisfy the relation 

1m detvo = 1m detv = O. 

This implies that the order of magnitude of the CP-violating 
effects are directly related with that of the parameters COj in 

,W'~o· 
For the N = q = 3 model, the last equation implies the 

relation d 60 = ~ (2c6o - c6s - C63) and one can conclude 
that, to the extent that perturbation theory about chirallimit 
is adequate for order of magnitude estimations, the mecha
nism of spontaneous CP-violation in the SU(3) X SU(3) 
models give absurdly large effects.' 

Similar relations and conclusions immediately follow 
for the N = 4, q = 4,3 models. 

5. Even though the problem studied here is not formu
lated as an extremum problem for some SU(N) X SU(N) in
variant functions, the approach of Michel and RadicatP oc
curs in the E = 0 limit. 

The arguments which extremizes such invariant func
tions must satisfy some simple algebraic equations in the 
symmetric algebras and belong to the critical orbits. The 
algebraic technique of Michel and Radicati had been used 
for determining the Hamiltonians /It" B associated with the 
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"directions of breaking" of the symmetries SU(3) X SU(3)5.10 
and SU(4)XSU(4),l2,1l A further analysis of the same prob
lem from the point of view of orbit structure will be pub
lished in a forthcoming paper. 
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Differentiable manifolds and the principle of virtual work in continuum 
mechanics 

Marcelo Epstein and Reuven Segev 
Department 0/ Mechanical Engineering, The University o/Calgary, Calgary, Alberta, Canada 

A material body is conceived in terms of a global and a local model, the compatibility of which is 
shown to imply a generalization of the principle of virtual work. The classical notion of stress 
appears as a particular case of the force associated with the local model when an affine connection 
is specified in the physical manifold. 

1. INTRODUCTION 

The last two decades have witnessed a revival of classi
cal particle mechanics 1.2 which can be characterized by the 
emphasis placed on the geometrical structure underlying the 
description of physical phenomena. The purpose of this pa
per is to present the foundations for a similar approach, in 
terms of differentiable manifolds, in continuum mechanics. 
Since our intention is to explore the geometrical structure of 
the basic variables, in particular the idea of stress, we limit 
ourselves to statics, leaving a more embracing treatment for 
future work. 

Unlike the case of particle mechanics, where the idea of 
a configuration manifold is a direct reflection of the intuitive 
notion of the degrees of freedom of the system, the situation 
in continuum mechanics is more involved in two senses. 
Firstly, the configuration manifold of the body conceived as 
a collection of material particles, is infinite dimensional. Sec
ondly, and more important, in order to introduce the struc
tural properties of the medium, it becomes necessary to view 
the body not merely as a collection of points, but also as a 
collection of neighborhoods. Thus, the material body is actu
ally described not just by one, but by two models which we 
call the global and the local models, respectively. Mathemat
ically speaking the local model is based on the tangent bun
dle of the original body, conceived in the global model as a 
collection of particles. Once the models are defined, each 
with its own infinite dimensional configuration space, the 
concepts of virtual displacements and forces for each model 
are introduced in a natural way as elements of the tangent 
and cotangent bundles of their respective configuration 
spaces. 

A key notion in this approach is that of the compatibil
ity between both models. As it is shown in Sec. 4, such com
patibility entails, in addition to the geometric compatibility, 
the statical compatibility of forces, which turns out to be the 
analog of the principle of virtual work in the traditional 
formulation. 

The concept of force associated with the local model, as 
defined in Sec. 3, results in a generalization of the idea of 
stress. To explore under which circumstances such a force is 
indeed derivable from a stress in the traditional sense, Sec. 5 
presents the important particular case in which the physical 
space is endowed with an affine connection (whose meaning 
should be clarified for any particular problem being treated). 
In such a case, the induced decomposition of the double tan
gent bundle into horizontal and vertical components, allows 

the expression of the local force in terms of linear automor
phisms of the tangent spaces. This results in the explicit ex
pression of the principle of virtual work in terms of an equi
librium equation as in the conventional treatment. 

2. THE GLOBAL MODEL 

In this work we assume that S, the physical space in 
which physical events take place, is a fixed m-dimensional 
differentiable manifold. 

A body B can be regarded as an n-dimensional differen
tiable manifold whose points are referred to as "material 
points". We will restrict our attention to bodies satisfying 
the additional conditions: 

(Bl) B is orientable; 
(B2) B can be covered by an atlas consisting of only one 

chart; 
(B3) n<m. 
Bodies manifest themselves through their configura

tions in the physical space. A configuration K is an 
immersion 

K:B-S. (1) 

Obviously K(B), the image of Bin S, satisfies B 1, B2, and B3. 
For a given body B, the set 

(2) 

of all its configurations, when appropriately given the struc
ture of an infinite dimensional manifold, is called the con
figuration space. 

Consider now the "tangent bundle" TQ of the configu
ration space. A typical element 8KETQ is a map,,4 

15K: B--+TS, (3) 

defining a configuration K by 

7S °DK=K, (4) 

where 7s denotes the natural tangent bundle projection. 
[The composition DKOK- 1 defines a vector field on K(B ).] Tra
ditionally, 15K is referred to as "virtual displacement". 

Consider an elementfin the "cotangent bundle" T *Q of 
the configuration space. The evaluation offat a virtual dis
placement 15K is known as the "virtual work of the forcef". 

The foregoing formulation, which will be referred to as 
the Global Model, is analogous to its counterpart in the me
chanics of particles, with the difference that in our case the 
configuration space is infinite dimensional. 
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3. THE LOCAL MODEL 

The structural properties of the body are usually repre
sented by a relation which expresses the behavior of a materi
al point as determined by its neighboring points. In order 
that such a relation can be given, a different description of 
the configuration and the virtual displacements of the body 
is necessary. In a formulation of this kind the body will be 
regarded as a collection of neighborhoods, and notions such 
as configuration, virtual displacements and forces will ac
cordingly apply to this collection. A neighborhood of a ma
terial point will be modelled mathematically by the tangent 
space at this point. This model of a body as a tangent bundle 
will be referred to as the local model. 

A local configuration is an immersion 

x:TB---+TS, such that 7s 0 X = K 0 7B for some K, (5) 

and the local configuration manifold, R, is defined similarly 
to the global configuration manifold as 

R = [X: TB---+TS J. (6) 

A local virtual displacement will be an element tJXETR and, 
as in the previous model, it can be identified with the map 

tJX: TB-+ TTS. (7) 

Similarly, a local force is an element (TET * R and the virtual 
work is the evaluation of (T at tJX' Note that the local force (T 
is a generalization of the classical notion of stress. 

4. COMPATIBILITY OF THE MODELS 

In this section we formulate the conditions that the lo
cal configuration, local virtual displacements, and local 
force have to satisfy in order that they be compatible with 
their counterparts in the global model. 

We say that a local configurationx is compatible with a 
given global configuration K if 

X= TK, (8) 

where TK denotes the tangent map to K. 
In order to define compatibility of virtual displace

ments the following should be noted: 
(i) If the local configuration X is compatible with the 

global configuration K, we have 

i/stJX = T7s(TtJK), Tis(tJX) = 7rs (TtJK), (9) 

where 

in,:TTS-+TS, 

is the natural tangent bundle projection of TTS, 

T8K:TB_TTS, 

is the tangent map to is and 

Tis:TTS-TS, 

is the tangent map to the natural projection 7 s ; 

(10) 

( 11) 

(12) 

(ii) If (x, a, b, c) is the representation of uETTS under 
the chart a, we can define the canonical involution on TTS 

OJ:TTS_TTS, (13) 

by defining its local representative OJa with respect to the 
manifold chart a as 

OJ" (x,a,b,c) = (x,b,a,c). (14) 

1244 J. Math. Phys., Vol. 21, No.5, May 1980 

It can be shown,5 that the canonical involution is inde
pendent of the manifold chart. 

With these preliminaries in mind, we say that the local 
virtual displacement tJX is compatible with a given global 
virtual displacement tJK if 

tJX = OJ 0 TtJK. (15) 
K 

B .S 
iBt~ t 7 s 

TB X ------=-- TS 
~x tiTS 

--"TTS 

Now that the tangent vectors to the respective configu
ration manifolds are comparable, the compatibility of the 
covectors can be established using the result of their evalua
tion on vectors. Thus, we say that a local force (T is compati
ble with the global force/if 

u(tJX) = /(tJK) , (16) 

for every compatible pair tJX, 8K. 
This condition is a generalization of what is classically 

referred to as the principle of virtual work. 

5. EXAMPLE 

In the particular case when an affine connection 'V is 
specified in the physical manifold S, it will be shown that the 
local force (T can be represented by the classical local stress.6 

We will also give the conditions under which the local stress 
is compatible with a given global force of a special traditional 
type. In the sequel, we assume m = n. 

A vector uET" TS is called vertical if it is tangent to the 
submanifold Tr,vS. It can be proven that U is vertical iff 

TisU = 0, (17) 

and we can define the vertical subspace Vu of T" TS as 

V" = 1 UET" TS; TisU = OJ. (18) 

Given a connection on S, a unique horizontal distribu
tion h can be determined. For VETS, h (v)El/u is a unique 
vector where Hu C Tu TS is the horizontal subspace of T" TS. 
Thus, once we have a horizontal distribution, the tangent 
space Tu TS is the direct sum of H" and Vv and each vector 
can be decomposed uniquely into horizontal and vertical 
components. A map 

(19) 

can be defined that will give a unique vertical vector in Tv TS, 
and thus, a vector tangent to Tr,vS, by 

v(u) = U - h (TisU), (20) 

As v(u) is a tangent vector to the vector space Tr,"S we can 
identify it with a vector 

(21) 

where i is the canonical isomorphism between a vector space 
and its tangent space at a point. 

With these preliminary ideas we can define the map 

iJ.X:TB-TS, (22) 

by 

iJ.x = i 0 v 0 tJX' (23) 
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The following results should be noted: 
(i) One can easily prove that for compatible virtual 

displacements 

~X(A) = i 0 v 0 oX(A) 

= V TK(A /)K, for all AETB; (24) 

(ii) The affine connection V x Y in a manifold is linear in 
Xby definition; thus, we can define a linear differential oper
ator 

by 

dY:TM-+TM, 

dY(X) = V xY; 

(iii) Using (i) and (ii) we can write 

~X=i 0 v O bX 
= dbKo TK. 

(25) 

(26) 

(27) 

Once ~X is defined so as to represent the local virtual 
displacement, we can use the fact that 

~Xx : TxB-+TK(x) S, (28) 

~Xx being the restriction of ~X to TxB, is a linear transfor
mation, in order to define the appropriate co vector. A natu
ral choice is the restriction u x to T «(x) S of a linear map 

u:X(TB)-+TB, 

satisfying 

T8 0 u(a) = K·
1 

0 Ts(a), for all aEX(TB), 

which is known as the local stress (1st Piola-Kirchhoff 
stress). We can now define the local force by 

(29) 

(30) 

(31) 

where Os is a volume element in S. Using Eq. (29) we have 

(T(bX) = 1 (u., (dbK OTK)x )Os 
«(B) 

=( (TKOUx,dbKx)Os, (32) 
L(B) 

The composition TK 0 u will be denoted by s and will be 
referred to as the Cauchy stress. 

* Let (Tk S, S, 1T~) denote the bundle of k-forms on S. 
We can associate a map 

s:TS-+T(m -I) oS, 

satisfying 

1T~' -10 sea) = Ts(a), for all aETS, 

with each s, by the relation 

SOOK=(SOOK).J°s, 

by 

Define now the divergence operator 

divs: TS-+T m"s, 

(33) 

(34) 

(35) 

(36) 

(37) 

where d denotes exterior differentiation. This definition is 
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valid as all terms are proportional to the volume element in 
S. 

Using the above definition, Eq. (35) and (37), we have 

cr(oX) = ( (s-" dbKx )Os 
L(B) 

= 1 (d 0 s obK - divs OOK). (38) 
K(B) 

With the compatibility condition for forces, Eq. (16), 
and Stokes' theorem we obtain 

/(OK) = ( SO OK -1 divs 0 OK. 
JOK(B) «(B) 

(39) 

We assume now, as is usually done, that the global force 
functional/can be represented in terms of two given 
mappings 

b:X(TB)-+Tm'S, (40) 

f:X(TJB )-+T(m ··1) ·s, 

satisfying 

as 

1T';Ob = T S' 

m -I ot~ 1Ts = 7 s , 

(41) 

(42) 

(43) 

/(OK) = ( b 0 15K + ( to 15K. (44) 
L(B) JaK(B) 

As Eqs. (41) and (46) hold for every virtual displace
ment we can write 

divs + b = 0, on K(B), (45) 

and 
A 

t = S, on JK(B). (46) 

The last two equations are customarily known as the 
equations of equilibrium. 
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The propagation of a weak wave in a relativistic flow of a dissociating gas has been studied. The 
velocity of propagation of a relativistic weak wave has been determined. The fundamental growth 
equation governing the growth and decay of the wave has been obtained and solved. The 
relativistic results have been shown in full agreement with earlier results of classical gas dynamics. 
The problem of breakdown of weak discontinuities has also been solved. The critical time tc is 
determined when the breakdown of the wave and the consequent formation of a shock wave occur 
due to nonlinear steepening. It is concluded that there exists a critical amplitude of the wave such 
that all compressive waves with an initial amplitude greater than the critical one will break down 
after a finite time tc and a shock-type discontinuity will be formed, while an initial amplitude less 
than the critical one will result in a decay of the wave. On the other hand, an expansion wave will 
always decay and will ultimately be damped out. The global behavior of the wave amplitude has 
also been studied. It is concluded that the dissociative character of the gas is to increase the 
critical time. The relativistic and dissociative effects on the global behavior of weak 
discontinuities have also been discussed. 

I. INTRODUCTION x" = x k (X',X4), X4 = ct, 

A great deal of attention has been focused towards the 
relativistic study of weak discontinuities. Eckart' and Taub2 

presented the theoretical foundations of relativistic shock 
waves. The relativistic theory of propagation of weak waves 
in a perfect gas has been treated by SainP, Coburn', Kanwal' 
and McCarthy". Grot and Eringen7 formulated a general 
theory of relativistic continuum mechanics. The main aim of 
this paper is to develop a relativistic theory for the growth 
and decay of weak waves propagating in a simple dissociat
ing gas of Light hill's model. 8 In the temperature range where 
dissociation is important; the contribution of energy from 
electronic excitation and ionization are both assumed negli
gible. In a dissociating diatomic gas the state of the reacting 
mixture is uniquely described by three independent param
eters such as the pressure p, the temperature T and the de
gree of dissociation a. We assume that the molecular effects 
leading to viscosity, diffusion and heat conduction are negli
gible. A simple dissociating gas is defined as a mixture result
ing from a dissociation reaction in a symmetrical diatomic 
gas A 2' each A2 molecule being made up from 2A 1 atoms. 
The reaction is 

where t is the time and c is the constant velocity oflight in 
vacuum. Let us introduce the concept of an Einstein-Rie
mann space V4 by four coordinates xa = (x" ,X4) with a 
metric 

" A, + X+=± 2A1 + X, 
- ", 

where the species X can be either A2 or A 1 and kf and kr are 
the reaction rate constants for the forward and reverse 
reactions. 

II. BASIC PRELIMINARIES 

The notation used in this paper is, with a few minor 
exceptions, identical with that employed by Grot and 
Eringen. 7 

Let X" be the rectangular coordinates of a material 
point in a three dimensional space. The motion of a material 
body can be described by a new set of coordinates x" given by 

ds2 = ra{Jdxa dx f3. 

The metric r"f3 has constant components given by 

The world velocity can be expressed as 

U"(xf3) = (3 (v" Ic,l), UaUa = - 1, 

where 

(2.1) 

(2.2) 

In general, the range of a Latin index is I, 2, 3 and that of a 
Greek index is 1, 2, 3, 4 unless stated otherwise. A dummy 
index will usually imply summation. 

The invariant derivative of any function ¢; (x") can be 
expressed in the form 

(2.3) 

The equations governing the flow of an ideal dissociating 
gas8 are 

(pua),a = 0 (equation of continuity), 

T~,! = 0 (equation of energy-momentum 

balance), 

Da = (4(3lc)! pD 6kr(1 + a)IR 2 T Jl 
x! pAl - a)exp( - TdlT) -pa2 1 

(rate equation for dissociation), 

(2.4) 

(2.5) 

(2.6) 

1246 J. Math. Phys. 21 (5), May 1980 0022-2488/80/051246-05$01.00 @ 1980 American Institute of Physics 1246 



                                                                                                                                    

where 

T a {3 = O)uaU{3 + psu{3, 

sa{3 = uaU{3 + 8afJ, 

0) = pc2 (1 + p/(y, - 1) pc2 + aDo/c2J, 

h = (4 + a)RT + aDo, 

p = (1 + a)RT. 

(2.7) 

{2.S) 

Here TaI3,p, Do, r(" R,Pd and Td respectively represent the 
energy-momentum tensor, the proper material density per 
unit volume in the instantaneous rest frame, the dissociation 
energy per unit mass, the effective heat exponent for a disso
ciating gas, the gas constant for the mixture, the characteris
tic density and temperature for dissociation. Although Pd is 
a function of T, it has been seen that the variation of Pd Over 
the temperature range from 1000 OK to 7000 OK is very 
slight. Hence for all practical purposesPd can be regarded as 
a constant, as it leads to negligible errors. The specific inter
nal energy e consists of translational, rotational and vibra
tional energies, i.e., 

e = e'r + ern' + evib = (3/2)RT + RT + RT. 

The ideal dissociating gas is defined by LighthiII8 as ha,ving 
the vibrational mode of its diatomic components always 
"half excited," whereas the translational and rotational 
modes are fully excited." It follows that 

e = 3RT, c" = 3R, Y = (c li + R )/cv = 4/3. 

Thus for an ideal dissociating model of a diatomic gas, the 
specific internal energy per unit mass can be written in the 
form9 

e = p/(Yc - 1) P, Ye = (4 + a)/3, 

when a = 0, all the results reduce to those for a perfee t gas 
with Y = 4/3. In this case the rest specific internal energy is 

0) =pc2 + 3p, 

where 3p is the specific internal energy per unit volume for a 
perfect fluid with r = Ye = 4/3. This case corresponds to a 
photon gas at very high temperature in cosmological mod
els. 1O For a non dissociating gas a = 0 and Do = 0 and hence 
the rate Eq. (2.6) is satisfied identically. The two special 
cases for nondissociating and nonrelativistic limits will be 
discussed in Sec. VII of this paper. 

From (2.4) and (2.5) we get 

pO'c2DU" + safJ P,{3 = 0, 

(pO'c2 U{3),{3 - U{3 P,{3 = 0, 

where 

0'= 1 +h/c2
. 

(2.9) 

(2.10) 

(2.11) 

Equations (2.9) and (2.10), respectively, represent the 
conservation of momentum and energy in relativistic flows 
with dissociation. In view of(2.3) and (2.4), Eq. (2.10) can be 
expressed in the form 

pDh -Dp=O. (2.12) 
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Applying (2.7) and (2.8) in (2.12) we get 

Dp - Ye(p/p)Dp + F(p,p,a) = 0, 

where 

(2.13) 

F(p,p,a) = (f3 /c)! 4pD 6kJ3R 2T Jl! pDo(1 + a)2 - 3p 1 
X f Pd(1 - a) exp( - T,JT) - pa2 1· 

III. COMPATIBILITY CONDITIONS ON A TIMELIKE 
HYPERSURFACE 

Let ~ (x fJ) be a regular surface in the V4 space wi t h 
parametric equations 

xfJ = "'PCb 1,b 2,b 3
), (3.1 ) 

where b 1, b 2 and b 3 are parametric coordinates of the sur
face. The vectors x:~ , where semicolon denotes covariant dif
ferentiation with respect to b T, are tangential to ~ (x 1.1). The 
surface ~ (x 1") is called a time1ike hypersurface, if N a is a 
spacelike vector, i.e., 

Nu N U = 1, 

where Nu are the components of the unit normal vector to 
the surface. The timelike hypersurface ~ (x fJ) may be regard
ed as a surface S (t ) in space-time for which the parametric 
equations are 

(3.2) 

Ifni are the components of the unit space normal toS (t) and 
G is its speed of propagation, then we can write 

Nu=iJ!n"G/c], No =iJ!ni,-G/cl, 

where 

iJ = (1 - G 2/C2) - 112. 

(3.3) 

Let H be the region of the Einstein-Riemann space V4 

which is divided by the time1ike hypersurface~ (x fJ) into two 
regions HI and H 2 • Let any flow parameter Z with its first 
and second derivatives be continuous in HI + ~ and 
H2 +~, but suffers a discontinuity in its first and second 
derivatives across ~ (x 1"). Such a discontinuity is called a 
"weak discontinuity" or "weak wave." If [Z] denotes the 
jump in Z across ~ (x 1"-), the geometrical compatibility con
ditions to be satisfied across ~ (x It) are ll 

[Z,u] = CNu' (3.4) 

[Z,u{3] = CNuN{3 + 2N(ax;)C;T - Cbr,px[ax%p (3.5) 

where 

C=[Z ]Nac=[z ]N"N{3 
,cr. ,0/3 ' 

bT,p = Nax~"" x; = r a(3aT"'x';p, 

M(a{3) = !(Mu{3 + M{3,,)' aa{3 = rT",X~1X~. 

IV. VELOCITY OF PROPAGATION OF WEAK WAVES 

Using (3.4) and the identity 

aT,px~x~ = r a{3 _ NUN{3, 

we get 

[DZ] = V [Z,{3 N{3] + 8[Z], (4.1) 
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where 

(4.2) 

Takingjumps in (2.4), (2.6), (2.9), and (2.13) and making use 
of(4.1) we get 

Vv + pA aNa = 0, 

VE=O, 

1 
pUVA" + -flNf3S af3 = 0, 

c2 

P Vfl - Ye - Vv = 0, 
p 

where 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

A"= [U fl ]Nf3, V= [p,f3]Nf3, fl= [p.{3]Nf3, 
(4.7) 

V=U"N", E=[a.f3 ]Nf3. 

From the above set of equations, we can deduce 

fl = a;' v = - a~pA IV, A = A aNa, 

where 

a~ = Ye P /p 

(4.8) 

is the effective velocity of sound. Multiplying (4,5) by N" and 
using (4.3), we get 

V 2 = a;'lc2(u _ a~/c2). 

Using (2.1) and (3.3) we get 

V = - /3iJGo/c, 

(4.9) 

(4.10) 

where Go = G - Vi ni is the local speed of propagation of the 
surface S (t) in space-time, which coincides with G in the 
instantaneous rest frame. In view of (3.3), (4.2), and (4.10) 
we get in the local instantaneous rest frame 

c8[Z 1 =iJ 2 ~ [Z], 
Ot 

(4.11) 

where 810t is Thomas' delta derivative. 12 From (4.9) and 
(4.10) we get 

(4.12) 

In an instantaneous rest frame, (4.12) assumes the form 

(4.13) 

The velocity of propagation Go given by (4.12) in an instan
taneous rest frame is in full agreement with earlier results of 
Ram and Gaur l

] and McCarthy6 in particular cases. 
If the medium is in a uniform state of rest ahead of the 

wave front and if the motion is studied in the rest frame of 
this uniform state, the speed of propagation Go is a constant. 

V. THE GROWTH EQUATION 

In this section we shall derive a fundamental growth 
equation which will govern the growth and decay of a weak 
discontinuity during its course of propagation. The medium 
ahead of the wave is assumed uniform and at rest. 

Now we define the amplitude b (t) ofthe wave~ (x 1') by 
the relation 

* b = CA = CA aNa = CA aN", (5.1) 
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* where N" = saf3Nf3 are the spacelike components of N a . 

Differentiating (2.4), (2.9) and (2.13) with respect to xf3 
and taking jumps across ~ (x ") with the help of (3.4) and 
(3.5) we get 

p{u+a; (1 ;2;2)} b(A) +pv{u-a; (1 ;2;2)} 
Xi"N _pa2 (1 + V2) x T A a -pd "8(N ) 

a e Ve2 a ,r a 

where 

/3 4 D2K 
L = - P 0 J U pDo(l + a)2 - 3pJ 

C 3R2T~ 

{ ( - Td) Td} 
X Pd(1 - a) exp ---:r- PT 

- 3{ pAl - a) exp (-;d) _ pa2}], 

/3 4D6K, [{ (- Td) >} M=, - Pd(l-a)exp -- -pa-
c 3R 2T 1 T 

X I 2pDo(1 + a)2 - 3pJ - pa2 1 pDo(1 + a)2 - 3pJ 

- I pDo(1 + a)2 - 3pJ 

x{Pd(1-a)exp (-;d); I]· 
In view of (4.9), the coefficient of i aNa in (5.2) vanish

es and, therefore, we get the following equation to be satis
fied by A: 

( a
2

) a
2 {* *} p 2a - c~ b(A) - ~ce2 X~N").T + AN"a 

which is the required growth equation governing the global 
behav lor of the amplitude b ( = CA ) of a relativistic wave in 
dissociating gases. In a local instantaneous rest frame for 

*0 
whicb N = (1 + V2)1/2 (ni,O), Eq. (5.3) takes on a particu-

larly ~,imple form 

A ~ - (n - E)b + Bb 2 = 0, 
8t 
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where 

and 

A = Go (2(7 - a;lc2)/2a;(1 - G~/c2), 

B = (Go/2a;)[(Ye + 1)(7 

- P(Yc - 1)/(1 + a) + 2ja;lc2, 

E = u(La; + M)Go/2a:, 

fl= 
1 ani 

---
2 ax' 

Here fl is the mean curvature of the propagating surface S (t ) 
in space-time. 

VI. LOCAL AND GLOBAL BEHAVIOR OF THE WAVE 

In this section we shall study the local and global behav
ior of a weak discontinuity in an instantaneous rest frame. If 
S denotes the distance traversed by the wave along its normal 
trajectory in time t, we have 

8S 
-=Go , 
8t 

(6.1) 

which provides us a relation S = Go t, where Go is the con
stant speed of the wave front propagating in a uniform state 
ahead of it in the rest frame of this uniform state. 

The mean curvaturefl ofthe wave surfaceS (t ) is a func
tion of distance S and has been calculated in the form l4 

flo - KoS 
fl = , 

I - 2floS + K oS2 
(6.2) 

where flo and Ko are the values of the mean and Gaussian 
curvatures of the initial wave front. 

Using (6.1) and (6.2) in (5.4) and integrating we get 

b(S)=boifJ(S) 1+_0 ifJ(S)dS , { 
Bb is }_I 
AGo 0 

(6.3) 

where 

Here bo is the initial wave amplitude at time t = ° and 
k I' k 2 are the principal curvatures of the initial wave front. 

Now we consider the case of a diverging wave for which 
kl and k2 are negative. When bo > 0, the equation (6.3) 
shows that the amplitude b (t ) will continuously decrease as t 
increases and tends to zero as t_ 00. Under these conditions 
a weak wave will decay and will be damped out ultimately. 

When bo < ° (the case of a compressive wave), there 
exists a critical value be of Ibo I given by 

be = {; iif ifJ (t) dt} I (6.4) 

such that 

(0 when Ibn I <be' lim b(t)=O, 
t- .oC 

(ii) when I bo I > be' there exists a finite critical time te 
given by 
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(6.5) 

such that 

lim I b (t ) I = 00. 
t--z. 

In this case there shall occur a breakdown of a weak wave at 
time t = tc and consequently a shock wave will be formed at 
the cusp of intersecting characteristics. 

In order to study the effects of dissociation on the be
havior of a weak wave, we observe that 

db A i oo 

_e = _ tifJ(t)dt>O, 
dE Bb~ 0 

(6.6) 

dt 1 If, _e = __ tifJ(t)dt>O. 
dE ifJ(te) 0 

(6.7) 

The Eqs. (6.6) and (6.7) show that the dissociation effects 
will delay the process of shock formation and thus it has a 
stabilizing effect on the weak wave propagation. 

VII. SPECIAL CASES 

For a non dissociating perfect gas model (a = 0, Do = ° 
the solution (6.3) for the wave amplitude b (s) reduces to 

b = bo(l-2floS + koS 2) e, 

X {I + cAl f (1 - 2floS + koS 2) - e, dS} .. I, (7.1) 

where 

c, = (1 + 27)(2 + 57) - " 

C2 = a - IG + 47)(1 + 27)(2 + 57) - '(I + 37) - 1/2. 

Here 7 = a2 1 c2 is the dimensionless parameter of relativistic 
effects and varies from zero to one where a = (4pI3p)1/2 is 
the sound speed for a perfect gas with y = 4/3. 

For a plane wave (fl = 0), the solution (7.1) assumes a 
simpler form, 

b=bo{1 +c2 boS}-·', (7.2) 

which agrees with the result of McCarthy.6 
The solution (7.2) suggests that the weak expansion 

waves (bo > 0) will decay faster under relativistic effects, 
since C2 lies between 1.17 a-I and 1.457 a - '. For compres
sive waves (bo < 0), the critical time ( for the shock forma
tion is given by 

te = (l + 37)(2 + 57)1 I bo 1(713 + 47)(1 + 27), 

which shows that te increases with 7. When 7 = ° for nonre
lativist case, C I =! and c2 = 716a. This case corresponds to 
a perfect gas model with y = 4/3 in classical gas dynamics. 

For nonrelativistic case of ideal dissociating gas model, 
the solution (6.3) for a plane wave reduces to 

b(s)=boe- ES {1 +(1_e- ES )(y,. +1)bo/2Eac }-J ,(7.3) 

which suggests that b (S) decreases monotonically to zero for 
bo > 0. On the other hand, there exists a critical amplitude 
be = 2Eae (Ye + I) -I such that 

(i) when Ibo I <be' lim, .. "" b(s) =0, 
(ii) when I bo I > be' lim,." b (s) = 00, 
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where 

Sc = act" = log{l - bel Ibo I }-- liE. 

This shows that under dissociation effects all compressive 
weak waves will not terminate into shock waves, whereas for 
a nondissociating perfect gas model all weak compressive 
waves terminate into shock waves. The effects of dissocia
tion playa stabilizing role in the sense that they delay the 
shock formation by increasing t". 
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In this paper we study the scattering of plane electromagnetic waves off a cylindrically confined 
cold plasma. The plasma density is taken to be overdense and very steep. This causes the cutoff 
radius, ro, to be within a fraction of a wavelength from the cylindrical boundary. For simplicity, 
we assume two types of incident polarization. In both cases scalar second-order elliptic partial 
differential equations describe the fields. These problems are studied in the asymptotic limit 
a w/c~ 00 with 0 < 1 - ro = O(c law). Here a is the radius of the cylinder, w is the frequency of 
the incident radiation, and c is the velocity of light in free space. We develop an asymptotic 
technique which reduces the partial equations to ordinary differential equations within the 
plasma. Our method is a blend of geometrical optics and boundary layer techniques. Outside the 
plasma we use straight geometrical optics to describe the scattered field. 

1. INTRODUCTION 

The conversion of electromagnetic energy into kinetic 
energy is a major factor in the laser fusion concept. 1 As a first 
step to understanding this process, one linearizes the perti
nent equations, neglects ionic motion, and assumes a cold 
plasma. The ensuing equations give rise to a linear scattering 
problem. This problem has been extensively studied when 
the plasma is planar. 2,3 Recently, the case of a spherical plas
ma target has received considerable attention. I ,4 The interest 
in this geometrical configuration arises from the fact that the 
plasma pellet is initially spherical in shape. 

The scattering of plane waves off cylindrically confined 
plasmas has likewise received a large amount of attention. 5,6 

The reaSOilS for considering this geometry are twofold: Cy
lindrical plasmas can be made in the laboratory and the cyl
inder can be thought of as a compromise between the spheri
cal and planar shapes. 

We took the later view and studied6 the scattering prob
lem for an overdense plasma column of radius a. In that 
work the plasma density was assumed to be quadratic in the 
radial variable r' = ra. (here r is the dimensionless variable.) 
Moreover, the frequency of the incident plane wave (w) was 
fixed to insure the vanishing of the refractive index on the 
cylinder r = ro < 1. We applied the method of geometrical 
optics to approximate both the scattered field and the field 
within the plasma in the limit as (aw/c)~oo (where c is the 
velocity of light in free space). These results become invalid 
when 0 < 1 - ro~O (c/wa). This condition is satisfied when 
the density profile is sufficiently steep. Such profiles occur 
when an infrared laser initially irradiates a plasma target. I 

In this paper we shall assume that the profile is steep 
enough to give 1 - ro = 0 (c/wa). We shall again fix wand 
seek asymptotic approximations to the fields in the limit as 
(aw/ c)~ 00. To simplify our analysis, we shall consider only 
two types of incident polarization. The first choice is to ori
ent the incident electric field parallel to the axes of the cylin
der (the E problem). The second choice is to orient the inci
dent magnetic field parallel to the axis of the cylinder (the B 
problem), The mathematical formulation of these problems 

gives rise to scalar second-order elliptic partial differential 
equations which describe the appropriate fields. 

In this work we develop an asymptotic scheme which 
exploits the smallness of I - ro and the largeness of (aw/c). 
Our method reduces the partial differential equations into 
ordinary differential equations within the plasma. It is basi
cally a blend of geometrical optics 7 and boundary layer tech
niques.\! Outside the plasma the scattered wave is approxi. 
mated using straight geometrical optics. 

The first part of this paper is concerned with the E prob
lem. Sections 2 and 3 are devoted to the calculation of the 
electric field, both interior and exterior to the plasma. We 
find that the magnitude of the scattering cross section is 
identical to the magnitude of the cross section for a metal 
cylinder of radius a. The second part is concerned with the B 
problem. In Sec. 4 we compute the magnetic field in the 
entire plane. Our calculations show that the amplitude of the 
scattering cross section is the same as in the E problem. The 
phases are different. Section 5 is concerned with the effect of 
damping on the cross section. We find that its magnitude IA I 
is reduced by an amount proportional to the energy ab
sorbed. Moreover, our numerical computations show that 
IA I has a minimum at a certain angle. A maximum amount 
of energy is absorbed by the plasma at this angle. These re
sults agree with those given in Ref. 9. 

2. FORMULATION OF THE EPROBLEM 

A high frequency plane electromagnetic wave impinges 
upon a cylindrically confined "cold" plasma of infinite ex
tent and scatters from it. This cylinder is circular in cross 
section with radius a. We further assume that the incident 
radiation is polarized with the electric field parallel to the 
axis of the cylinder. It follows from this assumption and the 
equations governing the plasma 10 that the time harmonic 
electric field u exp( - icut) remains in this direction and sat
isfies the Helmholtz equation 

(2.1) 
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In this equation, k = k 'a and the index of refraction n is 
given by!O 

(2.2) 

where {U is the frequency of the incident plane wave, e is the 
charge of an electron with mass m, r is the radial variable, 
and N (ar) is the charge density. Implicit in Eq. (2.2) are the 
assumptions that (U is large enough to neglect ionic motion 
and the density is dependent only upon r. 

We now assume that the plasma is overdense, is con
fined to the region O~r~ 1, and is very steep. These assump
tions lead us to make the following hypotheses about nCr): 

(HI) nCr) = 1, r,;;< 1, 

(H2) nero) = 0, 0 < 1 - ro = 0 (11k), 

(H3) n'(ro) = mk, m = 0(1), 

(H4) n(/)(ro) = o(k I). 

These conditions are met when an infrared laser initially 
irradiates an overdense plasma target.! 

To complete the mathematical statement of this prob
lem, we must impose further conditions. First we demand 
that u and Vu are continuous everywhere. Secondly, the 
scattered field must satisfy the radiation condition. Finally, 
we choose the x axis to be parallel to the incident wave vector 
k' and the z axis to be that of the cylinder. 

We shall now suppose that k> 1, which corresponds to 
the physical situation mentioned above. Thus, we seek an 
asymptotic approximation of u as k-- 00 • At first this seems 
to be a natural setting for the method of geometrical optics. 
However, the cutoff radius is a fraction of a wavelength away 
from the boundary of the plasma (H2). Thus, geometrical 
optics cannot be used directly to determine an asymptotic 
approximation of u within the plasma. 

3. AN ASYMPTOTIC METHOD 

The largeness of k and smallness of 1 - ro will now be 
exploited to change Eq. (2.1) into an ordinary differential 
equation. The field within the plasma is assumed to be of the 
form 

u(r,O,k) = eik 
cosli [r/J (r,O) + 0 (11k)], (3.1) 

as k __ 00, where the boundary layer variable r is defined by8 

r = km(r - ro ), (3.2) 

and 0 is the polar angle. The index of refraction within the 
plasma is expressed in terms of r as 

nCr) = r + 0(1), (3.3) 

as k_oo. This follows from Eqs. (H2)-(H4) and from ex
panding n in a Taylor series about r = roo Upon inserting 
Eqs. (3.1)-(3.3) into Eq. (2.1), it is found that r/J satisfies 

d 2r/J + r(r _ sin20)r/J = 0, (3.4) 
dF 2 

where y = 11m. This is Airy's equation; it arises when a 
plane wave impinges upon a plasma slab l with a linear re
fractive index. 

Outside the plasma column (r> 1) the field is assumed 
to be of the form 
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u = eikx + eik,p(x,y)[A (x,y) + O(lIk)] (3.5) 

as k __ oo . The first term is the incident wave and the second 
is the scattered field. Upon inserting Eq. (3.5) into (2.1) and 
equating the coefficients oflike powers of k to zero, it is 
found that I/J and A satisfy 

VI/J.VI/J = 1 (eikonal equation), (3.6) 

2VA.VI/J + AV21/J = ° (transport equation). (3.7) 

Thus, the scattered field will be approximated by the method 
of geometrical optics. 7 

Now to compute u we must specify boundary condi
tions for Eq. (3.4) and initial data for Eqs. (3.6) and (3.7). For 
a fixed r < ro it follows from Eq. (3.2) that r-- - 00 as k--oo. 
Thus, the limit of r/J as r __ - 00 must be specified. Since Eq. 
(3.4) has one solution which grows exponentially and an
other that decays exponentially!! as r __ - 00, the assump
tion of a bounded solution within the plasma implies 

lim r/J (r) = O. (3.8) 
r- -- 00 

From Eqs. (3.1) and (3.5) and the assumption that u and 
aul ar are continuous at r = 1, it follows that 

l/J(cosO,sinO) = cosO, (3.9) 

1 + A (cosO,sinO) = r/J (l,O), (3.10) 

i cosO + i al/J (cosO, sinO )A (cosO,sinO) = m a~ (l,O). 
ar Jr 

(3.11) 

In deriving Eq. (3.11) a term of order 0 (11k) was neglected 
and rwas set equal to 1 at the plasma boundary. The later 
approximation follows from Eqs. (HI) and (3.3) and intro
duces an error of 0 (11k); we have consistently neglected 
terms of this order. 

From Eqs. (3.6) and (3.9) it follows that 

JI/J (cosO,sinO) = IcosO I. (3.12) 
ar 

When this result is inserted into Eq. (3.11) we find from Eqs. 
(3.10) and (3.11) that 

~~ (1,0) - iYlcosO Ir/J (1,0) = iy(cosO - IcosO I), (3.13) 

A (cosO,sinO) = r/J (l,O) - 1. (3.14) 

Equations (3.4), (3.8), and (3.13) are readily solved to give 

2iy cosOA;( - S) 
r/J(r,O) = , (3.15) 

iycosOA;( - Sl) - r/3A;( - Sl) 

where S = r/3(r - sin20), Sl = r/3COS20, Ai is the Airy 
function, and Ois in the interval [1T12,31T12]. When 10 I ~ 1T/2, 
the boundary condition (3.13) becomes homogeneous; we 
prove in Appendix A that r/J (r,O) is identically zero under this 
condition. 

Combining Eqs. (3.14) and (3.15) gives the initial value 
of the scattered wave as 

A (cosO,sine) =Ao(O) 

iy cosOA i( - Sl) + r/3A ;( - Sl) 
= , (3.16) 

iy cosOA;( - Sl) - r i3A ;( - Sl) 
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for 1T/2<,()<,31T12 and 

A (cosO,sinO) ~Ao(O) = - 1, (3.17) 

for 10 I <'1T12. 
Equations (3.9), (3.16), and (3.17) are the initial data 

required to solve the eikonal and transport equations. These 
equations are easily solved by making the following observa
tion: The initial phase given by Eq. (3.9) is the same phase 
that would occur if a plane wave impinged upon a metal 
cylinder of unit radius. Thus, the reflected rays and phase of 
our plasma problem are identical to those of the irradiated 
metal cylinder. Since the rays determine the expansion rati07 

which is proportional to any solution ofEq. (3.7), our ampli
tude is given by 

A (x,y) = - AoCO )Ac(x,y), (3.18) 

where Ac (x,y) is the amplitUde for the metal cylinder prob
lem. For completeness we compute !{;, the rays, and Ac in 
Appendix B. We state here the far field result 

u(x,y) ____ eikx + S (<P )(eikr Ir1/2) (3.19) 

as r-oo, where S (<P) is defined by 

S(<P) = +(~sin ~)1/2Ao(1T12+ ~) 

X exp( - 2ik sin ~). (3.20) 

and <P is the polar angle of the far field point. 
The far field result becomes inaccurate as <P approaches 

zero; the observation point then lies in the shadow region 
which is devoid of scattered rays. It is easy to deduce from 
Eqs. (3.9) and (3.17) that u = 0 in this region. From Eqs. 
(3.16) and (3.20) it follows that the magnitude of S (<P) is 
given by 

IS(<P)I = [!sin(<P12)] 112, (3.21) 

which is the same as the result for a metal cylinder. However, 
the phase is different. We have evaluated Eq. (3.16) numeri
cally for y = 1,2 and plotted the phase of Ao[(1T12) + (<<1> 12)] 
for these cases in Fig. 1. 

4. FORMULATION AND RESULTS FOR THE B PROBLEM 

In this section we shall examine the scattering problem 

~::: 
270 

~~~~~~~-+~~~~~1-~+-+-~ 
20 40 GO 80 ~ 100 120 140 160 180 

FIG. I. The phase of Ao [(17/2) + (t/> 12)] for the E problem with r = 1,2, 
where t/> is the polar angle of the far field point. 
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for a cylindrically confined cold plasma with a different inci
dent polarization. We consider the case where the incident 
magnetic field is parallel to the cylinder's axis. From the cold 
plasma equations 10 we find that the time harmonic magnetic 
field u e - iwt remains in this direction and satisfies 

2 Vu·Vn k 2 \l u - --- + nu = O. (4.1) 
n 

The coordinate axes, boundary conditions, and hypotheses 
on n are the same as in the E problem. 

We again assume that u is given by Eq. (3.1) within the 
plasma and by Eq. (3.5) outside the plasma. When Eqs. (3.1) 
and (3.5) are inserted into Eq. (4.1), we find, as before. that t/J 
and A satisfy Eqs. (3.6) and (3.7), respectively. However, r/J 
must now satisfy 

(4.2) 

The boundary conditions on r/J, t/J, and A are the same as 
before. 

Equation (4.2) arises when an electromagnetic plane 
wave (of a particular polarization) impinges upon a cold 
plasma slab. 3

. '2 It has been approximately solved by Deni
SOV

l2 using asymptotic techniques when y> 1. His boundary 
conditions were Eq. (3.8) andr/J (1,0) = 1. Freidberg, Mitch
ell, Morse, and Rudsinski9 have solved Eq. (4.2) numerically 
and presented the results for y = 1,10. They prescribed r/J at 
r = 1 and used Eq. (3.8). To the best of our knowledge Eq. 
(4.2) cannot be solved in terms of tabulated functions. 

For our particular application, y is 0 (1) and r/J (1,0) is 
unknown. Once r/J (1,0) is obtained, the initial scattering am
plitude is given by Eq. (3.14). We cannot ascertain this infor
mation from the results ofDenisov and Freidberg. However, 
we can deduce two important facts from Eqs. (4.2), (3.8), 
and (3.13). When 10 I <'1T12, the boundary condition (3.13) 
becomes homogeneous and r/J (r,e )=0 (see Appendix C). 
Thus, for this angular range Eq. (3.14) gives 

Ao(O) = - 1, 10 1<,1T12. (4.3) 

We also prove in Appendix C that 

(4.4) 

or equivalently Ir/J (1,0) - 11 = 1. The phase of Ao (0) and 
r/J (l,e) must be determined from a numerical solution ofEq. 
(4.2). 

We have numerically solved Eq. (4.2) using the finite 
difference method. 'l To perform the calculations we chose a 
step size of 1.0/10.5 and replaced Eq. (3.8)byr/J (- 9,0) = o. 
To test the sensitivity of our results to this approximate 
boundary condition we replaced - 9.0 by - 15.0, kept the 
step size fixed, and reran our program. We found that the 
numerical values changed insignificantly. 

We will not present the totality of our numerical results 
here. It is sufficient to state that our results do satisfy Eq. 
(4.4) and give the phase of Ao (0). Since the scattered field is 
computed as before and is given by Eq. (3.20), the phase of 
S (<P) is given by 

ph[S(<P)] = Ph[Ao( ~ + ;) J - 2k sin ~. (4.5) 
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ARG (Ao) 
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360 
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FIG. 2. The phase of Ao[(1T12) + (<1> 12)J for the B problem with r = 1,2, 
where <1> is the polar angle of the far field point. 

The phase of A 0 [(1T12) + (ifJ 12)] is plotted in Fig. 2 for y = I 
and 2. The amplitude of S (ifJ ) is again given by Eq. (3.21); 
this follows from Eq. (4.4). Thus, the cross section S(ifJ) of 
the B problem differs only in phase from the cross section of 
the E problem. 

5. THE EFFECT OF DAMPING 

In this section we briefly discuss the effect of damping 
on the cross section S (ifJ ) of the B problem. The addition of a 
small amount of damping relaxes Eq. (H2) and gives 

nero) = i8, 0 < 1 - ro < 0 (Ilk), (H2') 

where 8 > 0. When this is incorporated into our asymptotic 
scheme, we find that tP satisfies Eq. (4.2) with rreplaced by 
r + i8. In Appendix C we show that the modulus of Ao (fJ) is 
given by 

8 (11tP '112 + rsin2fJ IltP 112z ), 
ylcosfJ I 

IIfl12 = II If(r)l: dr. 
-oo?+8 

When 10 I.;; 1T 12, we find as before that Ao = - 1. 

(5.1) 

Since the cross section hasAo [(1T12) + (ifJ 12)] as a fac
tor, the effect of damping diminishes the amplitude of the 
scattered wave. The bracketed term in Eq. (5.1) is the energy 
absorbed per unit of angle. We have plotted 
lAo [(1T12) + (ifJ 12)]1 for the cases 8 = 0.05 (y = 1,2) and 
{j = 0.10 (y = 1,2) in Figs. 3 and 4. It is interesting to note 
that lAo I has a minimum at an angle which depends upon {j 
and y. This angle corresponds to a maximum amount of 
absorption and agrees with the results of Freidberg et al. 

APPENDIX A 

In this section we prove that Eq. (3.4) is subject to Eq. 
(3.8) and 

dtP (I,fJ) - iy cosfJ¢ (l,fJ) = 0, 
dr 

(AI) 

has only the trivial solution ¢ (r,fJ) = 0. The general solution 
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ofEq. (3.4) subject to Eq. (3.8) is given by 

¢ = C(fJ)Ai( - 0, (A2) 

where5 = y2l\r - sin2e)andAi is the Airy function. When 
this is inserted into Eq. (AI) we obtain 

c(fJ)[ + fI3A;( - 5) + iyAl- 51)] = 0, (A3) 

where 51 = r/3cos20. Since A ;, Ai' and yare real, c(O) 
equals zero and ¢ (r,O) = 0. From Eq. (3.14) it follows that 
Ao(O)= -lforlel';;1T/2. 

APPENDIX B 

Consider a plane scalar wave impinging upon a metal 
cylinder and scattering from it. The geometrical optics ap
proximation to the scattered wave is given by 

u(x,y,k) = [Ac(x,y) + 0 (Ilk) ]eikuo(x"'j, (Bl) 

where the amplitudeAc satisfies Eq. (3.7) and the phase l/; 
satisfies Eq. (3.6). Since the total field vanishes on the cylin
der, Ac (cosfJ,sinO) = -1 and l/; = cosO, where (cosfJ,sinO) 
is the intersection point of the incident ray and the cylinder. 
From Eq. (3.6) and the initial data it follows that the scat
tered rays satisfy the law of reflection. Thus, they are given 
by 

x = - u cos2fJ + cosO, 

y = - u sin2e + sinO, (B2) 

where u is the arclength. These rays form a one parameter 
family of straight lines. 

The eikonal and transport equations are readily solved 
to give 

l/; = u + cosO, (B3) 

__ [J(0,0)]1/2 
Ac- , 

J(a,fJ) 
(B4) 

where J (u,fJ) is the Jacobian of the ray map (u,fJ) f-+(x,y) 
given in Eq. (B2). It is easily found to be 

J = 4a - 2 cosO. (B5) 

Now in the far field a~ 1. From Eqs. (B2)-(B5) we deduce 
that 

IAol 
1.0 

.5 

+--1 
o 20 

1 I I I----+- 1 1 
40 60 80 100 120 :40 160 ISO 

Cji 

FIG, 3. The amplitUde of An [(17'12) + (<1> 12)] for the B problem with 
r = 1,2 and8 = 0.10, where 8 is the damping and <Pis the polar angle of the 
far field point. 
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IAol 
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:')'=1 
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g? 

FIG. 4. The amplitude of Ao (1T/2) + (f/> /2)] for the B problem with 
y = 1,2and8 = 0.05, where8isthedampingand f/> is the polarangle of the 
far field point. 

u~r + cos(}, J~4R + 2 cos(}, t/J~r + 2 cos(}, 

A~( - 2 cos(}) 112, f/>~2(} -1T, (B6) 

where rand f/> are the polar coordinates of the far field point. 
when Eq. (B6) is inserted into Eq. (B I) we obtain the far field 
result 

U~(! sin ~)1I2 exp( -2ik sin ~) ~, (B7) 

as r-ClJ. 

APPENDIXC 

Let t/J (r,(}) be the solution of 

Lt/J= d
2
t/J __ 1_ dt/J + y(r+it5-sin2(})¢J =0, (CI) 

dr 2 r + i5 dr 
which satisfies Eqs. (3.8) and (3.13). Then the complex con
jugate of t/J, i.e., t/J *, satisfies 

* d 2t/J * I dt/J * • .2(- .£ • 2(}\..I. * L t/J * = --- ----+ r r - lu - sm I'f' 
dr 2 r - i5 dr 

=0 ~~ 

subject to Eq. (3.8) and 

d~r* (I,(}) + irlcos(} It/J *(I,(}) = - iy(cos(} - Icos(} I}. 

(C3) 

Using integration by parts and Eq. (3.8), we find that 

0= J~._(t/J*Lt/J-t/JL*t/J*)dr= t/J*(l,(})tfJ'(I,(}) 
.. _ l+i6 

, 
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where 

11/112 = JI .tr dr 
-00 62+r2 

Inserting Eqs. (3.13) and (C3) into Eq. (C4) and approximat
ing I + 6 2 by I gives 

0= rlcos(} 1·1t/J (l,() W + ~cos(} - Icos(} I) 
2 

X [t/J *(I,(}) + t/J (l,(})] + 611t/J '112 + t5y sin2
(} 1It/J 112. 

(C5) 

Now, when I(} I <1T/2, Eq. (C5) becomes 

r cos(} It/J (I,(}W + 611t/J '112 + 6ysin2() 1It/J 112 = O. (C6) 

Since each term is positive, we deduce that t/J (r,(}) = 0 for 
- CIJ < r< 1. When 1T/2 < (}<1T Eq. (C5) gives 

It/J(l,(}) - W = I - 5 Ilit/J '11 2 + ysin2(} Iit/J 11 21. 
rlcos(} I 

(C7) 

This result is equivalent to Eq. (5.1). Setting t5 = 0 gives Eq. 
(4.4). 
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Roots of the modal equation for em wave propagation in a tropospheric duct 
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The. solutio.n. of the moda~ ~quation for electromagnetic wave propagation in a tropospheric duct, 
havmg a ~nhnear refractivity profile, shows the existence of two sets of roots in the complex 
propagatI?n plane. One of these is of the Whispering Gallery type with very low attenuation and 
the other IS of the creeping wave variety with relatively high attenuation. When the contrast in 
refractive index is small (the so-called linear atmosphere) the creeping wave modes dominate. A 
large contrast in refractive index causes the Whispering Gallery modes to dominate (surface or 
elevated ducts). Several examples of the altitude charts for the modal equation for propagation at 
~~ M~z through a medium having various constrasts in the refractive index give some physical 
mSlght mto these two ~lasses of modes. In addition, asymptotic solutions for the Whispering 
Gallery Modes are denved and used as initial choices in Newton's method for the solution of the 
modal equation. 

1. INTRODUCTION 

A number of investigators have studied the problem of 
electromagnetic wave propagation in surface-based or ele
vated ducts. Much of the analysis discussed in this paper has 
its origin in the treatment of em wave propagation in a later
ally nonuniform troposphere by Cho and Wait.! The funda
mental problem in em propagation in a tropospheric duct is 
the solution of the modal equation, and this paper addresses 
this question. The general problem of finding the zeros of an 
analytic function of a complex variable or the poles of a func
tion which is analytic except at isolated singularities, is not 
easy, especially when numerical results are required. The 
motivation for the altitude charts for the modal equation is 
to give some comprehension of the topology of a complicat
ed complex function of a complex variable. Goodhart and 
Pappere have used the winding number technique to locate 
the zeros of the modal equation and have successfully ap
plied the technique to the case of ducting produced by a 
strong elevated layer [40 N unit deficit at an elevation of 200 
m above the earth N = (n - 1) X 106

, n = retractive index] 
for frequencies ranging from 65 MHz to 3.3 GHz. One obvi
ous deficiency in the winding number technique occurs if 
there exists an equal number of poles and zeros in the search 
region of the complex plane. Actually, a single pole in the 
search area may cause problems regardless of the number of 
zeros present. What is required in the winding number tech
nique is that all the desired roots lie inside of the selected 
boundary (search region). 

At lower frequencies, the ionosphere becomes the re
gion where possible ducting can occur and is generally aniso
tropic unless a zero magnetic field is assumed. The problem 
of solving the modal equation at these frequencies was inves
tigated by Budden3 (assuming perfectly conducting ground) 
and by Wait4

,5 assuming the anisotropy as a perturbation to 
the TE and TM modes for the isotropic case but accounting 
fully for the finite ground conductivity). In the chapter enti
tled "Characteristics of the Modes for V. L.F. Propagation", 

Wait discusses some of the problems related to finding the 
roots of the modal equation. In particular, in his discussion 
of the "earth detached mode," Wait notes that, if the magni
tude of the complex number (zo - z) is not much larger than 
unity, an additional complex function needs to be included 
in the modal equation. Here Zo is related to the height of the 
lower boundary of the ionosphere and z is the complex num
ber describing the topology of the mode equation. This addi
tional feature gives rise to the Whispering Gallery effect for 
sound which was discovered by Lord Rayleigh6 at the base of 
the dome of St. Paul's cathedral. In a similar fashion, we 
show, by numerical experiment, the existence of a set of roots 
in the complex z plane along a curve or a "trough of zeros" 
which has asymptotes tending toward the rays 
arg(z) = - tTI3 and arg(z) = - tT. Here 
z;::::(v - ka)/(ka/2)!/3 where v is the normalized complex 
wave number and ka is the circumference of the earth in 
wavelengths. A more general definition is given below but 
for the purposes of discussion here the attenuation rate of the 
modes is approximately - Im(v)la n m'! where a is the 
earth radius. The seperation of the zeros into two sets is not 
distinct, especially for small values of the refractive index 
contrast. Whether or not modes in each set are necessary for 
the field calculation is dependent upon (among other things) 
the particular geometry involved (transmitter-receiver loca
tion and layer configuration). 

We also give asymptotic solutions for the roots of the 
modal equation along the ray arg(z)~ - tT. The asymptotic 
solutions for the roots along the ray arg(z)= - tT do provide 
good initial choices for Newton's method for solving the ex
act modal equation. 

2. THE MODAL EQUATION FOR A PIECEWISE LINEAR 
ATMOSPHERE 

Requiring the field in two dimensions and its normal 
derivative to satisfy the boundary conditions at r = ao, a I' 
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SOURCE ---: ..... "-?' 

r = 02 

FIG. 1. Boundary conditions on field and its normal derivative yield reflec
tion coefficients Ru and Rd at r = a ,• a2 and r = ao• a ,• respectively. 

and az in Fig. 1 yields the following integral for the field I 

A: exp( - ixz)F(z) dz, (1) 
X. f(z)-1 

where x ex (e - eo). F (z) is the product of the height-gain 
functions I for the source and observer and the contour c 
encloses the poles which are solution to the modal equation 
fez) = 1 where 

(2) 

WI(z) and W2(Z) are two linearly independent solutions to 
wI' - ZW = 0 and Ru (z) and Rd (z) are reflection coefficients 
referring to the level r = a I as depicted in Fig. 1. They are 
defined by 

and 

W~ (z + DoXo)lwiz + DoXo) - q 

w; (z + DoXo)lwl(z + DoXo) - q , 

where the following parameters appear: 
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DI v'(R IZ) - (3 (z)w; (R IZ) 
xl(z)=-- • 

Do v(R lz)-(3(z)w l(R lz) 

(3(z) = [DIV'(RIZ-DIX2)WI(R2Z+XD) 

+ D2V(Rlz - D 1x 2)W; (R2Z + xD)] 

X [Dlw; (R IZ - D 1x 2)w 1(R 2z + XD) 

+ D 2wl(R IZ - D lx 2)W; (R2Z + XD) ]-1 , 

Do = (l - aISl)l/3, 

DI = (a 1S2 - 1)1;3, 

Dz = (1 - a 1S3 ) 1;3, 

RI =D~/DL 

R2 =D6/DL 

X2 = kl(a l - a2)/(k1a l/2)1/3, 

Xo = kl(a l - ao)l(k la1/2)1/2, 

XD = ~nklal/(klal/2)1/3D ~ + D2x 2, 

q = - i(klaJ2)1/3~ /Do' 

, 
J. Math. Phys., Vol. 21, No.5, May 1980 

(3) 

~ = (1] _1)1/2/1] (for vertical polarization), 

= (1] _1)1/2 (for horizontal polarization), 

1] = er - icr/WEo, 

and w/z) = V 1T[Bi(z) - iAi(z)], wz{z) = V 1T[Bi(z) 
+ iAi(z)], v(z) = V 1TAi(z) and where exp(iwt) time depen

dence is assumed, cr is the ground conductivity in S/m, and 
Er is the dielectric constant. The trilinear model for the re
fractive index and parameters defined in Eq. (3) is shown in 
Fig. 2. In Eq. (3) k I is the value of the wave number at the 
lower boundary of the duct in Fig. 2; i.e., kl = k (a I) and Lin 
is the refractive index contrast shown in Fig. 2. 

We now study some of the general features of the modal 
equation, given by Eq. (2). Typical values for cr and Er at 
UHF/VHF frequencies; e.g., at 200 MHz, are cr = 0.005 
S/m and Er = 10, and we find q~ 1.57 - i78.48 for vertical 
polarization and q~ 105 for horizontal polarization. 

Now we may observe that for the above values of q 

- i 1 Z 11/2 + i 1 q 1 

lim Rd(Z) = lim - = exp(i1T) 
,.Oz, .0 ilzl l/2 + ilql 

and then the modal equation becomes [here 
Iql ~ Iz + XoDoll'<' so Rd (z) = exp(i1T)] 

wl(z) W2(Z + DoXo) R,.{z) = _ I. 
W2(Z) wl(z + DoZo) 

(4) 

Three types of modes are generated from the modal 
equation (2): planar waveguide (or intralayer) modes, Whis
pering Gallery or earth detached) modes and creeping wave 
modes (sometimes referred to as earth diffraction modes). 
These modes can be identified by their zero locations [i.e., 
solutions to the modal equation (2)] in the complex z plane 
shown in Fig. 3. However, often there is no clear distinction 
between the mode types. A subset of the Whispering Gallery 
modes is identified in Fig. 3 as trapped and we discuss those 
shortly. 

In Fig. 4, a loci of the roots of the modal equation are 
shown withf(z) as defined in Eq. (2), as the refractive index 
contrast, ~n, varies from 0.01 to 30. As Lin increases in Fig. 

N (z) and M ( z) versus Height 

FIG. 2. The trilinear refractive index profile, N and the modified profile M. 
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z = -Xo Im (zl 

Re (zl 

COMPLEX z PLANE 

FIG. 3. Roots of modal equation in the complex-z plane showing locations 
of various types of modes. 

4, the Whispering Gallery modes move in from z ~ - i 00 

toward the ray arg(z) = - 1T and the creeping wave modes 
recede from the ray arg(z) = - 1T/3. In Fig. 4, the planar 
waveguide modes for Lln = 25 and 30 were omitted for 
clarity. 

Figure 5 gives a plane wave representation of the modes 
in Fig. 4 for the caseLln = 30. The plot to the right of the ray 
diagram is the modified refractive index versus height de
fined as4 

m(z) = n(z) + z/ao. (5) 

In Fig. 6 we show a ray trace for a refractive index contrast of 
30 N units located 1 km above the earth's surface. The caus-

0 

-I HI,Hl\unmnn 
-2 

-3 
Legend fl.n (N units) 

-4 
\ 

~ 
0 0.01 

l N • 0.1 -5 
E '" 1.0 

H -6 • 5 
<> 10 1::1 -7 • 15 
0 25 N 

-8 • 30 I~ 
-9 , 

" -10 , 
-30 -25 -20 -15 -10 -5 0 5 10 

Re (z I 

FIG. 4. Loci ofJ(z) = 1 for various values of the refractive index contrast, 
.:In. Here frequency = 200 MHz, Q" = 6368 km, Q, = Qz = 6369 km, 
!7 = 0.005 S/m; €, = 10, and s, = s, = 40 N units/km. (S2 = - cc). 
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MODE 

CAUSTIC 

8, 

--Trapped Modes (O<lll< xo) 

117 units/km 

LIM: 30N units 

------ Whispering Golly Modea (xo< III < Xo Do) 
......... Planar Waveguide Mode. (lll><o Do) 
-.-.-.- Creeping Wave Modes (oro 1 = - ,../3) 

FIG. 5. Ray picture interpretation of an elevated duct together with modi
fied index profile. The mode caustic corresponds to a turning point in the 
partial differential equation. 

tic along the top of the duct is clearly seen. From the familiar 
relationship among the width of the guide, the angle ofincli
nation of the allowed modes (m) and the wavelength we 
have, from Fig. 5, for the "track width" 

bcosO = mA. /2. (6) 

From Snell's law, defining 0, as the value of Ot in Fig. 5 for 
which O2 = 1T/2 we have 

(7) 

and for Lln = 30 N units we have Oc :::::89.5562°. Suppose 
f = 200 MHz, a o = 6378 km, a I = a2 = 6379 km, the slopes 
of the modified refractive index above and below the abrupt 
change are 117 N units/km and the refractive index contrast 
in 30 N units; then b::::: 264 m in Fig. 5. Substituting b = 264 
m,;'" = 1.5 m, and 0 = 89.5562° into Eq. (6) yields m:::::2.73 
or an integer value of 2 or 3. This means that two to three 
modes are trapped in the duct for this example. It turns out 
that the parameter x D in Eq. (3) has the value x D ::::: 4.11 for 
this example. This point is plotted in Fig. (4) and we find that 
two modes lie to the right of the point Re(z) = - X D 

= -4.111. Therefore modes with values of m satisfying 

E 
f-
:to 
~ 
W 
:to 

2,000 

1,500 

1,000 

500 

o L----;J,;------;;2;';:;0---:;3;';:;0~--:4~0:---
DISTANCE (km) 

o N units 
change 

N unIts 

FIG. 6. Ray trace showing trapped modes for an elevated tropospheric 
duct. 
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Re(z) > - X D will in general be "trapped" in the duct. 
The remaining modes in Fig. 4 are interpreted as fol

lows. Those with roots near the ray arg(z):::.:; - 1T and having 
real parts less than - X D represent modes "leaking" out of 
the topside of the duct. From Fig. 4 these modes have much 
larger attenuation than the trapped or interlayer modes as 
expected. Those roots near the ray arg(z) = - 1T13 repre
sent the "creeping" or earth diffracted modes which are pre
sent under "standard" atmospheric conditions. The planar 
waveguide modes have larger attenuation than the Whisper
ing Gallery modes because they shed energy out of the lower 
boundary of the duct in Fig. 5. 

In Fig. 4 as .1n-..O, the refractive index profile reduces 
to the so-called standard or linear atmosphere and the roots 
to the modal equation lie along the ray arg(z) = - 1T13. 

In order to gain some measure of the relative impor
tance of the zeros along the entire arc, consider the poles in 
the corresponding reciprocal of the modal equation; i.e., 
11 [f(z) - 1] z ~ z,,' These will be simple poles whose residue 
is 

a_I = (z - zo) __ 1 __ 1 

f(z)-1 z~z, 
(8) 

In Fig. 7 we plot level curves for la-II in Eq. (8) for the case 
.1n = 10. The residues along arg(z) = - 1T13 decrease more 
rapidly than those along arg(z) = - 1T. As an example, con
sider Table I showing the location of the first zero along 
arg(z)---- - 1T13 and several of the zeros along arg(z)~ - 1T 
together with their residues as defined in Eq. (8). Equation 
(8) ignores the residue of F(z) since it is near unity. 

From Table I, we find that out as far as z~ -15 + iO 
the residues of the zeros along arg(z)~ - 1T are slightly larg
er than the first along arg(z)~ - 1T13; however, the first few 
zeros along arg(z)~ - 1T13 cannot be neglected. The imagi
nary part of the root is related to the attenuation of each 
mode as 

field 

for 
ex exp f - iZm (k la/2)1(3(e - eo)lD ~ ]/(e - eo)I(2}, 

mth 

root 

-\ 

-2 

-3 
Im(z) 

-4 

-5 

-6 

(9) 

-7~-L-L~~~-L~~-L-L~~~-L~~ 
-16 -8 -6 -4 -2 0 2 4 

Re (z) 

FIG. 7. Plot of the level curves of the residue of 1Ij'(z) for.1n = 10. 
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TABLE I. Comparison of residues for the case.1n = 10. 

zm la-.I Comment 

-0.2 - i2.7 0.12 (first zero along ray arg(z)-::::e - iT/3) 
-1.288 - i.378 0.73 (first zero along ray arg(z)-::::e - iT) 
-3.2 - iO.S 0.47 (2nd zero along ray arg(z)-::::e - iT) 
-4.8 - iO 0.37 (3rd zero along ray arg(z)-::::e - iT) 
-6.2 - iO 0.31 (4th zero along ray arg(z)-::::e - iT) 

-IS - iO 0.19 

where e - eo is the angular separation of the source and 
observer, and we find the roots along the ray 
arg(z) = - 1T13 decaying in an exponential fashion, for 
large values of Im(zm)' The values for Zm in Table I were 
obtained using the same parameters as used in Fig. 4. 

3. ASYMPTOTIC SOLUTION FOR THE MODAL 
EQUATION FOR THE ROOTS ALONG arg(z) = - 'Tl" 

Since those roots along the ray arg(z) = - 1T13 are usu
ally highly attenuated, we confine attention to the asymptot
ic solution to the case for those roots along the ray 
arg(z) = - 1T. There are several cases with subcases, and we 
present the final asymptotic formulas and their various 
ranges and requirements for validity in this section and the 
derivations are given in the Appendix. 

In all cases, IDlx21<lzl 
(i) a I =/-a2 , 

0< Izi <xoDo. 

- x = 5~[(31T12)m]2i3 + DoX2' 

Y= 25 112 - DoXz5 -1/2 

x In 0 I exp( _ i2DoXz5 1/2) (
D

3 + D 3
) 1 

8D ~5 3/2 

- (1 -XD~Rz5)3/21} 
(ii) a l =/-a2, 

x = Re(s - iR 12f. 

(10) 

(11) 

(12) 

S _
_ {A 1/3 + B 1/3 exp(i21T13). .1 <0. 

(13) 
A li3 + B 113 exp( - i41T14). .1 > O. 

A = - ql2 + (q2/4 + p3127)1/2 = - ql2 + \IT 
= (iI2)[i R 3 - ~ DoX2R - ~ 1T(m - V] 

+ [J R 6 _ 12 D~Y 1) 4 _ 121TR 3(m _ 3) 
8 16 tr°O" 16 8 

+ -&D6x~R 2 + !DoX2R (m - V 
+ £ rem - i)2] liZ 

= i(Hi R 3 - i DoXzR - ~ 1T(m - V] 
X [ - i R 6 + ~ DoXzR 4 + ~ 1TR 3(m - V 
- -&D6x~R 2 -! 1TDoX2R (m - V 
- £ rem - ~?]1/2). (14) 
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B= -qI2- V7 
= i(Hi R 3 - ~ DcYC2R - ~ 1T(m - m 

- [ - ~ R 6 + -ij DcYC2R 4 + -ij 1TR 3(m - V 
- Tt D ~x~R 2 - ~ 1T DcYC2R (m - ~) 
- ~ ~(m - ~)2P/2). (15) 

-1 
y = _ 2R + DcYC21R + 51R In IRu(z) I, 

x> - xoDo, (16) 
-1 

y= -2R +25 1/2 + DcYC21R -5 1R 1nIRu(z)l, 

x < - xoDo, (17) 

where 

(D' +D') I 
IRu(z)l= 0 1 ex(-i2D £-1/2) 

SD 65 312 p cYC~ 

- (1 - XD~Rz5)3/21· 
(iii) a 1 "/=a 2 , 

Izl>xoDw 

x= xoDo 
-2-' 

-~(m _V2 
(R 2 - DcYC2? 

5 1/2 
y = -----"'---In I R (z) I· 

i(R 2 _ ~ DcYC2) u 

(iv) a 1 = a2, 

Izl«..xoDo, 

{ 

[~1T(m - !)f/3, XD < Izl <xoDo 
x-

- [~1T(m-i)]2/3+1/xD' Izl<xD , 

1 
y = 25 112 In I R u ( 5 ) I ' 

(IS) 

(19) 

(20) 

(21) 

where 
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(v) a 1 = a2, 

Izl~xoDo' 

x = Re(s - iR 12f, 

S = {A 1/3 + B 1/3 exp(i21T13), Ll < 0, 
A 1/3 + B 1/3 exp( - i41T13), Ll > 0, 

(22) 

(23) 

Ll = - ~ R 6 + -ij 1T(m - !) - * r(m - 1)2, (24) 

A = (i/2)[i R 3 - ~ 1T(m - D] 
+ i[ - i R 6 + -ij 1TR 3(m - D - ~ r(m _ !)2] 1/2, 

(25) 
B = (i12)[i R 3 - ~ 1T(m - D] 

- i[ - i R 6 + -ij 1TR 3(m _!) - ~ r(m - !)2] 1/2, 

(26) 

q = i[i R 3 - ~ 1T(m - DL 
p = (3/4)R 2, 

J. Math. Phys., Vol. 21, No.5, May 1980 

(27) 

(2S) 

(vi) a 1 = a2 , 

Izl>xoDo, 

35 1/2 
Y = 2R 2 In I R u ( 5) I· 

(30) 

No difficulties were encountered in obtaining the exact solu
tions to the model equation using the asymptotic values giv
en in this section as starting values in Newton's method. 
Section 4 gives two examples. 

4. EXAMPLES FOR THE SOLUTIONS OF THE MODAL 
EQUATION 

We seek those values of z satisfying 

g(z) =/(z) -1 = o. 
Taylor's Theorem gives 

g(z)~g(zo) + g '(zoHz - zo), 

where Zo is an initial guess. Even though g(z) is a complex 
function of a complex variable, g '(z), is analogus to the tan
gent plane at the point z of the modulus of g(z); i.e., 

g(zo) + (aglaz)€ = o. 
So 

and 

z = Zo - [(aglazt 1g(zo)]' 

Now 

so 

and 

[g] = [u iu], 

[z] = [x iy], 

[

au 

ag~ ax 
az- au 

ax 

~] ay 

au ' 

ay 

where 

1 '12 a2
u a2

u 
g = ax2 + ax2 ' 

Also, we have found that using Newton's method with an 
under relaxation factor reduces the problem of missing a 
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TABLE II. 

Mode Initial Roots (Asymptotic Values) 

I -0.970586 - iO.053274 
2 -2.88307 + iO.137520 
3 -4.54859 -ID.102077 
4 -5.832742 -ID.298220 
5 -7.002429 - iO.381305 
6 -8.090054 - iO.432289 
7 -9.114720 - iO.470009 
8 -10.08888 -ID.501487 
9 -11.02125 -ID.530113 

10 -11.91817 - iO.557828 
II -12.7845 -ID.585763 
12 -13.6240 - iO.614034 
13 -14.4397 - iO.M0233 
14 -15.2572 -iO.642014 
15 -16.02004 -ID.674579 
16 -16.9616 - iO.813693 
17 -18.09499 -ID.874790 
18 -19.4365 - iO.921807 
19 -20.12839 - iO.862878 
20 -21.46563 -ID.975490 
21 -22.87278 - il.08212 
22 -24.34986 - il.186676 
23 -25.89685 - il.29 154 
24 -27.51377 - il.398376 
25 -29.20061 - il.50847 
26 -30.95737 - il.622930 

root of the modal equation. With the under relaxation factor 
we are essentially increasing the "slope" of the tangent 
plane. 

In Table II, we show the initial choices for the first 26 
roots of the modal equation. These were obtained from the 
asymptotic solutions using the methods in Sec. 3. The roots 
are compared with the roots of the modal equation obtained 
using Newtons method. The relaxation factor used was 0.5. 
The parameters for this example are also given in Fig. 8. 

Table III shows the initial choices for the first 27 roots 
of the modal equation obtained from the asymptotic solu
tions of Sec. 3 for the case of a duct with zero thickness. The 
roots are compared with the roots of the exact modal equa
tion obtained using Newton's method, with an under relax
ation factor of 0.5. The parameters for this example are given 
in Fig. 9. 

53 = 40 N units/km 

6379.05 km ---I 
6379 km -- - L-.:i 

30.852 

S2 = 657 N unitsl km 

N units 
6378 km -------

0" = 0.005 5/m 
£r = 10 

51 = 40 N units I km 

FIG. 8. Refractive index profile and parameters for example of numerical 
solution of modal equation. 
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Exact Roots 

1.44303 lD.00255008 
-3.049145 - lD.08141006 
-4.450727 - iO.242440 
-5.757889 - iO.339668 
-6.955289 -ID.394370 
-8.06518 -ID.431049 
-9.10695 - i0.459 1 93 

-10.09399 - iO.482932 
-11.03564 - iO.504370 
-11.9385 - iO.524723 
-12.8074 -ID.54479 
-13.6455 - lD.565876 
-14.4564 - iO.594980 
-15.2593 - iO.65 1949 
-16.1002 - iO.743285 
-17.01186 - iO.841797 
-18.0067 - iO.922549 
-19.09532 - iO.982184 
-20.28137 - il.030368 
-21.56115 - i1.07594 
-22.9294 - i1.l23358 
-24.38195 - il.l7443 
-25.91588 - il.229904 
-27.52915 - il.290147 
-29.2203 - il.35543 
-30.98831 - i1.426050 

5. CONCLUDING REMARKS 

Altitude charts of the exact modal equation for a trilin
ear duct show the existence of roots in the complex-z plane 
(wave number plane) with arg(z)~ - 1T and another with 
arg(z)~ - 1T13. The set of roots along the ray 
arg(z)~ - 1T13 are present if the duct thickness and refrac
tive index contrast go to zero. These roots are tracked in the 
complex-z plane as the refractive index contrast..1n is varied. 

The asymptotic solutions of the modal equation are 
close enough to the exact values that they may be used to 
obtain first order results for the field strength. 
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APPENDIX: DERIVATION OF ASYMPTOTIC FORMULAS 
FOR MODAL EQUATION FOR INITIAL CHOICES IN 
NEWTONS METHOD 

The cases follow: 
(i) a, '1=02, 

Izl<.xoDo· 
Then, after a great deal of algebra, one can show from 
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TABLE III. 

Mode Initial Roots (Asymptotic Values) 

I -1.351972 -ID.O 
2 -3.49814 - i1X 10-12 

3 -4.82632 -iO.167417 
4 -6.167129 - ;0.255254 
5 -7.374853 -ID.287547 
6 -8.490507 - iO.303459 
7 -9.53705 -ID.312187 
8 -10.52898 -ID.317178 
9 -11.476163 - iO.32oo175 

10 -12.38514 -ID.321534 
II -13.26305 - iO.322196 
12 -14.11223 - iO.3222897 
13 -14.93659 - iO.321994 
14 -15.98099 - iO.320709 
15 -17.04457 - iO.424976 
16 -18.08915 - iO.482316 
17 -19.11588 - iO.5284115 
18 -20.12590 -ID.5698519 
19 -21.\9259 - iO.617207 
20 -22.657253 - iO.716872 
21 -24.199006 - iO.815103 
22 -25.817846 - iO.912831 
23 -27.5\3773 - iO.010607 
24 -29.286789 - iO.1087758 
25 -31. 13689 - iO.207558 
26 -33.06408 - iO.307089 
27 -35.068361 - i\.40747 

. 1 (Df + DC;) 
1 + Zi(3 (z)"-' - ------::-~ 

- 8 D6 (z+x D IR z)3/2 

w2(R\z - D\x2) X ----"--'-----''-----"-= 

wieR \z - D\x2) 

and from Eq. (3) 

xl(z)- - V;(I - D3 
1 + 

4D 6Z3/2 4D 6(Z + x DIR 2)3/2 

X exp[1(R\Z)3/2 + '!(R\z - D\X2)3/2]). 

53 = 40 N units/km 

(AI) 

(AZ) 

6379km---

30.852 
N units 

6378km -------

51 = 40 N unitsl km 

(j = 0.005 5/m 
€ = 10 r 

FIG. 9. Refractive index profile and parameters for numerical example. 
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Exact Roots 

-1.78353 - iO.0221027 
-3.43243 - iO.067132 
-4.86113 - iO.I92396 
-6.17718 - iO.258259 
-7.37916 - iO.288324 
-8.492867 - iO.303756 
-9.53856 - iO.312329 

-10.53006 - iO.317256 
-11.477008 - iO.32oo653 
-12.38644 - iO.321579 
-13.26379 - iO.322504 
-14.11523 - iO.325462 
-14.95858 - iO.339864 
-15.8378 - iO.375504 
-16.7984 - iO.426206 
-17.85648 - iO.48157357 
-19.0107 - iO.5378257 
-20.256913 - iO.594516 
-21.591406 - iO.651856 
-23.011605 - iO.71OO549 
-24.5156 - iO.769248 
-26.102105 - iO.8295 I 17 
-27.7700 - iO.8908809 
-29.5185 - iO.983365 
-31.347116 - il.01696 
-33.25524 - il.081661 
-35.2425 - il.147438 

_ (Df +D6) (1- (Df +DD ____ --:--::-
8D ~Z3IZ (D i + D 6) (1 + x D IR zz)3/2 

Xexp! - H(R ,z)3/2 - (R,z - DIX1)31111). 

Since D1x1=0 we have 

(D 3 + D 3
) R ( ) 0 1 

u Z "-' 8D 6Z3/2 

X (1 _ (D i + D ~) exp( -Z DoX2ZI11»). 
(D 6 + D D (1 + x D /ZR 1)3/

2 

(A3) 
It can be shown that 

lim arg[Ru(z)] = -rr, 
z ~O 

and 

lim argLRlI(z)+ZDoX2ZI/2] = -~rr. 
z· _\1\00 

From Eq. (4) exp(u + IV) = -1, where exp(u + IV) 
= w,(z)Ru (Z)IW1(Z) and 

Ru(z) = exp(iargRu(z) + In IRu(z) I). (A4) 

We now approximate argRu (z) as 

_ {- ZDoX1Zl/2 - 1T, 0< Izl <XD ' 

argR (z) = I 1 1 1 (AS) u -ZDoX1Z 1 -3rr/4, x D < Z <xoDo. 

In (A4) above we have used wz<z + xoDo)lw,(z + xoDo) 
"-' - 1 for Izl <xoDo· 

Let z = [exp( - irr)]s, with 5 > 0 and real, then for the 
modulus of Ru (z) 
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(
D 6 + D D I . I:- 1/2) In IR (z) I = In exp( - 12DOX2':J 

u SDU)/2 

- (1 - XD~RzS)3/21)- (A6) 

Now we will use 

Z3/2 = (x + iy)3/2~X3/2 + ~ iyx l/2, y> 0 

and, since x = [exp( - hr)]s, X3/2 = is 312, Xl/2 = - is 112, 

Also 

Z1/2~ _ is 1/2 _ (y/2)s 1/2. 

Using 

wI(z) -exp( -1Z3/2 + i1r/2), 
wz(z) 

- 1T < arg(z) < 1T/3, 

(A7) 

we find from exp(u + iu) = I, that 

J { -1T +2DoxzS 1/2 } 
exp(iu) = ex,,- - i1s 3/2 + i1T/2 + i _ i 1T + 2DoxzS 1/2 

± i21T(m -1») = 1, m = 1,2··· (AS) 

and from the real part of u + iu = 0 

u = -2ys 1/2 + DOXzYS 1/2 + In IRu(z) I = O. (A9) 

From (AS), for large S. 
- i1s 3/2 ± i21T(m - 1) = 0 

and the upper sign is needed. The modal equation becomes 

- j<1 I:- 3/2 + i2DoxzS 1/2 + i21Tfn = 0 , ~ 
or 

S 3/2 - !DOX2S 1;2 - ~ 1Tfn = 0, 

where 

/'.. {m-!, O<!z!<xD , 

m = m -~, x D < ! Z I < xoDo. 

Let z = 5' 1/ 2, then (AlO) becomes 

x 3 - lD y Z - 1 1Tfn = 0 
2 (,.,.2 2 ' 

(AW) 

a cubic equation with in general three roots. Since S is real 

s = Z2 = ! [~ 1Tfn + (1t, rfn2 - D 6X~/S)1/2] 1/3 

+ H 1Tfn - (li> rfn2 - D6 X US)1/2] 1/312. 
(All) 

Since 9rfn2 16:>D 6X~ IS, 

- x = s~[(31T/2)fnrd + DOX2 

and from (A9) 

y= 2SI/Z- DOX2S-1/2 

X In 0 1 exp( _ i2DoxzS 1/2) (
D) + D 3

) I 
8D 6S 3/2 

- (1 - XD~ RzS )3/21), 

the desired solution for this case. 

Now consider 
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(AI2) 

(Al3) 

(ii) a I =1= az, 

Z~ -xoDo. 

We now push the asymptotics near the point 
z~ - xoDo - i to write 

wz(z + DOXo) 

wl(z + DOXo) 
~exp[1(z + DOXO)3/Z - i1T/2], - 1T < arg(z) < 1T13. 

(AI4) 

We can partially justify this step by comparing the asympto
tics in this case with the previous case and also with the exact 
results and we find the approximation to be better than ex
pected. 

The reflection coefficient changes phase by 1T/2 rad at 
the caustic z = - xoDo [i.e., exp(2DOX2ZI/2) changes argu
ment for z;c - DOXo] so, in place of (AS) we have 

argRu(z);::; - Im(2DOXoZI/Z) + 1T/4. (A1S) 

Substituting CAIS), (AI4), and (A7) into 

( . ) wl(z) wiz + DOXo) R ( ) exp u + IV = -- u Z , 
wiz) wl(z + DOXo) 

where !Ru (z)! is given in (A6) and 

exp(iu) = exp [ -1 Z3/2 + i1T /2 + ~ (z + DOXO)3/2 

- i1T/2 - 2DOXoZl/2 + i1T/4 

+ i21T(m -1) + i1T] 

= - 1, m = 1,2,··., 

or, equivalently, 

- '! Z3/2 + '! (z + DOXoll2 - 2DOX2Z1/2 
3 3 

Let, 

= - i21T(m - ~), m = 1,2,.·· . 

z = .dz - xoDo = x + iy - xoDo, !.dz! <{,xr,Do, 

(z + D(~O)3/2 = .dz3/2, arg(.dz);::; - 1T or 0, 

(AI6) 

(A17) 

Z3/2 = (Az - XoDo)3/2 = ( - X(,DO)3/2(1 - Azlx(,DolIZ 

~i(xoDo)3IZ - i~(xoDo)lfZ.dz + i~ .dzz l(xoDo) liZ, 

where ( - XoDO)3/2 = i(xoDo)3/2, and ( - xoDo) 1/2 
= - i(xoDo)1/2. Let R = (XoDO)1/2, then 

Z3/2 = iR 3 _ i1R.dz + i1.dz2/R, 
2 8 

ZI/Z = ( - xoDo) 1/2(1 - .dZ/XoDO)1/2~ - iR + (i/2).dz/R, 

and (A 17) becomes 

.dz3/2 + ~ iR.dz - iR 3 + (3i/2)DoxoR + i ~ 1T(m - V = O. 
(AI8) 

Let u) = .dz I/2 , then (A1S) becomes 

U)3 + ~ iRU)2 - iR 3 + ~ iDOX2R + i J 1T(m - ~) = O. 
(AI9) 

Let u) = s - iR /2, then (A19) becomes 

S3 + ~R 2S - q R 3 + q DOXzR + q 1T(m - V = O. 
(A20) 

Then define 

q= -i[iR3_~DOX2R-~1T(m-D], (A21) 

p = ~R 2, 
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A = - q/2 + (q2/4 + p3/27)1/2 = _ q/2 +.1 1/2 

= (i/2)[i R 3 - ~DoX2R - ~ 1T(m - ~) 1 
+ [~R 6 - ~D(roR 4 - ~1TR 3(m - V 
+ rr,D 6x~R 2 + ¥ 1TDoX2R (m - V 
+ ~ rem - V2] 1/2 (A22) 

= iI HiR 3 - ~DoX2R - ~1T(m - ~)] 
+ [ - ~R 6 + ~DoX1R 4 + ~1TR 3(m - D 
- rr,D Gx~R 2 - ~ 1TDoX1R (m -~) 
- ~ rem - ~)l] Ill]. (A23) 

B= -q/2- v'~ 
= i[ HiR 3 - ~DoX2R - ~ 1T(m - i)] 

- [ - lR 6 + UD y R 4 + U1TR 3(m _ 3) 
R 16 (r-2 16 8 

- rr,DGx~R 2 - 11TD(hR (m - i) 
- ~ rem - ~fJ 112]. 

The root we need is 

{
A 11.1 + B 1/3 exp(i21T/3), .1 < 0, 

s-
- A 1;3 + B 1/3 exp( - i41T/3), .1 > 0, 

to ensure the cross product terms in 

(A24) 

(A25) 

[exp(i1T/6)(o/2 + iv'~) + exp(i51T/6)(a/2 - iv'~)]l, 
a = ~R 3 - ~D(rlR - 11T(m - ~) 

and 

[exp(i1T/6)(a/2 + v'~) + exp( - i1T/6)(a/2 - v'~)]2 
equal - p/3 and the sum of the squared terms equal - q. 
Then our solution is 

We take as transition from case (i) and (ii) when 
S = R 2 = xoDo (z = - x(jJo). Then, from (AlO), 

m I ~ ~ + (2/31T)(R 3 - ~DoX2R ), 

and the transition from case (ii) to case (iii) when 

(A26) 

(A27) 

.1z = - x(jJo/2 or z = - 3x(jJo/2. Then, from (A17) 

m2~~ + (l/21T) [R \v'"6 - 2/3) - DoX1R]. (A28) 

From (A 16) u = ° gives the imaginary part of the root for 
this case. With S> 0, z = x + iy - xoDo and 

x = {exp( - i1TS), x < - x(jJo' 
S, x> - x(jJo' 

X 1/ 2 == 

{ iS~/2, X < - x(jJo, 

S 3/2, x> - x(jJo, 

{
-is 1(2, X < - xoDo, 

S 112, x> - xoDo, 

Im(.1z)" = 2xy, 

Im(.1z3/2):::::; 0, 
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So 

y= 

-1 
-2R + DoXl/R +S/R InIR"(z)l, 

x> -xoDo, 
-1 

-2R +2s III + DoX2/R _ S /R In IR"(z) I, 

x< -xoDo, 
(A29) 

(iii) a l =/-a z, 

Izl~xoDo· 

Here z = .1z - xoDo with l.1zl > xoDo 

Z3/2=(.1Z)3/2 - (3x(jJo/2)(.1Z)1/2 + HxoDof/(.1z) 1/2, 

ZI/2~(.1Z)1/2 - x(jJo/2(.1Z)I/Z. 

From (A 16), the real part of the root satisfies 

iv = - 1(.1Z)3/2 + 2R 2(.1Z)1/2 _ R 2 /2(.1z) 1/2 + 1(.1Z)3/2 

- 2DoXz(.1ZY/2 + R 2DoXO/(.1z) 1/2 + i21T(m - i) 
=0, 

or 

i21T«m - l)(.1z) 1/2 
.1z + 2 8 

2(R - DoXz) 

and, after some algebra, 

- rem - ~f 
X= 

xoDo 
2 

From (AI6), for u = ° we have 

(.1Z)3/2=iS 3/2 + ~ YS 1/2, S> 0, 

or 

and 

Z3/2=iS 312 + i YS 1/2 + iRs 1/2 + R 2y/2s 1/2, 

Z1/2= _ is 112 - yl2S 1/2 - iR /2s 1/2, 

u = -1GyS 1/2 + R 2y/2s 112) + 1GyS 1/2) 

+ D(rlY/S 1/2 + InIR"(z)1 =0, 

t 1/2 

y= InlR (z)l· 
i(R 2 _ ~ DoXl) " 

(iv) a l =/-az, 

lzl~xoDo' 

In this case 

Zl/2 - (z + x
D

/R z)1/2 
R,,(z)= I' I' 

Z I. + (z + xDIR z) I. 

Now, for this case we have 

{
O, XD < lzl ~xoDo, 

arg [R" (z)] = 2 t -ie 1/2 ) I 1 an z x D , z <xD , 

which we approximate by 

{ } _ {a, X D < Izl <x(jJo' 
arg R,,(z) - I' 1 1 2z 1·lxD , z <xl)' 

R.H. Ott 
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Then, from 

exp(u + iv) = wl(z) Ru(z) = I, (A36) 
wiz) 

we have 

{
2z1/2/X } 

iv = - ~Z3/2 + irr/2 + ° D + i2rr(m - I) = 0, 

{
\Z\ <XD 

m = 1,2,.·· XD < \z\ <xcPo 

and substituting in (A37) 

Z3/2c::::::.i53/2 + ~Y51/2, 5>0, 

ZI/2~-i51/2, 5>0, 

gives 

{ 

[irr(m - ~12/3, XD < \z\ <xcPo, 
x- ~ - -5~ [~rr(m-~)12/3+l!xD' \z\<xD' 

From (A36), u = 0, gives 

U= 

or 

where 

(v) a l = a2, 

Izlc::::::.x(/Jo· 

(A37) 

(A38) 

(A40) 

We again assume the asymptotics can be pushed into this 
case as in case (ii). The modal equation is given in (A36) and 
we find 

iv = - ~Z3!2 + (irr/2) + j(z + XcPO)3/2 - (irr/2) + irr 
+ i2rr(m - I) = 0, (A41) 

or 

Let Z3!2c::::::.iR -' - i~RJz, then 

- WR 3 - i~RJz) + ~(JZ)311 + i2rr(m - D = 0, 

{(JZ)311 + 2iRJz - 5"iR 3 + i2rr(m - D = 0, 

(JZ)3/2 + ! iRJz - iR 1 + i ~ rr(m - 1> = O. 

Let w = (JZ)1/2, then 

wJ + i ~ Rw2 
- iR J + i ~ rr(m - !) = 0. 

Let w = s - iR /2, then 

S3 _ JR 2S - i 2 R 3 + i' rr(m - 1) = ° 
4 4 2 2' 

Let 
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p = (3/4)R 2, 

A = (i/2)[~R 3 - irr(m - Dl 
+ i[ - iR 6 + ~ rrR 3(m - D - ~ r(m - !il '/2 , 

= (i/2)[~R 3 _ ~rr(m -!)l - i[ - ~R 6 

+ ~rrR 3(m - f) - ~r(m - !?11/2, 

and the solution to (A41) is 

x = Re(s - iR /2)2, 

where 

s = {A 1/3 + B 1/3 exp(i2rr/3), J <0, 
A 1/3 + B 1/3 exp( - i4rr/3), J > 0, 

and 

(A42) 

(A43) 

We take as transition from case (iv) to (v) when 5 = xcPo or 

ml@i+ (2/3rr)R 3, (A45) 

and the transition from case (v) to case (vi) when 
z = - 3xcPoI2, giving 

m 2 @(y2R 3/61T)(3V3 -I) +!. (A46) 

From (A36), with U = 0, we have 

U= ~(~RY)-~(- !~){-~} 
4 {,l Y5 Ill} 

+3 2 ° +lnIRu(OI =0, 

so 

{
X < -xcPo, 

x> -xcPo, 

Y= 2R - 5/R (A47) 

{

I InIRu(OI, x> -xcPo, 

2R-251~2+5/R InIRu(OI, x< -xcPo· 

(vi) a l = a2 , 

lzl>xcPo· 
Here z = Jz - xcPo' IJz I > xcPo. From (A36), we have 

iv = - 1Z3/2 + irr/2 + 1(Z + x(/Jo)3i2 3 3 

- irr/2 + i2rr(m - D = 0. 

Now 

and 

and 

Z3/2c::::::.(JZ)3/2 _ ~R 2(JZ)1/2 + ~ R 4/(JZ) 1/2 

iv = - ~(JZ)3/2 + 2R 2(JZ)1/2 - ! R 4/(..::1Z) 1/2 

+ 1(..::1Z)3/2 + i2rr(m - D = ° 
R2 
-=0 
4 ' 

giving 

..::1z = - r(m - !)2 / R 4 + R 2/2. 
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and ..1z~x + xoDo, so 

x = - r(m - ~)2/R 4 - R 2/2. 

From u = 0, we have 

or 

U = - ~GYS 1/2 + R 2y/2S 1;2) + ~~Y51/2) 
+ In I R u ( S) I = 0, 
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(A48) 

(A49) 

'S.H. Cho and J.R. Wait, EM Rep. No. I, Cooperative Institute for Re
search in Environmental Sciences, Boulder, Colorado, June, 1977. A sum
marized version is given in S.H. Cho and J.R. Wait, Analysis of Microwave 
Ducting in an Inhomogeneous Troposphere, Pure and Applied Geophysics 
(1978), Vol. 116, pp. 1118-42. 

2C.L. Goodhart and R.A. Pappert, Tech. Rep. No. 153, NOSC, Sept. 1977. 
3K.G. Budden, Philos. Mag. 42, 833 (1952). 
'J.R. Wait, Electromagnetic Waves in Strotified Media, 2nd ed. (Pergamon, 
New York, 1970). 

'J. R. Wait and K. Spies, Radio Sci. 4 (4), 319 (1969). 
·Lord Rayleigh, Philos. Mag. 20,1001 (1910). 
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ERRATA 

Erratum: Four Euclidean conformal group in atomic calculations: Exact 
analytical expressions for the bound-bound two photon transition matrix 
elements in the H atom 
[J. Math. Phys. 19, 1041 (1978)] 

J. P. Gazeau 
Laboratoire de Chimie Physique de I'Universite Pierre et Marie Curie, 75231 Paris Cedex 05, France 

(Received 13 December 1979; accepted for publication 4 January 1980) 

P. 1042: Eq. (1.9)' should read: 

( (p~ + p
2

) ) (t/J" t/J2) '" (po) = 1/11' 2 2 1/12 
:Po L ?(I<') 

P. 1044: In Eq. (3.3), in place of 

"···K, + = (Po ±Pn" k,)- .. ," read: " .. ·K1 + 

= (PO-±Pn' kl)·ll -

P. 1048: In Eq. (02), in place of: 

'-' ... T':J,n'I' .... , U':t.n'l' , U nl,t':!!, 0" ," 

read: " ... T';!'.III"·' U';I',III"', U n~':f''' ," 

In the Eq. (D3) in place of 

HT';J,n'l' == ••• :' read: HTr;",nl == .... " 

Finally, the Eq, (D4) should read: 

U';I',nl = on',11 +1 (01',1-1 a(n + 1, -I)c(l,m) 

+ 151,,/+ I a(n + 1, 1+ l)c(l + 1, I - m» 
- on'.11 _, (Ol',!_, a(n,l)c(l, m) 

+ 15/'.1+, a(n, -l-l)c(l + 1,1 - m». 

Erratum: Conserved densities for nonlinear evolution equations. I. Even 
order case 
[J. Math. Phys. 20, 1239 (1979)] 

L. Abellanas, A. Galindo 
Department a/Theoretical Physics, Universidad Complutense de Madrid, Madrid-3, Spain 

(Received 31 December 1979; accepted for publication 4 January 1980) 

A pitiful error has been detected by the authors in Sec. 
3, Equation (II) is wrong and thus the criteria (2) and (3) are 
incorrect. As to example u, = (u4 + US)u6 , which was exhib
ited as an illustration of criterion (2), a direct calculation 
shows that it has no conserved density. The remaining crite
ria (I), (4), (5), and (6) hold, 

rion (6), ~p( ... u M 12 _ 2) and ~p should read, respectively, 
~PEC M 12 _ 2 (P) and ~pEC (P). In Eq. (18), the first symbolp 
should be replaced by f In Eq, (24), Tu " , must read 
K ( ... u M _ 2 ), In Proposition 3(ii), C M /2- I (P) should read 
CM 12 _ 2 (P), In the first formula following Proposition 4, 
replace c5p/c5u by ( -1) "(c5p/ou). In Eq. (38), a term b,(u)u

1 

should be added to its right-hand side, with b,(u) an arbi
trary polynomial. 

Finally, several minor corrections are in order: In Eq. 
(16b) 3 P(-"U\.f /2 _ 2 ) should read 3PECM /2 _ 2 (P). In crite-
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